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Abstract
Cronbach’s alpha, widely used for measuring reliability, often operates within studies with sample 
information, suffering insufficient sample sizes to have sufficient statistical power or precise 
estimation. To address this challenge and incorporate considerations of both confidence intervals 
and cost-effectiveness into statistical inferences, our study introduces a novel framework. This 
framework aims to determine the optimal configuration of measurements and subjects for 
Cronbach’s alpha by integrating hypothesis testing and confidence intervals. We have developed 
two R Shiny apps capable of considering up to nine probabilities, which encompass width, validity, 
and/or rejection events. These apps facilitate obtaining the required number of measurements/
subjects, either by minimizing overall cost for a desired probability or by maximizing probability 
for a predefined cost.
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Cronbach’s alpha (Cronbach, 1951) stands as one of the most widely used coefficients 
reflecting the interrelatedness of items (Sijtsma, 2009; Sijtsma & Pfadt, 2021). Despite 
considerable debate surrounding its utilization (Cho & Kim, 2015; Cortina, 1993; Green 
& Yang, 2009; Kelley & Pornprasertmanit, 2016; McNeish, 2018; Raykov & Marcoulides, 
2019; Schmitt, 1996; Sijtsma & Pfadt, 2021), the estimation and the testing of the alpha 
coefficient have gained critical attention in applied settings. Ensuring the reliability of a 
measure remains crucial for correctly interpreting the effects of experimental variables. 
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However, it has been evidenced that most reliabilities fall short of ideal standards in 
making precise, confident decisions (Charter, 2003a). Furthermore, as investigative tasks 
heavily rely on sample information, determining sample size in the initial stage of 
research design is pivotal in reducing sampling errors. While systemic studies have 
discussed sample size calculation, particularly in Intraclass Correlation Coefficient (ICC) 
studies (Donner & Eliasziw, 1987; Shieh, 2014a; 2014b; Shoukri et al., 2004; Walter et al., 
1998), the discussion regarding Cronbach’s alpha remains relatively scarce.

Estimating the necessary number of participants to yield meaningful results proves 
challenging (Charter,1999; Cocchetti,1999; Flight & Julious, 2016; Peterson & Kim, 2013). 
On one hand, the number of subjects might be too small to produce sufficiently precise 
reliability coefficients or enough statistical power for hypothesis tests (Charter, 2003b; 
Heo et al., 2015; Yurdugül, 2008). On the other hand, the number of measurements 
(items, raters) might be too large to lack cost-effectiveness (Hsu, 1994; Overall & Dalal, 
1965). Note that the magnitude of the coefficient alpha is contingent upon the number 
of items, with a curvilinear relationship (Komorita & Graham, 1965). This aspect necessi
tates further investigation into subject/item size determination. Specifically, this involves 
considerations of constructing confidence intervals and assessing cost-effectiveness in 
reliability estimation.

The conventional practice of reporting alpha coefficients as point estimates impedes 
interpretation and replication (Terry & Kelley, 2012) since the alpha estimate is influ
enced by variance sources and contains unknown-direction sampling errors. Recom
mending the reporting confidence intervals (CIs) aims to enhance the trustworthiness 
of reliability (American Psychological Association [APA], 2001; Bonett & Wright, 2015; 
Fan & Thompson, 2001; Iacobucci & Duhachek, 2003; Kelley et al., 2003) and to convey 
information related to precision and reproducibility, especially in cases of very large 
or small sample sizes (Mendoza & Stafford, 2001). However, the mere use of CIs does 
not inherently enhance statistical practice (Cumming, 2014; Morey et al., 2016) without 
proper sample size planning (Liu, 2009). Liu (2012) also noted that current sample 
size planning typically aims to achieve the power of a statistical test under specified 
alternative hypotheses, rather than constructing precise confidence intervals. Notably, 
sample size influences CI width (Charter, 1999). The process of planning sample sizes to 
obtain CI precision has some parallels to planning for statistical power but often results 
in significantly different sample size requirements (Borenstein et al., 2001; Goodman 
& Berlin, 1994). Moreover, researchers lack well-established criteria for determining CI 
widths (Smithson, 2003), and may overlook the stochastic nature of interval width, i.e., 
a CI width is a random variable, where approximately half the time, the computed CI 
width exceeds the desired width in repeated sampling (Terry & Kelley, 2012), potentially 
underestimating required sample sizes (Liu, 2009).

In light of the various applications of integration of hypothesis testing and confidence 
intervals for obtaining the needed sample sizes, the present study employed the concept 
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of event rejection, validity, and width (Jiroutek et al., 2003), defined as follows: an event 
rejection (R) is said to occur if the null value of Cronbach’s alpha is rejected; an event 
validity (V) is said to occur if Cronbach’s alpha is contained between the upper and 
lower CI limits, and an event width (W) is said to occur if the width of the CI is no 
larger than the desired width w. The probabilities of the aforementioned events are then 
denoted as P(R), P(V ), and P(W ), respectively. There are combinations of these events 
for various scenarios. Consider a scenario where a researcher aims to limit the width of 
a CI, conditional upon Cronbach’s alpha falling between the lower and upper CI bounds. 
Determining the necessary sample size in this case ensures P(W V ) achieving a probabil
ity at a desired level of 1 − β. Another instance arises when, alongside rejecting the null 
hypothesis, there's a desire to construct a confidence interval within a specified width. 
Calculating the required sample size for reporting Cronbach’s alpha aims to warrant 
that P(W ∩ R) can achieve a desired probability of 1 − β. This integrative approach to 
sample size planning, addressing multiple conditional probabilities, remains infrequently 
explored in literature, apart from the work by Terry and Kelley (2012), who focused on 
P(W ) ≥ 1 − β for composite reliability coefficients. Other studies have discussed various 
conditional probabilities (Beal, 1989; Jiroutek et al., 2003; Liu, 2012). Our study addresses 
a total of nine unconditional/conditional probabilities (cases), namely:

1. P(R).
2. P(R ∩ V ).
3. P(W ).
4. P(W V ).
5. P(W ∩ V ).
6. P(W R).
7. P(W ∩ R).
8. P(W ∩ R V ).
9. P(W ∩ R ∩ V ).
In this regard, being able to consider these probabilities can provide researchers with a 
thoughtful and comprehensive scenario that was not treated in much detail in the past. 
Also, combining hypothesis testing and a CI estimate is essential because a power-based 
approach can help avoid the ethical issues raised by recruiting too many/few participants 
(Cesana, 2013; Maxwell & Kelley, 2011).

Yet another crucial consideration within reliability studies involves balancing the 
cost of data acquisition against the precision/accuracy of estimates. Surprisingly, a 
cost-efficient design, rooted in health economics, often remains neglected (Rezagholi 
& Mathiassen, 2010). In practical applications, the acquisition of raters or certain meas
urements entails a considerable expense. When prioritizing budget constraints, obtaining 
substantial information at minimal cost necessitates optimizing the configuration of both 
the number of measurements (i.e., items, raters) and subjects (or observations) (Shoukri 
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et al., 2003). To address these pivotal concerns, this study proposes the development of a 
framework that integrates hypothesis testing and confidence intervals. The aim is to de
termine the optimal number of measurements/subjects, guided by two key objectives: (a) 
minimizing the total cost for a desired probability, and (b) maximizing the probability of 
interest within a predefined total cost. Additionally, to enhance accessibility for research
ers, this proposed procedure has been translated into two R Shiny apps (Diedenhofen 
& Musch, 2016; R Development Core Team, 2020). Leveraging rapid advancements in 
computing technology, there is a renewed opportunity to stimulate interest in sample 
size planning, specifically exploring various conditional probabilities.

The subsequent sections of this study are organized as follows. The Measurement 
Model section delves into an elucidation of Cronbach’s alpha using a measurement 
model. In the section, Method for Acquiring Number of Measurements and Subjects, we 
detail the methodology for acquiring pairs of measurements/subjects for P(R), P(V ), and 
P(W ), respectively. The Proposed Apps section showcases the functionality of the pro
posed apps concerning objectives (a) or (b) with an illustrative example. Moving to the 
Tables and Simulations section, we present three tables and simulation results. Finally, 
the Discussion and Conclusions section encapsulates the study with some best-practice 
suggestions.

The Measurement Model
Cronbach’s α describes the reliability of a sum (or average) of m measurements (test 
items, raters, occasions, or alternative forms). To evaluate the Cronbach’s α coefficient, a 
model for the parallel- measurements score y ij is given as:

y ij = ti + eij, (1)

where ti is the true score of subject i and eij is the error of measurement j for subject 
i, i = 1, ..., n (subjects); j = 1, ...,m (measurements). We also assume that {ti} are normally 
and identically distributed with mean 0 and variance σs2, {eij} are normally and identically 
distributed with mean 0 and variance σe2; and {ti} and {eij} are independent. That is, the 
random vector (yi1, ..., yim) is distributed as a multi-normal distribution with mean 0 and 
a covariance of Σ = σs211′ + σe2I. Based on Feldt (1965, 1969) and Kraemer (1981), the 
estimated Cronbach’s coefficient can be expressed as

α = 1 − MSM × S
MSS , (2)

where MSM × S is the mean square for measurement by subject, MSS is for subjects, and α
estimates the population value of Cronbach’s alpha α (0 < α < 1) as
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α = mσs2

mσs2 + σe2
= σs2

σs2 + σe2/m
. (3)

Based on Yurdugül (2008) and Heo et al. (2015), Equations (2) and (3) can be re-expressed 
as

α =   m
m − 1 1 − tr(S)

1′S1  and α =   m
m − 1 1 − tr(Σ)

1′Σ1 , (4)

where S is the unbiased sample covariance matrix; 1′ is the transpose of column vector 1
with m unit elements; Σ is the variance-covariance matrix of the population; and tr(Σ) is 
the sum of the diagonal elements of the square matrix Σ. Note that under the assumption 
of parallel measures (two measures have identical true scores and equal error variances), 
we can obtain Σ = σs211′ + σe2I, where I is an identity matrix; hence, Equation (4) is 
identical to Equations (2) and (3). Also note that the coefficient alpha is satisfactory if the 
less restrictive essentially tau-equivalent assumption (i.e., unequal variances but equal 
covariances) holds (Sijtsma & Pfadt, 2021) in the case of approximate unidimensionality.

From Kristof (1963) and Feldt (1965), we know that (1 − α)/(1 − α) is distributed as 
a central F-distribution with (n − 1) and (n − 1)(m − 1) degrees of freedom. Therefore, we 
define the test statistic

F = 1 − α
1 − α , (5)

which is distributed as an F-distribution with vn = (n − 1)(m − 1) and vd = (n − 1) de
grees of freedom. In the present study, to find the number of measurements/subjects, 
we applied distribution F, based on the distributional theory derived by Feldt (1965) and 
Feldt et al. (1987), described in the Method for Acquiring Number of Measurements and 
Subjects section.

Method for Acquiring Number of Measurements 
and Subjects

In this section, we consider events rejection, validity, and width and their corresponding 
P(R), P(V ), and P(W ), respectively to acquire pairs of measurements/subjects by using 
F distribution. First, to enhance the clinical interpretation of testing Cronbach’s alpha, 
the null hypothesis against the right-tailed alternative hypothesis is considered in the 
following manner:

H0:α ≤ α0 (or 1 − α ≥ 1 − α0) versus H1:α > α0 (or 1 − α < 1 − α0). (6)
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Note that the hypothesis testing described here does not invoke the nil null hypothesis 
that the score reliability is 0 (Fan & Thompson, 2001) but instead α0 is a golden standard 
or a particular criterion (Kuijpers et al., 2013; Nunnally & Bernstein, 1994). For a signifi
cance level δ, to test the null hypothesis H0: 1 − α ≥ 1 − α0, we have

P(F < Fδ, (vn, vd) H0: 1 − α ≥ 1 − α0) ≤ δ, (7)

where F = (1 − α)/(1 − α0) and Fδ, (vn, vd) is the δtℎ quantile of distribution F with 
vn = (n − 1)(m − 1) and vd = (n − 1) degrees of freedom. Hence, based on F < Fδ, (vn, vd), 
H0 can be rejected when

α > 1 − (1 − α0)Fδ, (vn, vd), (8)

which can be defined as an event rejection (R). For the alternative hypothesis with a 
specified value α1 > α0, the power function will coincide with P(R), the probability of the 
event rejection, as

P(R) = P(α1 > 1 − (1 − α0)Fδ, (vn, vd) H1: 1 − α = 1 − α1)
         = P(1 − α1 < (1 − α0)Fδ, (vn, vd) H1: 1 − α = 1 − α1)
         = P(F < [(1 − α0)/(1 − α1)]Fδ, (vn, vd) H1: 1 − α = 1 − α1),

(9)

where F = (1 − α1)/(1 − α1). To achieve the desired power 1 − β, we must set

[(1 − α0)/(1 − α1)]Fδ, (vn, vd) ≥ F1 − β, (vn, vd). (10)

Then, we can find various pairs of measurement m with its corresponding number of 
subjects n to satisfy Equation (10), that is, to satisfy P(R) ≥ 1 − β.

Second, for P(V ), various numbers of measurements/subjects for constructing two-
sided and one-sided CIs of coefficient α1 with a desired probability are described. A 
confidence level is set to 1 − δ (i.e., the probability of the event validity, P(V ) = 1 − δ). To 
form a two-sided CI, from Equation (5) and by Feldt et al. (1987), it can be shown that

1 − δ = P(Fδ/2, (vn, vd) ≤ F ≤ F1 − δ/2, (vn, vd))

        = P( 1 − α1
F1 − δ/2, (vn, vd)

≤ 1 − α1 ≤
1 − α1

Fδ/2, (vn, vd) )

        = P(1 − 1 − α1
Fδ/2, (vn, vd) ≤ α1 ≤ 1 − 1 − α1

F1 − δ/2, (vn, vd)
),

where F = (1 − α1)/(1 − α1). The lower confidence limit (LCL) and the up
per confidence limit (UCL) are denoted as LCL = 1 − (1 − α1)/Fδ/2, (vn, vd) and 
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UCL = 1 − (1 − α1)/F1 − δ/2, (vn, vd), respectively. Hence, a (1 − δ) 100% two-sided CI is 
[LCL, UCL], for which the width is

UCL − LCL = (1 − α1)(1/Fδ/2, (vn, vd) − 1/F1 − δ/2, (vn, vd)), (11)

an increasing function of (1 − α1). In some contexts, there is rationale in acquiring a 
one-sided CI, structured as [LCL, 1]. It can be shown that

1 − δ = P(Fδ, (vn, vd) ≤ F < ∞)

        = P(0 ≤ 1 − α1 ≤
1 − α1
Fδ, (vn, vd) )

        = P(1 − 1 − α1
Fδ, (vn, vd) ≤ α1 ≤ 1) .

Here, LCL = 1 − (1 − α1)/Fδ, (vn, vd) and UCL = 1. The width of the one-sided CI is defined 
as

1 − LCL = 1 − (1 − (1 − α1)/Fδ, (vn, vd)) = (1 − α1)/Fδ, (vn, vd). (12)

From Equations (11) and (12), it is known that the width of a CI is an increasing function 
of (1 − α1) given δ, m, and n. Hence, the width is a random variable.

Third, we define the event width (W ) as UCL − LCL ≤ w  for a two-sided CI, or 
1 − LCL ≤ (1 − α1) + w/2 for a one-sided CI, where w is the desired width chosen as 
sensibly as 0 < w ≤ (1 − α0). The probability of the event width is

P(W ) = P((1 − α1)F(vn, vd)
a ≤ wa)

          = P(F ≤ wa
1 − α1

/F(vn, vd)
a ),

(13)

where F = (1 − α1)/(1 − α1); wa = w  and F(vn, vd)
a = (1/Fδ/2, (vn, vd) − 1/F1 − δ/2, (vn, vd)) for a 

two-sided CI; and wa = (1 − α1) + w/2 and F(vn, vd)
a = 1/Fδ, (vn, vd) for a one-sided CI, respec

tively. Then, to achieve P(W ) ≥ 1 − β, we must set

[wa/(1 − α1)]/F(vn, vd)
a ≥ F1 − β, (vn, vd) (14)

by replacing α1 with a planning value obtained from expert opinion or prior research 
(Bonett, 2002). Then, pairs of (m, n) can be obtained to satisfy Equation (14). For other 
unconditional/conditional probabilities, the pairs can be obtained by using the proposed 
apps demonstrated in The Proposed Apps section.
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The Proposed Apps
In the framework of integration of hypothesis testing and CIs for nine unconditional/ 
conditional cases, when the budget is the primary concern, we derived an optimal pair 
(m, n) under cost constraint. Let cm represent the cost per measurement, cs represent 
the cost per subject, and cms represent the cost per observation. The total cost can be 
expressed as

C = cmm + csn + cmsmn (15)

when a pair of (m, n) is given (Eliasziw & Donner, 1987). To be ethically and economically 
feasible for objectives (a) and (b) outlined in the introduction, we have developed two R 
Shiny apps described as follows to either minimize the total cost for a desired probability 
or to maximize the probability of interest within a predefined total cost.

For objective (a), App (I) (see Luh, 2024a) is designed based on the section Method 
for Acquiring Number of Measurements and Subjects, employing an exhaustive search 
method. To use App (I), researchers start by selecting the specific event of interest (case), 
setting a significance level, a desired probability, a planning value for an alternative α1, 
and determining the number of measurements up to which all outcomes will be printed. 
For cases related to the event (R), researchers input a null hypothesis value which should 
be smaller than α1. Regarding cases linked to the event (W), users specify the desired 
width of CI and whether it’s one- or two-sided. Additionally, if there is a cost constraint, 
they can specify the unit cost of measurement, subject, and observation can be specified 
(refer to Figure 1). Upon entering these values, clicking “Submit” executes App (I), 
displaying a list of measurement-subject pairs that satisfy the desired probability. Among 
the pairs with the minimal total cost, an optimal pair with the maximal probability for 
objective (a) is highlighted at the bottom of the output.

For objective (b), the probability of interest is maximal for a given cost (C). From 
Equation (15), we have C − cmm = (cs + cmsm)n. Thus, for given measurements m, the 
corresponding number of subjects is n = (C − cmm)/(cs + cmsm). The optimal pair that has 
a maximal probability can be derived by using an exhaustive algorithm. We offer App 
(II) (see Luh, 2024b) for a user-friendly application. Researchers need to specify the event 
of interest and the corresponding parameters. Additionally, the fixed total cost (C), as 
well as the unit cost of measurement, subject, and observation, are required. The output 
presents the optimal measurement-subject pair along with its corresponding total cost 
and the maximum attainable probability within this total cost.

In the following, we utilized an example from Bonett (2002) to demonstrate the 
functionality of the proposed apps. For objective (a), to test H0:α ≤ α0 = .7 versus 
H1:α = α1 = .8 at δ = .025, with a desired probability (power) of .9 and a given number 
of measurements m = 4, App (I) indicated the required number of subjects for P(R) as 
n = 170, a result close to Bonett’s 173. Additionally, aiming for a desired precision, P(W ), 
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Bonett (2002) set the planning value α1 = 0.7, the desired absolute precision of 0.2 with 
95% confidence for a two-sided CI, which yielded a total of 99 subjects. However, our 
simulation revealed an empirical probability of .5429, roughly equal to a probability 
of 1/2. Using the statpsych R package, the sample size was determined as 95 by the 
command size.ci.cronbach(.05, .7, 4, 0.2), still falling short of the desired probability (1-β) 
of .8. Contrastingly, based on App (I), the required number of subjects was 123, resulting 
in an empirical probability of .8004 from our 10,000 simulations.

Figure 1

A Screenshot of the Proposed R Shiny App (I)

Note. For cases relating to the event (R), leave “desired width” and “sides” there as it is. For cases relating to the 
event (W), leave “null hypothesis value” there as it is. If costs are not the concern, plug in 0 in “cm”, “cs”, and 
“cms”.

Subsequently, if the primary concern is the total cost, assuming the costs of obtaining a 
single measurement, cm, and a single subject, cs, are both $1, while a single observation, 
cms, is $0. App (I) derived the optimal pair (11, 101) with a minimal cost of $112 for 
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objective (a) in the case of P(W ). Finally, for objective (b), with a fixed cost of $112, 
employing App (II) with δ = .05 and 1-β = .8 for a two-sided CI, we obtained the optimal 
number of measurements and subjects as m = 11 and n = 101, respectively, resulting in a 
maximal probability of .804072.

Tables and Simulations

Tables
To aid applied researchers, three tables are presented, generated by running App (I), 
showcasing key characteristics regarding the interrelation of the inputted parameters 
with the number of measurements/subjects. Table 1 exhibits the configuration of the 
desired width (w) and the planning value (α1) across nine probability cases, offering 
significant insights into various aspects. First of all, as anticipated, while keeping other 
factors constant, a wider desired width alongside the larger planning value; refer to 
Equations (11) and (12), generally necessitates fewer measurements/subjects, excluding 
Cases 1 and 2. Second, the Cases 1. P(R) and 2. P(R ∩ V ), solely involving the event 
rejection, are contingent upon the difference value, α1 − α0; the larger the difference, the 
fewer measurements/subjects required; refer to Equation (10). These outcomes align with 
the pattern demonstrated in Table 2 of Jiroutek et al. (2003). Thirdly, for cases solely 
involving the event width, note that due to P(W )≥P(W ∩ V ) and P(W V )≥P(W ∩ V ), 
the required number of measurements/subjects in Case 5 is slightly higher than or 
equal to that in Case 3 and Case 4. Note that the resulting numbers are similar in 
Cases 1 and 2, and in Cases 3, 4, and 5 because P(V) is as high as .95 (i.e., δ = .05). 
Fourthly, for cases involving both events of width and rejection, note that P(W R) ≥
P(W ∩ R) and P(W ∩ R V )≥P(W ∩ R ∩ V ). Thus, Case 7 and Case 9 needed relatively more 
measurements/subjects than Case 6 and Case 8, respectively. Finally, among all cases, 
Case 9 necessitates the largest number of measurements/subjects due to the inclusion 
of all three events. Put simply, the higher the corresponding probability value of the 
case, the fewer measurements/subjects are required to achieve the desired probability
1 − β. Generally, the conditional probabilities are larger or equal to those corresponding 
probabilities of events with intersection, leading to a slightly reduced number of required 
measurements/subjects. Furthermore, due to negligible differences, the following Tables 
2 and 3 do not display these conditional probabilities (Cases 4, 6, and 8).

To delve deeper into the relationship between the number of measurements and 
subjects, Table 2 presents the required subject sizes (n) while holding the number of 
measurements (m) constant. Considering the test reliability and test time, the number of 
measurements ranged from m = 10 to 25. Using the proposed App(I), it is evident that 
with an increase in the number of measurements, the required subject sizes decrease, 

Planning the Number of Measurements/Subjects 10

Methodology
2024, Vol. 20(1), 1–21
https://doi.org/10.5964/meth.10449

https://www.psychopen.eu/


albeit inconspicuously. Likewise, as more events are considered, the larger the number of 
subjects is needed.

Table 1

Optimal Number of Measurements and Subjects (m, n) for Nine Probability Cases, Given the Configuration of the 
Desired Width and the True Difference

Desired Widtha

α1 Case 0.1 0.2

0.8 1.P(R) 10, 83 10, 83

2.P(R ∩ V ) 10, 89 10, 89

3.P(W ) 13, 165 8, 54

4.P(W V ) 13, 163 8, 53

5.P(W ∩ V ) 14, 167 8, 55

6.P(W R) 13, 162 6, 34

7.P(W ∩ R) 13, 165 10, 83

8.P(W ∩ R V ) 13, 163 10, 79

9.P(W ∩ R ∩ V ) 14, 167 10, 89

0.85 1.P(R) 6, 32 6, 32

2.P(R ∩ V ) 6, 34 6, 34

3.P(W ) 11, 101 7, 35

4.P(W V ) 11, 100 7, 34

5.P(W ∩ V ) 11, 104 7, 37

6.P(W R) 11, 101 6, 28

7.P(W ∩ R) 11, 101 7, 35

8.P(W ∩ R V ) 11, 100 7, 34

9.P(W ∩ R ∩ V ) 11, 104 7, 37

0.9 1.P(R) 4, 15 4, 15

2.P(R ∩ V ) 5, 15 5, 15

3.P(W ) 8, 54 5, 21

4.P(W V ) 8, 53 5, 21

5.P(W ∩ V ) 8, 55 5, 22

6.P(W R) 8, 54 5, 18

7.P(W ∩ R) 8, 54 5, 21

8.P(W ∩ R V ) 8, 53 5, 21

9.P(W ∩ R ∩ V ) 8, 55 5, 22

Note. Setting δ = .05, 1 − β = .8, α0 = 0.7, cm = $1, cs = $1, and cms = $0.
aTwo-sided CIs.
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Table 2

The Corresponding Subjects (n) for Six Probability Cases

Number of Measurements (m)

Case 10 15 20 25

P(R) 83 80 78 77

P(R ∩ V ) 89 86 85 84

P(W ) 169 163 160 159

P(W ∩ V ) 173 166 163 162

P(W ∩ R) 169 163 160 159

P(W ∩ R ∩ V ) 173 166 163 162

Note. Setting δ = .05, 1 − β = .8, α0 = 0.7, α1 = 0.8, w = 0.1 (two-sided CIs), cm = $1, cs = $1, and cms = $0.

Table 3

Optimal Number of Measurements and Subjects (m, n) for Six Probability Cases, Given Various Costs

Case (1)a (2)b (3)c (4)d

P(R) 10, 83 5, 94 20, 78 7, 87

P(R ∩ V ) 10, 89 6, 97 21, 84 7, 94

P(W ) 10, 84 5, 94 19, 79 6, 90

P(W ∩ V ) 10, 86 5, 97 19, 81 7, 90

P(W ∩ R) 10, 84 5, 94 19, 79 6, 90

P(W ∩ R ∩ V ) 10, 89 6, 97 21, 84 7, 94

Note. Setting δ = .05, 1 − β = .8, α0 = 0.7, α1 = 0.8, and w = 0.15 (two-sided CIs).
acm = $1, cs = $1, cms = $0. bcm = $4, cs = $1, cms = $0. ccm = $1, cs = $4, cms = $0. dcm = $1, cs = $4, cms = $0.1.

To delve deeper, Table 3 highlights the trilateral relationship among the number of 
measurements, subjects, and costs. It delineates four conditions based on various cost 
scenarios. A comparison of Columns 1 and 2 reveals that an increased unit cost for a 
measurement (cm) results in a decreased number of required measurements. Similarly, 
a higher cost for a subject (cs) (see Column 3) leads to a reduced number of necessary 
subjects to achieve objective (a) at a minimal cost. Finally, when each observation incurs 
a cost, i.e., cms > 0 (see Column 4), the multiplicative effect of measurements and subjects 
contributes to minimizing the total cost. In other words, the total number of observations 
(m × n) is decreased. Taking P(W ) as an example, the total number of observations is 
reduced from 1501(= 19×79) to 540 (= 6× 90). Moreover, Figure 2 shows the comparison 
of the resulting total costs under the condition of cm = $1, cs = $4, and cms = $0.1. It 
can be observed that the lowest total cost is $420 with m = 6, n = 90. The cost can 
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increase to $640.4 as the number of measurements reduces to 2, and up to $532 as the 
number of measurements increases to 25. The increase rates in terms of costs are 52.5% 
(= (640.4-420)/420) and 26.7%, respectively. From a practical point of view, there is much 
to gain from cost optimization.

Figure 2

Comparison of Resulting Total Costs from a Screenshot of App (I)

Simulations
In simulations, two criteria were used to validate the proposed apps—empirical probabili
ty and coverage rates. We first executed App (I) by setting δ = .05, 1 − β = .8, α0 = 0.7, 
α1 = 0.8, w = 0.2, cm = cs = $1, and cms = 0 to obtain the optimal pair (m, n) for Case 
4.P(W V ) as (10, 85) and (8, 53) for a one- and two-sided CI, respectively. Then, given m, 
σs2 and α1, we obtained σe2 = mσs2(1 − α1)/α1 based on Equation (3). To conduct simulation 
experiments, we generated ti from a normal distribution with mean 0 and variance σs2 by 
using the R rnorm function to form y ij = ti + eij, (i = 1, ..., n, j = 1, ...,m), for each y ij. Next, 
for each subject i, we generated eij for j = 1, ...,m, from a normal distribution with mean 
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0 and variance σe2. Finally, the observed score y ij was derived by adding ti and eij meeting 
the additivity condition. In the subsequent simulation, we set σs2 = 1 to obtain σe2 = 2.5 
for one-sided CIs and σe2 = 2 for two-sided CIs. Two simulations were conducted with 
10,000 replications each for one- and two-sided CIs to report the empirical probabilities 
across nine cases. The simulation outcomes reveal nearly identical empirical probabilities 
to the corresponding theoretical probabilities (refer to Figure 3 for two-sided CIs) and 
demonstrate excellent coverage rates. Detailed results are reported below.

Figure 3

The Empirical and Theoretical Probabilities for Nine Probability Cases

Note. Setting two-sided CIs.

For two-sided CIs, Figure 3 illustrates that Case 4 aligns with the theoretical probability 
as the desired level of .80. However, Cases 1, 2, 5, and 7 to 9 fall short due to insufficient 
measurements/subjects, whereas Case 6 exceeds the desired level due to notably larger 
given values of (m, n) = (8, 53) compared to the intended values of (6, 34), as shown 
in Table 1. For researchers seeking to calculate the theoretical probability, we include 
R codes in the Appendix. Moreover, we observed that the empirical distribution of 
estimates α1( = .8) exhibited leftward skewness, featuring a mean of 0.7922 (SD = 0.0449), 
a median of 0.7978, and a coverage rate of 95.18% (i.e., empirical P(V )). Moreover, among 
the confidence intervals encompassing the planning alpha value, the average width was 
0.1704, close to w = 0.2.

For one-sided CIs, we observed that the empirical distribution of estimates α1 was 
also leftward skewness with a mean of 0.7956 (SD = 0.0336), a median of 0.7993, and a 
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coverage rate of 94.94%. Moreover, for those confidence intervals containing the planning 
alpha value, the average width was 0.2669, which is close to the desired width of 0.3 
(= (1 − α1) + w/2). The empirical probabilities for the nine cases were as follows:

1. P(R) = .8194.
2. P(R ∩ V ) = .7688.
3. P(W ) = .8194.
4. P(W V ) = .8098.
5. P(W ∩ V ) = .7688.
6. P(W R) = 1.0.
7. P(W ∩ R) = .8194.
8. P(W ∩ R V ) = .8098.
9. P(W ∩ R ∩ V ) = .7688.

As expected, Case 4 had the desired probability while Cases 2, 5, and 9 were not satisfac
tory because of a lack of measurements/subjects.

Discussion and Conclusion
The determination of sample size stands as a crucial and integral part of study planning, 
vital to achieving robust statistical power and precise estimation—a cornerstone of sound 
statistical practice. In addressing the need for enhanced clinical interpretation and cost-
effectiveness, our study aimed to contribute to this evolving field by establishing the 
required number of measurements/subjects for evaluating Cronbach’s alpha within a 
comprehensive framework encompassing hypothesis testing and confidence intervals. 
The introduction of our proposed apps represents a novel advancement, enabling re
searchers to identify optimal configurations of measurements and corresponding subjects 
across various events of width, validity, and rejection, crucial for achieving desired 
probabilities. Our empirical findings underscore the accuracy of the obtained optimal 
numbers, exhibiting excellent coverage rates and near-identical empirical probabilities to 
the desired ones. Significantly, our study illuminates the intricate interplay among the 
number of measurements, subjects, and costs.

It is important to note that the calculations presented here are tailored for parallel 
measurements and normal distributions. We acknowledge prior research (Liu et al, 2010; 
Olvera Astivia et al., 2020) highlighting the consequence of violating distributional 
assumptions and the presence of outliers. However, studies by Raykov (1997), Yuan 
and Bentler (2002), Osburn (2000), and our observations from simulations indicate that 
under specific yet verifiable conditions, coefficient alpha remains minimally affected by 
population deviations from scale reliability. Hence, our work stands as an initial guide for 
sample size planning and lays a foundation for future investigations. Subsequent studies 
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might expand to encompass intraclass correlation coefficient (ICC) cases, facilitating 
adaptability across a spectrum of research designs.
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Appendix: R Codes for Calculating Theoretical 
Probabilities

########################################################################################

    #---------------- input ----------------------------------------------------------------
    delta = 0.05      # significance level
    alpha0 = 0.70     # the value for the null hypothesis 
    alpha1 = 0.80     # the planning value of alpha 
    w = 0.2           # the desired width of CI 
    m = 8             # the number of measurements
    n = 53            # the number of subjects
    side = 2          # side = 1 for one-sided CI, side = 2 for two-sided CI
    #------------------------- procedure ---------------------------------------------------
    vn = (n-1)*(m-1)                                 # degrees of freedom for the numerator
    vd = n-1                                         # degrees of freedom for the denominator
    LF1 = ((1-alpha0)/(1-alpha1))*qf(delta, vn, vd)  # the critical value for right-tailed tests  
                                                     # in Equ(9)  
    if (side == 1) {
        p1 = 0
        p2 = delta
        wa = (1-alpha1) + w/2
        } else {
        p1 = delta/2  
        p2 = delta/2
        wa = w
            }
    RF3 = qf(1-p1, vn, vd)      # the critical value of F for left-tailed areas given 1-p1
    LF3 = qf(p2, vn, vd)        # the critical value of F for left-tailed areas given p2 
    f1 = (wa/(1-alpha1))/(1/LF3 - 1/RF3)  
                                # the critical value of F=(1-alpha1hat)/(1-alpha1) in Equ(13)     

Planning the Number of Measurements/Subjects 20

Methodology
2024, Vol. 20(1), 1–21
https://doi.org/10.5964/meth.10449

https://doi.org/10.1007/s11336-021-09789-8
https://doi.org/10.4135/9781412983761
https://doi.org/10.1111/j.2044-8317.2011.02030.x
https://doi.org/10.1002/(SICI)1097-0258(19980115)17:1<101::AID-SIM727>3.0.CO;2-E
https://doi.org/10.1007/BF02294845
http://www.efdergi.hacettepe.edu.tr/yonetim/icerik/makaleler/571-published.pdf
https://www.psychopen.eu/


    # Nine probability cases
    PV = pf(RF3, vn, vd) - pf(LF3, vn, vd)                                   # for P(V)
    PWF1 = pf(LF1, vn, vd)                                                   # for P(R), Equ(9) 
    PWF2 = (pf(min(LF1, RF3), vn, vd) - pf(LF3, vn, vd))                     # for P(R&V)
    PWF3 = pf(f1, vn, vd)                                                    # for P(W), Equ(13) 
    PWF4 = (pf(min(f1 ,RF3), vn, vd) - pf(LF3, vn, vd)) / (1-delta)          # for P(W|V)
    PWF5 = (pf(min(f1, RF3), vn, vd) - pf(LF3, vn, vd))                      # for P(W&V)  
    PWF6 = pf(min(f1, LF1), vn, vd) / pf(LF1, vn, vd)                        # for P(W|R)
    PWF7 = pf(min(f1, LF1), vn, vd)                                          # for P(W&R)  
    PWF8 = (pf(min(f1, LF1, RF3), vn, vd) - pf(LF3, vn, vd)) / (1-delta)     # for P(W&R|V)  
    PWF9 = (pf(min(f1, LF1, RF3), vn, vd) - pf(LF3, vn, vd))                 # for P(W&R&V)
    # results   
    output = (round(c(PV, PWF1, PWF2, PWF3, PWF4, PWF5, PWF6, PWF7, PWF8, PWF9), 4))
    names(output) = c("P(V)", "P(R)", "P(R&V)", "P(W)", "P(W|V)", "P(W&V)", "P(W|R)", 
                      "P(W&R)", "P(W&R|V)", "P(W&R&V)")
    output
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