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Abstract
Consider the usual linear regression model. A well-known concern is that a bad leverage point, 
which is a type of outlier, can result in a poor fit to the bulk of the data, even when using any one 
of many robust regression estimators. In terms of measuring the strength of the association, bad 
leverage points can mask a strong association among the bulk of the data, and bad leverage points 
can suggest a strong association when in fact there is, in general, a weak association. This issue 
can be addressed by using an analog of Pearson’s correlation that is eliminates outliers. But this 
approach can have a negative impact because it eliminates what are known as good leverage 
points. The paper suggests a class of robust measures of association that deals with this issue.

Keywords
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A well-established result is that outliers can wreak havoc on Pearson’s correlation result­
ing in a poor and misleading understanding of the nature of the association among the 
bulk of the data (e.g., Kim et al., 2015; Niven & Deutsch, 2012). These results are related 
to the fact that the usual estimate of Pearson’s correlation has a breakdown point of only 
1/n, where n is the sample size and the breakdown point is the minimum proportion of 
points that must be altered to make the estimate arbitrarily large or small (e.g., Wilcox, 
2022). Moreover, the population Pearson correlation, ρ, has an unbounded influence 
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function. This means that even a small departure from a bivariate normal distribution 
can alter ρ in a manner that masks a strong association as illustrated in Wilcox (2022).

Numerous estimators have been derived that are aimed at dealing with outliers or 
extreme values when measuring the strength of an association. Extensive comparisons 
of 11 such estimators are reported by Li (2022). Several of these estimators are effective 
at dealing with the limitations of Pearson’s correlation. But all of them have a common 
feature that can be a practical concern: they do not make a distinction between good and 
bad leverage points.

Consider the random sample X1, Y1 , …, Xn, Yn  and assume that for the bulk of these 
points

Y = β0 + β1X + ε (1)

where the slope and intercept are unknown and ε is a random variable having some 
unknown distribution. The point Xi, Yi  is called a leverage point if Xi is an outlier 
among the values X1, …, Xn. Let b0 and b1 be estimates of β0 and β1, respectively and let 
ri = Yi − b0 − b1Xi (i = 1, …, n) denote the residuals. If ri is an outlier among r1, …, rn and 
simultaneously Xi, Yi  is a leverage point, the point Xi, Yi  is a bad leverage point. If 
Xi, Yi  is a leverage point, but ri is not an outlier, the point Xi, Yi  is a good leverage 

point. Roughly, a good leverage point is a point that is reasonably consistent with the 
linear model for the bulk of the data given by (1) as illustrated in Figure 1. Bad leverage 
points can negatively impact Pearson’s correlation, Kendall’s tau and Spearman’s rho as 
illustrated in the Concluding Remarks.

Figure 1

An Illustration of a Good and Bad Leverage Point
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Let b1 denote the least squares estimator for the slope and consider the squared 
standard error of b1:

σ2

∑ Xi − X⃑ 2 , (2)

where σ2 is the variance of the error term in (1). Note that a leverage point inflates 
the denominator, which in turn lowers the standard error. However, even a single bad 
leverage point can result in a poor fit to bulk of the points.

Many robust regression estimators have been derived that have a reasonably high 
breakdown point. However, all of these estimators, including estimators with the highest 
possible breakdown point, .5, can be unduly impacted by bad leverage points (Wilcox, 
2022). What is needed is a method that retains good leverage points and eliminates bad 
leverage points.

There are two broad classes of robust measures of association. The first are measures 
that deal with outliers among the marginal distributions and the second deals with 
outliers in a manner that takes into account the overall structure of the data cloud 
(Wilcox, 2022). But extant versions do not deal with bad leverage points. This is because 
these measures are not directly tied to any particular regression estimator. Here, the 
approach is to first assume that (1) is a reasonable model of the association among the 
bulk of the participants. Next, use a method for estimating the slope and intercept in a 
manner that avoids the deleterious impact of bad leverage points and then use this fit to 
compute an analog of Pearson’s correlation.

The paper is organized as follows. The remainder of this section reviews the method 
used to detect bad leverage points. The second section, Proposed Measures of Associa­
tion, reviews a method for detecting bad leverage points that is used here. Section 3, 
Simulation Results reports on how well the inferential methods in the second section, 
Proposed Measures of Association, perform. The fourth section, Some Illustrations, re­
ports simulation results on how well the inferential methods in the section, Simulation 
Results, perform. In contrast to the results reported by Li (2022), as well as Yuan and 
Mackinnon (2014), the simulation results reported here include situations where the 
distributions are skewed, which will be seen to be an important issue.

A major advance toward the goal of detecting bad leverage points was derived by 
Rousseeuw and van Zomeren (1990). Their method begins by fitting a regression line 
using the least median of squares (LMS) estimator. That is, the slope and intercept 
are estimated by the values b1 and b0, respectively, that minimize the median of the 
squared residuals. This estimator has the highest possible breakdown point, .5, where 
the breakdown point refers to the minimum number of points that must be altered to 
make the estimates arbitrarily large or small. Essentially, the breakdown point reflects 
the sensitivity of an estimator to outliers. A natural conclusion at the time was that 
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because the LMS estimator has the highest possible breakdown point, it will provide a 
reasonable estimate of the regression line given by (1) even when there are leverage 
points. However, this is not necessarily the case.

Many robust regression estimators have been derived that have a reasonably high 
breakdown point. Nevertheless, generally these estimators can be substantially influ­
enced by a few bad leverage points (Wilcox, 2022). That is, a few bad leverage points 
cannot make the estimates arbitrarily large, but they can alter the estimate of slope and 
intercept to the point that a poor fit to the bulk of the data is obtained. One consequence 
is that the method derived by Rousseeuw and van Zomeren can miss bad leverage points.

Wilcox and Xu (2023) suggested a slight modification of the Rousseeuw and van Zo­
meren method that deals with the issue just described. The method begins by removing 
all leverage points and estimating the slope and intercept using some robust regression 
estimator. No single estimator dominates in terms of efficiency, but two that stand out 
are the MM-estimator derived by Yohai (1987) and the estimator derived by Theil (1950) 
and Sen (1968). The MM-estimator has the highest possible breakdown point, .5, while 
the Theil–Sen estimator has a breakdown point of .29. Both of these estimators are more 
efficient than the LMS estimator. A possible practical concern with the MM-estimator 
is that situations are encountered where the iterative estimation method fails. The Theil–
Sen estimator avoids this problem and is used here with the understanding that there 
might be situations where the MM-estimator, or even some other robust estimator, offers 
a practical advantage.

The Theil–Sen estimator is computed as follows. Let

Sij =
Yi − Yj
Xi − Xj

, (3)

for every i < j. The estimate of the slope, b1, is the median of the Sij values. The intercept 
is estimated with b0 = My − b1Mx, where My and Mx are the medians based on Y1, …, Yn
and X1, …, Xn , respectively.

Note that by deleting all leverage points, the deleterious impact of bad leverage points 
has been eliminated in which case values for b0 and b1, based on a robust regression 
estimator, provide an estimate of the parameters in (1). Next, based on this fit, compute 
the residuals using all of the data yielding u1, …, un. If ui is an outlier among u1, …, un, and 
if Xi, Yi  is a leverage point, decide that Xi, Yi  is a bad leverage point.

Here, the MAD-median rule is used to detect outliers, which is a special case of the 
outlier detecting method in Rousseeuw and van Zomeren (1990). To elaborate, let MAD 
denote the median of X1 − Mx , …, Xn − Mx . Then Xi is declared an outlier if

Xi − Mx
MAD/.6745 ≥ 2.24. (4)
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Under normality, MAD/.6745 estimates the population standard deviation.

The Proposed Measures of Association
Let τ2 Y  and τ2 Y  denote some measure of variation associated with Y  and Y , respec­
tively, where Y = β0 + β1X . Explanatory power is

ξ2 = τ2 Y
τ2 Y . (5)

From basic principles, when using the least squares regression estimator and τ2 is taken 
to be the variance, ξ2 reduces to ρ2, where ρ is Pearson’s correlation.

A robust version of ξ2 is obtained simply by using a robust regression estimator 
in conjunction with some choice for τ2 that is robust as well. There are many robust 
measures of variation, comparisons of which are reported by Lax (1985). One that was 
found to perform relatively well is the percentage bend measure of variation. The version 
used here has a breakdown point of .2, which is reasonably high.

The percentage bend measure of variation is computed as follows. Compute .8n + .5, 
round this value down to the nearest integer and label the result k. Let W i = Xi − Mx , 
i = 1, …, n. Let W 1 ≤ … ≤ W n  be the W i values written in ascending order. Let

ωβ = W k ,

Yi =
Xi − Mx

ωβ

and let ai = 1 if Yi ≥ 1. If Yi > 1, ai = 0. The percentage bend midvariance is

ζpb
2 =

nωβ
2∑ Ψ Yi 2

∑ai 2
, (6)

where

Ψ x = max −1, min 1, x .

Under normality, this estimator provides a very close estimate of the population
variance.

In summary, the proposed robust analog of the coefficient of determination that deals 
with bad leverage points is computed as follows. Compute b0 and b1, estimates of the 
slope and intercept, respectively, using a robust regression estimator with bad leverage 
points removed. This leaves m ≤ n points which for notational convenience are denoted 
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by X1, Y1 , …, Xm, Ym . Let Y i = b0 + b1Xi, (i = 1, …, m). Let τ2 Y  denote the percentage 
bend measure of variation based on Y 1, …, Y m and let τ2 Y  denote the percentage bend 
measure of variation based on Y1, …, Ym. An estimate of ξ2 is

ξ2 = τ2 Y
τ2 Y . (7)

A robust analog of ρ that deals with bad leverage points is estimated with

η = sign b1 ξ (8)

There is a feature of η that should be noted. Its value can depend on which variable is 
taken to be the dependent variable. This is, of course, in contrast to Pearson’s correlation, 
Spearman’s rho and Kendall’s tau.

Inferences About η
There is the issue of testing hypotheses and computing confidence intervals for η, the 
population parameter being estimated by η. Here, the same three bootstrap methods 
studied by Li (2022) are considered. For two of these methods there are in fact two 
variations considered here that differ in how bootstrap samples are generated. In effect, 
five methods are considered here. The first variation is related to extant methods for 
making inferences about the parameters associated with a linear model. An approach 
that has been studied extensively is to first remove any outliers among the independent 
variable and then make inferences about the slope and intercept using the remaining 
data.

The details of the first method are as follows. Again let X1, Y1 , …, Xm, Ym  denote the 
remaining data after bad leverage points are removed. Next, generate a bootstrap sample 
by randomly sampling with replacement m pairs of points from X1, Y1 , …, Xm, Ym  yield­
ing the bootstrap sample X1*, Y1* , …, Xm*, Ym* .

Based on a bootstrap sample, compute τ2 Y  and use this value in (7) and (8) yielding 
η*. Note that a bootstrap version of τ2 Y  is not used. If a bootstrap estimate is used, 
simulations indicated that control over the Type I error probability is poor.

Next, repeat the above process B times yielding η1*, …, ηB*. A bootstrap estimate of the 
squared standard error of η is

S2 = 1
B − 1∑ ηb* − η⃑* 2

, (9)

where η* = ∑ηb*/B. Results in Efron (1987) suggest that generally, B = 100 suffices and 
was found to perform reasonably well in simulations, but at the suggestion of a referee, 
B = 1000 is used here.

Wilcox 353

Methodology
2023, Vol. 19(4), 348–364
https://doi.org/10.5964/meth.11045

https://www.psychopen.eu/


The test statistic for testing

H0:η = 0 (10)

is

W = η
S , (11)

which is assumed to have a standard normal distribution when the null hypothesis is 
true. A 1 − α confidence interval for η is taken to be

η⃑ ± z1 − α/2S, (12)

where z1 − α/2 is the 1 − α/2 quantile of a standard normal distribution. Following Li, this 
method is labeled BSI.

The next approach is based on two variations of the basic percentile bootstrap meth­
od. The first, which is labeled method PBR, proceeds as done by method BSI, meaning 
that the analysis begins by removing bad leverage point and generating bootstrap sam­
ples based on the remaining data. In contrast to BSI, no estimate of the standard error 
is used. Another difference is that now both the numerator and denominator of (7) are 
computed based on a bootstrap sample. Put the bootstrap values η1*, …, ηB* in ascending 
order yielding η 1* ≤ … ≤ η B* . Let p* = A/B, where A is the number of bootstrap esti­
mates that are less than zero. A p-value is

2min p*, 1 − p* (13)

(Liu & Singh, 1997). A 1 − α confidence interval is

η l + 1* , η u* , (14)

where l = αB/2 rounded to the nearest integer and u = B − l.
Methods BSI and PBR reflect a common approach, in the context of a linear model, 

where leverage points, but not outliers among the dependent variable, are removed and 
a percentile bootstrap method is performed on the remaining data (Wilcox, 2022). In 
contrast, when working with some measure of association, bootstrap samples are based 
on all of the data. Otherwise, given the goal of making inferences about η, the details are 
exactly the same as method PBR. This alternative approach is labeled PBC.

The final two methods are based on the bias-corrected and accelerated bootstrap 
(BCa) interval. The main difference from the percentile bootstrap method is that BCa 
attempts to correct for any bias associated with an estimator as well as any skewness 
associated with the bootstrap distribution. This is done via two parameters. The first is 
based on the proportion of bootstrap estimates that are less than the observed value, 
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η. The second is aimed at adjusting the confidence interval based on how much the 
bootstrap distribution is skewed to the right or left. Complete computational details are 
in Efron (1987) and Li (2022). The practical point here is that the method is readily 
applied via the R function bcajack2, which can be accessed via the R package bcaboot. 
Again two variations are used. The first begins by removing bad leverage points (BCaR) 
and the second uses all of the data when generating bootstrap samples (BCaC).

Simulation Results
Simulations were used to get some sense of how well the methods in the Simulation 
Results section perform when dealing with sample sizes n = 20, 40 and 100. A few 
simulations were run with n = 200 and 300.

Data were generated based on the linear model given by (1). Three distributions were 
used for X  and the error term, ε: standard normal, a symmetric heavy-tailed distribution 
and a skewed distribution with relatively high skewness and kurtosis.

An h distribution, which belongs to the family of g-and-h distributions, was used to 
generate data from a symmetric, heavy-tailed distribution. A value is generated from this 
distribution by first generating a value from a standard normal distribution yielding Z
and computing

X = Zexp ℎZ2/2 . (15)

The skewed distribution that was used is a lognormal distribution, which is motivated in 
part by various studies summarized in Wilcox (2022) looking at the degree distributions 
might be non-normal. This distribution is also motivated by results reported by Cain et 
al. (2017) who reviewed estimates of skewness and kurtosis reported in papers published 
in two journals: Psychological Science and the American Education Research Journal. The 
skewness and kurtosis of a lognormal distribution are 6.185 and 113.9, respectively. Based 
on 1,567 estimates collected by Cain et al. (2017), this level of skewness is realistic 
and relatively extreme. The skewness and kurtosis of a lognormal distribution is larger 
than 99% of the estimates reported by Cain and colleagues, suggesting that if a method 
performs reasonably well for this seemingly large departure from a normal distribution, 
this offers some assurance that it will work well in practice.

Table 1 reports α, the estimated probability of a Type I error when using BSI, 
β0 = β1 = 0 and when testing at the .05 level. The estimates are based on 3000 replica­
tions. Bradley (1978) suggested that as a general guide, when testing at the .05 level, the 
actual level should be between .025 and .075. As can be seen, all of the estimates in Table 
1 indicate that this criterion is satisfied. Moreover, based on the Agresti and Coull (1998) 
method, the .95 confidence interval for α does not contain .075 if α ≤ .63 and it does not 
contain .025 if α ≥ .31. Note that the largest estimate in Table 1 is .068, which occurred 
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when X  has a lognormal distribution, ε has a standard normal distribution and n = 100. 
Increasing the sample size to n = 200, the estimate is .074. For n = 300, the estimate is 
.077 suggesting that BSI might not be asymptotically correct.

Table 1

Estimated Probability of a Type I Error (α) Using Method BSI

X ϵ n = 20 (B = 100) n = 20 n = 40 n = 100

N N .062 .054 .057 .047

N LN .041 .036 .023 .037

N H .048 .051 .043 .051

H N .065 .053 .054 .058

H LN .047 .048 .029 .029

H H .057 .034 .050 .047

LN N .063 .049 .051 .068

LN LN .037 .040 .023 .034

LN H .047 .036 .043 .065

Note. Testing at the .05 level. B = 1000 except where noted. U = ε. N = normal, LN = lognormal, H = h 
distribution.

As for method PBR, situations were found where it performed in a reasonably accurate 
manner, but situations were found where it performed poorly. For example, when the 
independent variable has a standard normal distribution, the estimated Type I error 
probabilities ranged between .051 and .058 for the three sample sizes and the three 
distributions used for ε. However, when the independent variable has a lognormal 
distribution, it performed poorly. When  ε has a normal distribution, the estimates for 
the three sample sizes are .072, .092 and .100, respectively. When ε has a lognormal 
distribution as well, the estimates are .072, .061 and .095. That is, method PB deteriorates 
as the sample size increases. Consequently, this method is not considered further.

Table 2 reports the results for method PBC. A limitation of method PBC is that 
when n = 20, this often resulted in numerical errors associated with estimates based 
on a bootstrap sample. Consequently, results for n = 20 are not reported. In contrast to 
method PBR, the estimates of α are close to the nominal level for all of the situations 
considered. Moreover, for the situations where PBR fails as the sample size increases, 
this was not the case using PBC. For example, with n = 200 and where both X  and ε
have lognormal distributions, the estimate is .045 using PBC. It was previously noted 
that when X  has a lognormal distribution and ε has a normal distribution, the estimated 
probability of a Type I error using BSI is .074 when n = 200 and .077. Using PBC, the 
estimate is .045.
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Table 2

Estimated Probability of a Type I Error (α) Using Method PBC

X ϵ n = 40 n = 100

N N .041 .047

N LN .041 .042

N H .041 .045

H N .038 .044

H LN .038 .039

H H .036 .041

LN N .038 .042

LN LN .043 .055

LN H .037 .039

Note. Testing at the .05 level. B = 1000. N = normal, LN = lognormal, H = h distribution.

Table 3 reports results when using BCaR and BCaC. A positive feature of BCaR is that it 
improves on method PBR, but when the independent variable is lognormal, it performed 
poorly. Indeed, like method PBR, as the sample size increases, its ability to control the 
Type I error probability deteriorates. Notice that when X  has a lognormal distribution 
and ε has the h distribution, the estimate is .107 when n = 100. Increasing the sample size 
to n = 200, the estimate is .117.

Table 3

Estimated Probability of a Type I Error (α) Using Methods BCaR and BCaC

BCaR BCaC

X ϵ n = 20 n = 40 n = 100 n = 40 n = 100

N N .057 .051 .048 .040 .042

N LN .065 .061 .059 .050 .047

N H .051 .054 .052 .041 .053

H N .055 .064 .065 .032 .046

H LN .054 .061 .065 .042 .051

H H .053 .056 .067 .043 .040

LN N .060 .082 .080 .027 .045

LN LN .062 .074 .085 .045 .064

LN H .077 .086 .107 .030 .046

Note. Testing at the .05 level. B = 1000. N = normal, LN = lognormal, H = h distribution.
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Both PBC and BCaC were found to control the probability of a Type I error reasonably 
well for all situations considered. BSI performed reasonably well when n ≤ 100 and has 
the advantage of avoiding computational issues associated with PBC and BCaC when 
n = 20. But the extent these three methods deal with bad leverage points is unclear. The 
h distribution and the lognormal distribution have a tendency to generate outliers. That 
is, situations are being considered where leverage points are highly likely to occur as 
well as regression outliers, meaning outliers among the residuals. But a criticism is that 
the likelihood of a bad leverage point is relatively low. To deal with this, the simulations 
were repeated only now two leverage points were added to the data, namely (4, 4) and 
(5, 5). The lognormal distribution was shifted to have a median equal to zero so that the 
value 4 is an outlier. The resulting estimates of the Type I error probability are reported 
in Table 4. As can be seen, BCaC always performed about as well or better than PBC. 
BSI is a bit better than BCaC in some situations but worse in others. If the goal is have a 
Type I error probability reasonably close but less than the nominal level, BCaC is best.

Table 4

Estimated Probability of a Type I Error (α) When There Are Two Bad Leverage Points Included Using Methods BSI, 
PBC and BCaC

X ϵ BSI (n = 20) BCaC (n = 40) PBC (n = 40)

N N .058 .039 .041

N LN .040 .045 .039

N H .065 .044 .038

H N .062 .035 .035

H LN .039 .043 .037

H H .062 .045 .035

LN N .063 .033 .030

LN LN .037 .034 .033

LN H .065 .034 .028

Note. Testing at the .05 level. B = 1000. N = normal, LN = lognormal, H = h distribution.

The next set of simulations focused on the ability to get a reasonably accurate 1 − α = .95
confidence interval for η when η ≠ 0. Now β0 = 0 and β1 = 1 are used. The actual value 
of η was determined by generating a random sample of size 100, computing η and 
repeating this process 1000 times. The mean of the resulting 1000 estimates is taken to 
be the true value of η. Another approach is to use one large sample size, say 10000. 
The Theil–Sen estimator is easily computed when n = 1000, but for n = 10000 this is no 
longer the case. In practice, when n is extremely large, some alternative robust estimator 
can be required. A good choice is the MM-estimator derived by Yohai (1987).
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Table 5 reports the results for methods BSI and BCaR and Table 6 reports results 
using methods PBC and BCaC. Method BCaR was included because in contrast to the 
results in Table 3, it performed reasonably well even when X  has a lognormal distribu­
tion. Indeed, in a variety of situations, it performed better than method BSI. The main 
concern with BSI is that is that the estimates are less than .025 in some situations and 
the estimates decrease as n gets large, another indication that BSI is not asymptotically 
correct in some situations.

Table 5

Estimates of α When Computing a 1 − α = .95 Confidence Interval Using Methods BSI and BCaR

n = 20 n = 40 n = 100

X ϵ BSI BCaR BSI BCaR BSI BCaR η

N N .024 .054 .027 .054 .047 .068 .698

N LN .038 .050 .022 .051 .021 .051 .645

N H .032 .052 .019 .064 .010 .059 .636

H N .024 .058 .012 .070 .047 .065 .720

H LN .035 .052 .025 .056 .023 .056 .637

H H .028 .060 .015 .066 .015 .056 .643

LN N .031 .061 .025 .063 .033 .068 .597

LN LN .035 .057 .027 .052 .030 .067 .513

LN H .032 .051 .025 .060 .023 .066 .520

Note. η differs from zero. N = normal, LN = lognormal, H = h distribution.

Table 6

Estimates of α When Computing a 1 − α = .95 Confidence Interval Using Methods PBC and BCaC

PBC BcaC

X ϵ n = 40 n = 100 n = 40 n = 100 η

N N .012 .025 .055 .054 .698

N LN .017 .031 .048 .049 .645

N H .021 .034 .052 .047 .636

H N .011 .022 .056 .062 .597

H LN .013 .023 .053 .050 .513

H H .014 .023 .059 .056 .520

LN N .011 .018 .047 .067 .720

LN LN .010 .013 .044 .057 .637

LN H .012 .020 .046 .054 .643

Note. η differs from zero. N = normal, LN = lognormal, H = h distribution.
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As indicated in Table 6, the estimates of α, when using PBC, are well below the nominal 
level when n = 40. For n = 100, the estimates are closer to the nominal level, but the 
method improves rather slowly as n increases. All indications are that BCaC performs 
better than PBC.

Some Illustrations
Of course, bad leverage points are not always an issue. But the reality is that situations 
are encountered where bad leverage points are a serious concern as illustrated here.

The first example is based on data dealing with measures of reading ability. The 
sample size is n = 81. The goal is to understand the association between a measure 
of speeded naming for letters and a measure of speeded naming for digits. Figure 2 
shows a scatterplot of the data. Points marked with o are bad leverage points and points 
marked with * are good leverage points. The scatterplot clearly suggests that for the 
bulk of the points there is a positive association. Pearson’s correlation, using all of the 
data, is .106. Testing the hypothesis that Pearson’s correlation is zero, the p-value is .01. 
(The bootstrap-t method in Wilcox, 2022, Section 9.1 was used, which compares well to 
the methods studied by Bishara & Hittner, 2012.) Using Spearman’s rho and Kendall’s 
tau, the estimates are .452 and .347, respectively, both of which reject at the .05 level. 
In contrast, η = .768. That is, all four measures reject at the .05 level, but η paints a 
decidedly different picture regarding the strength of the association. The .95 confidence 
intervals for η are (.465, 1), (.537, 1) and (.506, 1) using BSI, PBC and BCaC, respectively. 
Method PBC has the shortest confidence interval, which was somewhat unexpected 
because in the simulations, the estimate of α is smaller when using PBC compared to 
BCaC.

The next example is based on data reported by Rousseeuw and Leroy (1987, p. 27) 
that deals with the logarithm of the effective temperature at the surface of 47 stars 
versus the logarithm of its light intensity. A scatterplot of the data is shown in Figure 3. 
Pearson’s correlation is −.21, while Spearman’s correlation, Kendall’s tau and η are .295, 
.250 and .607, respectively. The corresponding p-values are .136, .132 and less than .001. 
The .95 confidence intervals using BSI, PBC and BCaC are (.352, .861), (.360, .844) and 
(.326, .795), respectively. In this case, BCaC has the shortest confidence interval.

The next illustration is based on measures of cortisol levels taken upon awakening 
and measured again 30–45 minutes. Past studies indicate that Time 2 measures tend to 
be higher than the Time 1 measures. The extent this is the case has been found to be 
associated with various measures of stress. The goal here is to understand the strength of 
the association between these two measures.

Figure 4 shows a scatterplot of the data. The sample size is 101. The data stem from 
a study of an intervention program aimed at improving the emotional and physical 
wellbeing of older adults. Pearson’s correlation, Spearman’s rho and Kendall’s tau are 
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.490, .494 and .358, respectively. In contrast, η = .583. All four measures are significant at 
the .01 level, but clearly the three bad leverage points have an impact on the first three 
correlation coefficients. The .95 confidence intervals using BSI, PBC and BCaC are (.359, 
.806), (.357, .757) and (.369, .763), respectively. BCaC has a slightly shorter confidence 
interval than PBC.

Figure 2

Scatterplot of the Reading Data

Note. Bad leverage points are indicated by o, good leverage points are indicated by *.

Figure 3

Scatterplot of the Star Data

Note. Bad leverage points are indicated by o, good leverage points are indicated by *.
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Figure 4

Scatterplot of the Cortisol Data

Note. Bad leverage points are indicated by o, good leverage points are indicated by *.

Concluding Remarks
It would be convenient to have a single method that generally performs about as well or 
better than competing techniques. Generally, PBC and BCaC perform relatively well, but 
computational issues eliminate these two approaches when dealing with a small sample 
size (n = 20). For n ≥ 40, both PBC and BCaC are good choices. BCaC performs better 
than PBC in general. An argument for PBC might be that a p-value is readily computed. 
A p-value does not indicate the probability of making a correct decision about whether 
η is positive or negative. But in the context of Tukey’s three decision rule (e.g., Jones 
& Tukey, 2000), it reflects the strength of the empirical evidence that a decision can be 
made. BCaC can be used with any choice for α, in principle a p-value can be computed, 
but this is more easily done using PBC. Also, simulations suggest that BCaC will yield 
a shorter confidence interval than PBC, but the illustrations demonstrate that this is not 
necessarily the case.

There are many variations of the method used here, each based on some robust 
regression estimator. Presumably the use of the Theil–Sen estimator does not dominate 
all other robust regression estimators in terms of power, and perhaps the ability of 
controlling the Type I error probability, when testing (10). The only suggestion here is 
that the Theil–Sen estimator is reasonably good choice for general use.

The illustrations suggest that at a minimum, when dealing with a linear model, it 
is prudent to check whether there are any bad leverage points. Otherwise, there is a 
realistic chance that the nature of the association for the bulk of the points is completely 
missed.
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Finally, R functions are available for dealing with bad leverage points. The R function 
outblp checks for bad leverage points. The regression estimator that is used is deter­
mined by the argument regfun, which defaults to the Theil–Sen estimator. The function 
corblp computes ξ and corblp.ci computes a confidence interval for ξ using method BSI. 
The function corblppb performs method PBC and corblp.bca.C performs method BCaC. 
Access to these functions can be achieved by sourcing the file Rallfun-v42, which can be 
downloaded from the Supplementary Materials.
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