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Abstract
I highlight a problem that has become ubiquitous in scientific applications of machine learning and 
can lead to seriously distorted inferences. I call it the Prediction-Explanation Fallacy. The fallacy 
occurs when researchers use prediction-optimized models for explanatory purposes, without 
considering the relevant tradeoffs. This is a problem for at least two reasons. First, prediction-
optimized models are often deliberately biased and unrealistic in order to prevent overfitting. In 
other cases, they have an exceedingly complex structure that is hard or impossible to interpret. 
Second, different predictive models trained on the same or similar data can be biased in different 
ways, so that they may predict equally well but suggest conflicting explanations. Here I introduce 
the tradeoffs between prediction and explanation in a non-technical fashion, present illustrative 
examples from neuroscience, and end by discussing some mitigating factors and methods that can 
be used to limit the problem.
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In this paper, I wish to highlight a problem that has become ubiquitous in scientific 
applications of machine learning (ML) methods. As far as I can tell, this problem has not 
yet been singled out for discussion in the literature; but it deserves to be named, clearly 
described, and widely understood by researchers, who are increasingly relying on ML 
techniques without always appreciating their limits and constraints.

In a nutshell, the prediction-explanation fallacy occurs when researchers use predic
tion-optimized models for explanatory purposes, without considering the tradeoffs be
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tween prediction and explanation. This is a problem for at least two connected reasons. 
First, in many typical applications of ML techniques, prediction-optimized models are 
deliberately biased and unrealistic in order to prevent overfitting, and hence may fail 
to accurately explain the phenomenon of interest. In other cases, the models have an 
exceedingly complex structure that is hard or impossible to interpret, which greatly 
limits their explanatory value. Second, different predictive models trained on the same 
or similar data can be biased in different ways, with the result that multiple models may 
predict equally well but suggest conflicting, mutually inconsistent explanations of the 
underlying phenomenon.

The tension between prediction and explanation is not a novel concept, and has been 
discussed a number of times in the literature on ML and its applications (e.g., Breiman, 
2001; Shmueli, 2010; Yarkoni & Westfall, 2017). However, previous authors have focused 
mainly on the other side of the issue—namely, the fact that “classical” statistical models 
designed for accurate explanation tend to perform badly in prediction tasks (for an 
exception, see the recent contribution by Hofman et al., 2021). My goal is to redress 
this imbalance, by explicitly discussing the limitations and pitfalls of predictive models 
when they are used in the context of scientific explanation. As I demonstrate below, the 
prediction-explanation fallacy can lead to distorted and misleading conclusions—not only 
about the results of a single analysis, but also about the robustness and replicability of 
the phenomenon under study.

In what follows, I lay out the terms of the problem and introduce the tradeoffs 
between prediction and explanation in a non-technical fashion. I continue by presenting 
some real-world examples from the neuroscience literature, to illustrate different ways 
in which researchers may commit (or avoid) the fallacy in their work. I conclude with a 
brief discussion of mitigating factors and methods that can be used to limit or circumvent 
the problem.

Prediction ≠ Explanation
Researchers across disciplines are expanding their data analytic practices to include a 
variety of ML methods, from relatively simple techniques such as regularization and 
cross-validation1 to complex algorithms such as deep learning (for introductions see 
Berk, 2016; James et al., 2021; for in-depth treatments see Efron & Hastie, 2016; Hastie 
et al., 2009). In the fields of psychology and neuroscience, ML tutorials and easy-to-use 
packages are multiplying due to high demand by researchers (e.g., Koul et al., 2018; 
Kumar et al., 2020; Pargent et al., 2023; Rosenbusch et al., 2021; Yarkoni & Westfall, 2017).

1) Note that cross-validation is often used to improve prediction, for example by tuning regularization parameters or 
selecting among models with different predictors and/or functional forms; but it can also be used to simply evaluate 
the (expected) out-of-sample predictive performance of a particular model.
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A key reason for the success of these methods is the fact that they often outperform 
classical statistical procedures when the goal is to predict new outcomes, generalizing 
beyond the particular dataset used for training (out-of-sample prediction). Classical pro
cedures seek to correctly represent the causal relations among variables and estimate 
parameters with as little bias as possible—typically via least squares or maximum likeli
hood estimation—in order to build accurate, well-fitting models of the data-generating 
process. However, they tend to yield models that overfit the data at hand, and perform 
badly or fail to replicate when tested on new datasets (Breiman, 2001; Rosenbusch et 
al., 2021; Yarkoni & Westfall, 2017). Based on these and similar considerations, Yarkoni 
and Westfall (2017) wrote a provocative paper in which they argued that psychology as 
a discipline would benefit from “choosing prediction over explanation”. In their view, 
psychologists should set aside their traditional preoccupation with building accurate 
(and theoretically elegant) causal models of psychological phenomena, and start focusing 
more on predictive questions (e.g., how to infer personality traits from online media 
usage) while embracing out-of-sample prediction as the main benchmark of success.

It goes without saying that predictive accuracy is a key advantage of ML techniques, 
and that predictive modeling can be remarkably useful in a variety of tasks. A stronger 
and more deliberate focus on prediction could benefit psychology in a number of ways, 
as suggested by Yarkoni and Westfall (2017). However, researchers who employ ML in 
their studies—or use the results of those studies as primary sources—can easily forget 
that superior predictive performance comes at a cost. The cost is that maximizing the 
predictive accuracy of a model tends to sacrifice its ability to represent the underlying 
phenomenon in an accurate and interpretable fashion. Indeed, when accurate prediction 
is the only criterion of success, the correspondence (or lack thereof) between statistical 
models and reality becomes irrelevant; “for all practical purposes there is no model 
responsible for the data” (Berk, 2016, p. 25; emphasis mine).

Traditionally, the ability to generate accurate predictions has been viewed as the hall
mark of successful scientific explanations (for overviews see Douglas, 2009; Srećković et 
al., 2022). In a general sense, this is true; but more faithful explanations are guaranteed to 
yield more accurate predictions only under ideal circumstances, in which measurement 
and sampling error are absent or practically negligible. In the real world of noisy data, 
prediction and explanation become two related but distinct tasks, which typically require 
different modeling approaches (Shmueli, 2010; see also Bzdok & Ioannidis, 2019). The 
resulting tradeoffs should be taken into account whenever predictive models are used in 
scientific applications.

Before continuing, note that here I use the term “explanation” in a broad sense, to 
include not only causal relations between variables, but also patterns of association that 
could be regarded as more “descriptive” than strictly explanatory (but still geared toward 
the scientific understanding of a phenomenon; see e.g., Hofman et al., 2021; Mõttus et 
al., 2020; Shmueli, 2010). For example, studies that measure sex differences in a given 
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domain or describe networks of correlations among traits (see below) are rarely guided 
by specific causal hypotheses, and may be largely or entirely agnostic as to the exact 
causal mechanisms involved. While causal explanation is typically the ultimate goal of 
scientific research, the careful description of association patterns is a crucial intermediate 
step in the process. From a statistical point of view, when causal inference and pattern 
description are performed in the pursuit of (eventual) scientific understanding, they both 
depend on the correct specification of the underlying phenomenon; from the standpoint 
of theory development, they both benefit from model transparency and interpretability. 
For the purposes of this paper, I include both of them under the umbrella of (broad-sense) 
explanation.

Tradeoffs Between Prediction and Explanation in Machine Learning

To simplify a complicated issue, good scientific explanations should be accurate (i.e., 
they should correctly represent the structure of the underlying phenomenon) as well as 
interpretable (i.e., they should be transparent and parsimonious). Of course, these two 
properties may be in tension with each other, to the extent that simplifications and 
approximations make explanations more cognitively and/or computationally tractable. In 
this Section I consider how both of them trade off with predictive accuracy in the context 
of ML applications (Figure 1).

First and most relevant to the topic of this paper, tradeoffs between predictive and 
explanatory accuracy occur when better predictive performance is achieved at the cost 
of increased model bias. Models optimized to provide accurate explanations of a phenom
enon (e.g., unbiased parameter estimates) tend to overfit the training data, and hence 
generalize poorly to new samples; conversely, strategies designed to avoid overfitting 
(e.g., regularization) inevitably introduce various kinds of biases, which can improve a 
model’s performance if appropriately chosen (Schaffer, 1993). Thus, “the ‘wrong’ model 
can sometimes predict better than the correct one” (Shmueli, 2010, p. 293), and:

“From a statistical standpoint, it is simply not true that the model 
that most closely approximates the data-generating process will in 
general be the most successful at predicting real-world outcomes 
[…] a biased, psychologically implausible model can often systemat
ically outperform a mechanistically more accurate, but also more 
complex, model” (Yarkoni & Westfall, 2017, p. 1100).
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Figure 1

Tradeoffs Between Prediction and Explanation in Machine Learning

Note. Tradeoffs between predictive and explanatory accuracy are most acute in underparametrized models, 
which have fewer parameters than the number of training data points and are subject to the classical bias-
variance tradeoff. Underparametrized models tend to be easier to interpret and understand, but typically 
sacrifice explanatory accuracy (i.e., introduce biases) in exchange for enhanced predictive accuracy. Tradeoffs 
between predictive accuracy and interpretability become especially severe in overparametrized models with 
more parameters than training data points. Highly overparametrized models may achieve good predictive 
accuracy and low bias, but their complexity makes them opaque and massively unparsimonious, which greatly 
limits their explanatory value. While not the main focus of this paper, explanatory accuracy and interpretability 
can also be in tension with each other (dashed arrow).

This kind of tradeoff is most acute in underparametrized models, i.e., models that have 
fewer free parameters than the number of data points in the training set. To understand 
why, it is useful to refer to a key concept in predictive modeling, the bias-variance trade
off. In brief, the total prediction error of a model is the sum of two distinct sources of 
error: the square of the average difference between true and predicted values, or squared 
bias, and the variance of that difference across multiple samples. Biased models yield 
predictions that are systematically incorrect, whereas the predictions of high-variance 
models change dramatically depending on the specific dataset used for training. As a 
rule, simpler models of a phenomenon tend to be more biased, but also more stable with 
respect to sampling noise. As models become more flexible and complex (relative to the 
size of the dataset), they increasingly tend to overfit the training data; accordingly, their 
predictions become less biased but also more variable across datasets. In the classical 
formulation of the tradeoff, model complexity/flexibility is indexed by the number of 
parameters estimated from the training data. Depending on the shape of the bias and 
variance functions, maximizing prediction accuracy may require a compromise between 
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the two sources of error, and hence the introduction of biases that reduce the explanatory 
accuracy of the model (Figure 2A; see James et al., 2021; Shmueli, 2010; Yarkoni & 
Westfall., 2017).

Figure 2

Panel A: Illustration of the Classical Bias-Variance Tradeoff in Underparametrized Models. Panel B: Illustration of 
“Double Descent” in Highly Overparametrized Models

Note. For Panel A, the total predictive error is the sum of the (squared) bias plus the variance. The highest 
predictive accuracy (i.e., minimum prediction error) is achieved by comparatively simple models that introduce 
bias in exchange for reduced variance. For the scenario in Panel B, variance starts decreasing again once the 
interpolation threshold is passed, leading to an overall reduction in predictive error without a corresponding 
increase in model bias. In this illustration, the highest predictive accuracy is found in the overparametrized 
region, but this is not always the case in practice. In both panels, N is the size of the training dataset.

Tradeoffs between predictive accuracy and interpretability occur when models grow so 
complex that they are difficult (if not impossible) to parse and understand (see Boge, 
2022; Breiman, 2001; James et al., 2021). While underparametrized models can become 
fairly large and intricate, tradeoffs of this kind are the rule when dealing with overpara
metrized models, which have more parameters than the number of training data points. 
As it has become clear over the last few years, highly overparametrized models—most 
notably neural networks, random forests, and other ensemble algorithms—often manage 
to “escape” the classical bias-variance tradeoff, and achieve low levels of bias while also 
avoiding overfitting.2 This happens when, as models grow more complex, variance first 
increases—as in the classical scenario—but then begins to decrease once the number of 

2) I put “escape” in scare quotes because, in the classical formulation of the tradeoff, the complexity and flexibility of 
a model are indexed by the number of its free parameters. However, the double descent phenomenon occurs when 
highly overparametrized models converge on solutions that are effectively simpler and less flexible than those of 
the models close to the interpolation threshold. For this reason, double-descent patters do not contradict the more 
general formulation of the bias-variance tradeoff as a function of model flexibility (see e.g., James et al., 2021, pp. 
439–442).
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parameters exceeds that of data points (Figure 2B; see Belkin et al., 2019; Dar et al., 2021; 
Hastie et al., 2019; Yang et al., 2020). In many cases, the overall result is the pattern illus
trated in Figure 2B and known as double descent: the total prediction error first decreases, 
then keeps increasing right up to the interpolation threshold (i.e., the point at which the 
model has as many parameters as the training data points), and then decreases again 
once the threshold is passed. Depending on the specifics of the method and the data, 
the models with the best predictive performance may be found in the overparametrized 
region rather than at the classical “sweet spot” of the underparametrized regime (Belkin 
et al., 2019; Dar et al., 2021; James et al., 2021).

To the extent that overparametrized models achieve low bias, they can be said to 
possess explanatory accuracy; however, their structure tends to be opaque and inscruta
ble, to the point that one needs specialized techniques (developed under the rubric of 
ML “explainability” and/or “interpretability”) to extract usable information and try to 
explain how they work (e.g., Biecek & Burzykowski, 2021; Linardatos et al., 2021; Molnar, 
2019). Stated differently, these models manage to internally represent the structure of 
the underlying phenomenon, but typically do so in a convoluted and massively unparsi
monious form. This greatly limits their explanatory value as models of the phenomenon, 
even when they can be used to extract usable information by indirect means. Indeed, 
explainability/interpretability methods typically attempt to explain the behavior of an 
overparametrized “black-box” model (e.g., figure out how the model arrives at its pre
dictions) rather than explain the phenomenon per se (Linardatos et al., 2021). Some of 
these methods seek to replace the original model with a simpler and more transparent 
one (see the later section on surrogate models); by doing so, they fall back into the 
classical bias-variance tradeoff. In this regard, one should note that, when a domain is 
characterized by well-defined and meaningful variables, simple and interpretable models 
(e.g., logistic regression) often perform similarly to neural networks and other overpara
metrized black boxes. Tradeoffs between predictive accuracy and interpretability are by 
no means inevitable, and tend to arise more often with certain types of models and 
problems than others (see Rudin, 2019).

To summarize: the tension between predictive and explanatory accuracy is especially 
severe in underparametrized models (under the classical bias-variance tradeoff), whereas 
the key contrast in overparametrized models is that between predictive accuracy and 
interpretability (Figure 1). Note that the number of free parameters—important as it 
is—provides only a partial picture of a model’s complexity and flexibility, which depend 
more generally on the structure and functional form of the relations among variables. 
These aspects of a model contribute to the tradeoffs between prediction and explanation 
even when they are not fully captured by the number of parameters. From a broader per
spective, a variable may contribute to accurate prediction for reasons that have nothing 
to do with its theoretical importance or causal role in the explanation of a phenomenon. 
For example, some variables may contribute to prediction more than others merely 
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because they are measured with less error. Or, it is entirely possible for the same variable 
to improve the performance of a predictive model, but seriously distort the results of an 
explanatory model (for example because it acts as a collider for the effect of interest; 
see Elwert & Winship, 2014; Rohrer, 2018). Correctly representing the causal relations 
between variables is essential for scientific explanation, but unnecessary and usually 
irrelevant for prediction (see Srećković et al., 2022). For these reasons, predictive and 
explanatory accuracy may come at each other’s expense regardless of the complexity and 
number of parameters of the models employed.3

Researchers commit the prediction-explanation fallacy when they overlook the trade
offs between prediction and explanation, and uncritically use prediction-optimized mod
els as explanations of the underlying phenomena. Note the word “uncritically”: using 
predictive models for explanatory purposes is not necessarily a problem; there are cir
cumstances in which this approach is justified, and methods that allow researchers to 
circumvent the problem or at least reduce its severity (more on this below). For the same 
reasons, committing the fallacy does not automatically invalidate one’s analysis, nor does 
it mean that one’s interpretation of the results is necessarily wrong; it is possible to 
follow an invalid or unwarranted chain of inference, and still reach a correct conclusion.4 

3) As an aside, the same basic tradeoffs between prediction and explanation are faced by organisms as they strive 
to learn about their environment from noisy information, anticipate the future, and make adaptive decisions under 
risk and uncertainty. In particular, the bias-variance tradeoff is often invoked in cognitive science to account 
for the advantages and disadvantages of alternative mechanisms of learning, decision-making, and so forth (e.g., 
Austerweil et al., 2015; Del Giudice & Crespi, 2018; Gigerenzer & Brighton, 2009). An especially interesting case is 
that of fast and frugal heuristics, which reduce variance error by discarding most of the available information and 
introducing strategic biases that match the expected structure of the environment (Gigerenzer & Brighton, 2009). 
In the right conditions, these simple heuristics can outperform more complex and flexible decision algorithms—a 
phenomenon that can be understood in functional terms as a triple tradeoff between efficiency, robustness, and 
flexibility (Del Giudice & Crespi, 2018). On the other hand, biased cognitive mechanisms that are optimized to yield 
reliable predictions and/or adaptive decisions become less useful when the goal is to build accurate models of the 
world, and accumulate “explanatory” knowledge that can be generalized, used for inference, and employed in a 
variety of specific tasks. This dichotomy traces back to the distinction between two kinds of criteria for rationality, 
namely substantive criteria based on the impact of decisions (e.g., performance on a task) and formal criteria based 
on coherence and consistency (Chater, 2012; Hagen et al., 2012). The existence of tradeoffs suggests that different 
cognitive/neural mechanisms may embody contrasting optimization criteria; notably, at least some mechanisms may 
be designed to accept a considerable amount of overfitting in the pursuit of explanatory accuracy. The distinction 
between prediction- and explanation-optimized mechanisms could illuminate previous attempts to recast the bias-
variance tradeoff in cognitive terms (e.g., Del Giudice & Crespi, 2018’s suggestion that the bias-variance tradeoff pits 
robustness against performance is only valid if the goal of the system is unbiased inference—but not if the system is 
optimized for predictive accuracy). The same ideas might help identify the limitations of purely predictive accounts 
of the mind/brain (e.g., Clark, 2016; Friston, 2010; Hohwy, 2013) and of recent analogies between the brain and the 
overparametrized neural networks of deep learning architectures (e.g., Hasson et al., 2020).

4) Consider the logical fallacy of affirming the consequent: (1) all humans are mortal; (2) Socrates is mortal; (3) 
therefore, Socrates is a human. This syllogism is invalid, but the conclusion remains true. In fact, it would be a fallacy 
to assume that a conclusion reached through a fallacious argument must necessarily be false.
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The point is the tension between prediction and explanation should be explicitly taken 
into account by researchers, and addressed on a case-by-case basis.

Regularization as a Source of Bias

The fact that biased, oversimplified models such as unit-weighted regression can outper
form their classical counterparts when used for prediction has been known for a long 
time (see e.g., Dawes, 1979; Hagerty & Srinivasan, 1991). Newer regularization techniques 
(for example the LASSO and elastic net; see Hastie et al., 2009; James et al., 2021) offer 
powerful ways to shrink (i.e., strategically bias) the model coefficients while simultane
ously selecting an optimal subset of variables. They do so by making assumptions of 
sparsity—which, simply stated, means that most of the effects of interest (e.g., those 
measured by the coefficients of a regression model) are assumed to be zero in the 
population. The underlying rationale is that sparse models (i.e., models with relatively 
few nonzero coefficients) tend to perform well in prediction even if the data-generating 
process is not actually sparse (this is known as the “bet on sparsity”; see Hastie et al., 
2009, pp. 610–611). Of course, if the data-generating process does happen to be sparse, 
these techniques can effectively filter out sampling noise and yield models with high 
predictive and explanatory accuracy;5 but this is not true in general, and researchers rou
tinely apply regularization to domains in which sparsity is not a plausible assumption. In 
sum, regularization (especially when it involves sparsity) can be a major source of bias in 
predictive models, and this should be taken into account when evaluating their adequacy 
as explanations.

The same logic applies to models whose purpose is not to predict a specific outcome 
but to describe relations among sets of variables. For example, network models have 
become quite popular in psychopathology and personality psychology, where they are 
used to investigate the relations between multiple symptoms, traits, and/or behaviors 
(se Costantini et al., 2015; Epskamp et al., 2018; McNally, 2016). Researchers in these 
fields typically use specialized versions of the LASSO to reduce the number of nonzero 
connections (edges) in the estimated networks. This is done with two distinct purposes: 
the first is to eliminate “spurious” edges and simplify the interpretation of the results 

5) This is directly related to the Bayesian interpretation of regularization methods; for example, the LASSO is 
equivalent to a Laplace prior on the distribution of model parameters, while ridge regularization is equivalent to a 
Gaussian prior (see James et al., 2021; McElreath, 2020). In some disciplines, researchers who use Bayesian methods 
are increasingly choosing weakly regularizing priors over diffuse priors, with the goal of increasing model robustness 
and avoiding overfitting (e.g., Lemoine, 2019). Besides improving prediction (see McElreath, 2020), regularizing priors 
can improve the explanatory accuracy of the models to the extent that they introduce realistic assumptions (i.e., 
they match the actual structure of the phenomenon). However, there is a risk of smuggling in a version of the predic
tion-explanation fallacy if researchers follow this practice unthinkingly, without understanding and discussing the 
relevant tradeoffs. In passing, note that “bias” is an intrinsically frequentist concept; in Bayesian statistics, parameters 
are not fixed quantities but have probability distributions. The tradeoffs between explanation and prediction do not 
disappear in Bayesian statistics, but they have to be framed in somewhat different terms.
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(i.e., increase explanatory accuracy and interpretability); the second is to improve the 
generalizability of the estimated networks across different samples (analogous to out-of-
sample prediction; see Epskamp et al., 2017; Epskamp & Fried, 2018).

Unfortunately, these goals can be in conflict with one another. Since the LASSO is 
based on the assumption of sparsity, it tends to return sparse networks regardless of 
the underlying structure of the variables, especially when sample size is small for the 
number of parameters in the model; thus, finding a sparse network after regularization is 
not convincing evidence that the true structure is actually sparse (Epskamp et al., 2017; 
Epskamp & Fried, 2018). Regularized networks can successfully recover the underlying 
structure of the variables even in relatively small samples (and thus achieve high explan
atory accuracy in addition to generalizability) if that structure happens to be sparse; 
otherwise, they may introduce significant biases and suggest distorted explanations of 
the phenomenon under study. Failing to understand this problem can lead researchers to 
commit a variant of the prediction-explanation fallacy, as they use regularized networks 
to describe the structure of the variables without considering the biases they introduce.

Many Models, Many Explanations: The Rashomon Effect

The tension between prediction and explanation has an important corollary, known as 
the Rashomon effect (Breiman, 2001). For a given prediction problem, there is usually a 
multitude of models that predict about equally well; but each model may tell a somewhat 
different story about which predictors are important and/or how they are related (poten
tially including different functional forms for their relationships), especially if the dataset 
includes a large number of mutually correlated variables. In other words, the models 
are equally good for prediction, but suggest different, mutually inconsistent explanations 
of the same phenomenon (see also Dong & Rudin, 2020; Fisher et al., 2019; Hancox-Li, 
2020). This should not come as a surprise; the point is that different models may achieve 
the same predictive performance by implementing different biases (i.e., finding different 
but equally useful ways to be “wrong”). For a striking demonstration of the multiplicity 
of high-performing models, one can see the extensive study by Fernández-Delgado et 
al. (2014), who tested the performance of 179 classifiers from 17 families of ML models 
on a collection of 121 real-world datasets. In the vast majority of the datasets, there 
were dozens of classifiers that performed equally well or within a narrow margin.6 

More recently, D’Amour and colleagues (2020) investigated the Rashomon effect and its 
implications in a variety of ML applications, from computer vision to natural language 
processing (see also D’Amour, 2021).

The Rashomon effect comes in two flavors. On the one hand, models based on 
different algorithms and functional forms (e.g., logistic regression, classification trees, 

6) Note that the complete results table of Fernández-Delgado et al. (2014) in not shown in the paper, but is available 
as a supplement.
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neural networks) can perform very similarly to one another when trained and tested 
on the same data. On the other hand, even using a single type of model can yield 
unstable results, because small changes in the data or in the tuning parameters can 
have a dramatic impact on which variables get selected and/or on the model coefficients 
(Breiman, 2001). For example, regularization techniques deal with multiple redundant 
variables by excluding some of them from the model, or shrinking their coefficients by a 
large amount; but precisely which variables end up being excluded or deemphasized in a 
particular model may depend on minor fluctuations of the data.

A notable consequence of the Rashomon effect is that when different types of models 
are trained on the same dataset, they may easily identify different sets of variables as 
being “important” for prediction. Even training the same type of model on similar data
sets may yield contradictory accounts of the importance of variables—not because the 
phenomenon under study lacks consistency, but because prediction-optimized models 
tend to be unstable (in the sense explained earlier).7 When predictive models trained 
on the same or similar data appear to suggest markedly inconsistent explanations of a 
phenomenon, it can be tempting to conclude that the phenomenon itself is not robust; 
however, this is just an insidious manifestation of the prediction-explanation fallacy 
in the context of multiple models. The underlying phenomenon may or may not be 
robust; but there is no way to know based solely on the observed inconsistency between 
alternative models.

Explanation and Prediction in Surrogate Models

In the attempt to understand the workings of opaque black box models, researchers 
sometimes use global “surrogate models” (see e.g., Molnar, 2019). A global surrogate is 
just a simpler, interpretable model that is trained to predict the predictions of the original 
model. For example, imagine that a complex neural network was trained on a dataset 
to predict a binary outcome. Researchers could then train a logistic regression model on 
the same dataset, but instead of predicting the original outcome, the surrogate would be 
trained to predict the predictions made by the neural network. This simpler model could 
then be probed for insights into the workings of the original model. A global surrogate 
aims to reproduce the output of an entire model, in contrast with “local surrogates” that 
focus on individual predictions and try to explain how the model arrived at them (Biecek 
& Burzykowski, 2021; Linardatos et al., 2021; Molnar, 2019). Of course, the success of 
this strategy depends on the ability of the surrogate to approximate the key functional 
relations between variables in the original model.

7) Models that attempt to maximize explanatory accuracy can also show instability when fitted to different samples, 
but the reason is overfit rather than bias. Simplifying a bit, one could say that predictive models suffer from 
bias-related instability, whereas explanatory models suffer from variance-related instability.
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What is easily missed is that surrogate models are subject to all the tradeoffs dis
cussed in this section; thus, improving the predictive accuracy of a surrogate model—for 
example by regularization and/or cross-validation—will tend to make it less accurate as 
an explanation of the original model. This is a problem because the purpose of surrogate 
models is intrinsically explanatory. Moreover, training multiple surrogate models on the 
same or similar data can give rise to Rashomon effects: different surrogates may seem 
to explain the original model(s) about equally well, but suggest multiple, inconsistent 
explanations of how they work. Overlooking these issues can lead to “second-order” 
instances of the prediction-explanation fallacy, which may be particularly hard to detect 
and correct.

Illustrative Examples

Sex Differences in Brain Structure
In recent years, there has been a surge of studies employing predictive ML methods 
to distinguish between males and females based on their brain anatomy (e.g., data on 
cortical volume, thickness, or three-dimensional morphology). Classification accuracy is 
typically above 90%, but drops to 60–70% when differences in total brain volume are 
controlled for (reviewed in Eliot et al., 2021; see also Lao et al., 2004; Tunç et al., 2016; 
van Eijk et al., 2021). In view of the high predictive accuracy achieved by these models, 
it can be tempting to use them to determine which regions of the brain contribute the 
most to differentiating males and females—a fertile ground for the prediction-explanation 
fallacy in all its forms.

For a clear-cut example of the fallacy, consider the study by Luo et al. (2019). These 
authors aimed to answer two questions: “(a) can gender be discriminated with a high 
accuracy using cortical 3-D morphology? (b) What is the most discriminative region of 
gender in cortical 3-D morphology?” (p. 2). To this end, they trained a hierarchical sparse 
representation classifier on cortical morphology data, achieving 97% accuracy. Then, they 
used bootstrapped model weights to identify “important 3-D morphological features in 
gender discrimination” (p. 7). A brain map of the discriminative regions (see Luo et al., 
2019, Figure 4) showed a highly sparse configuration; this is not surprising, given the 
strong sparsity assumptions built into the model (pp. 4–5). This study exemplifies the 
fallacy because the authors went straight from training a predictive model to making 
statements about the most important differences between male and female brains, e.g., 
“The main morphology difference for gender exists mainly in the frontal lobe and the 
limbic lobe, others scattered in the parietal lobe, the temporal lobe, the corpus callosum 
and the precuneus” (p. 7). They did not discuss how their modeling decisions might 
have biased the analysis, or caution readers against incorrect interpretations of their 
findings. It is important to stress that the prediction-explanation fallacy does not lie in 
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the methodology of a study per se, but in the use and interpretation of the results. It can 
also be useful to restate that committing the fallacy does not automatically invalidate the 
results of a study; however, it does raise questions about their interpretation, and may 
challenge the validity of the explanatory inferences drawn by the authors.

A neuroimaging study by Anderson et al. (2019) illustrates a diametrically opposite 
approach to the tradeoffs between prediction and explanation. These authors applied 
independent component analysis (ICA) to cortical volume and density data, and used 
the resulting components to train and compare a number of predictive models. Logistic 
regression and support vector machines (SVM) performed best, with a classification 
accuracy of 93%. However, the authors did not plot the model weights or use them 
to identify brain regions that discriminate between males and females; instead, they 
presented descriptive maps of sex-differentiated regions based on the results of ICA (see 
Anderson et al., 2019, Figures 1 and 2). This study avoided the prediction-explanation fal
lacy by restricting the use of predictive models to the classification task. Note that this is 
not necessarily the optimal strategy; depending on context, careful consideration of the 
weights of predictive models can provide useful information and complement the results 
of other analyses. Another possibility is to deliberately fit different types of models to the 
data, some optimized for prediction and others for accurate description/explanation. For 
example, Sepehrband et al. (2018) analyzed sex differences in cortical structure with two 
models—a prediction-optimized SVM and a standard general linear model (GLM)—and 
explicitly compared their results, while taking care to note the different goals of the two 
analyses. Although model weights were generally concordant, several regions showed 
high discriminatory power in the SVM but no significant sex differences in the GLM 
(see Sepehrband et al., 2018, Table 2). Those regions could be promising candidates for 
follow-up analyses, because the SVM algorithm might have picked up complex interac
tion patterns that would have been missed by the simple GLM used in the study.

As I noted earlier, the prediction-explanation fallacy does not only apply to the re
sults of individual models, but also to comparisons between multiple models and studies. 
As part of their critical review of the research on sex differences in the brain, Eliot et al. 
(2021) compiled a dozen of studies that had used ML methods to predict a person’s sex 
from patterns of brain structure and function (see Eliot et al., 2021, Table 7). They noted:

“[T]he studies […] differ strikingly in features found to be most 
important for [sex/gender] classification accuracy. Of course, one 
would not expect similar features to emerge between studies using 
qualitatively different data, such as rsfMRI activity versus regional 
gray matter volumes. But even among studies that relied exclusively 
on structural measures, we see a lack of replication among the brain 
regions identified as most important for male/female classification 
across studies” (p. 681).
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And concluded:

“[T]his discrimination is largely based on brain size and there is 
no agreement about local features that are most important for dis
tinguishing male versus female types. The lack of hallmark ‘male’ 
versus ‘female’ brain features is likely because each algorithm was 
custom-developed for its particular dataset. […] These findings chal
lenge the notion that there exists a discrete set of variables that 
capture core differences between male and female brains across the 
human species.” (p. 681).

However, variability in the “important features” identified across models and samples—
even with similar data and similar levels of predictive accuracy—may easily arise as a 
manifestation of the Rashomon effect, and cannot be used to draw simple conclusions 
about the existence (or lack thereof) of reliable differences between male and female 
brains. While local overfitting may have contributed to inflate the variability of these 
findings (as hinted at in the passage above), one should not expect high levels of consis
tency to begin with; in fact, more aggressive strategies to reduce overfitting may even 
exacerbate the Rashomon effect instead of reducing it (see Breiman, 2001; Schaffer, 1993). 
Note that I am not arguing that Eliot et al.’s conclusions are necessarily wrong; my point 
is that they are not warranted by the observation that different models rely on different 
sets of brain features for prediction.

My last example for this section is an interesting, widely circulated preprint by 
Sanchis-Segura et al. (2021).8 These authors explored the issue of sex differences in 
brain structure with a variety of descriptive and predictive methods. In one of the 
analyses, they used a dataset of gray matter volume to train five different classifiers: two 
“classical” models fit without regularization or cross-validation (logistic regression and 
linear discriminant analysis [LDA]), and three prediction-optimized models (SVM, ran
dom forests, and multiple adaptive regression splines [MARS]). The classifiers achieved 
similar levels of accuracy (86–90% without correcting for total brain volume, 59–66% in 
a volume-corrected dataset), and were used to generate five estimates of the “probability 
of being classified as male” (PCAM) for each participant. Then, the authors trained 
another set of predictive models (boosted beta regression) that used regional volumes to 
predict the PCAM scores generated by the classifiers, and compared regression weights 
across the resulting models. In other words, the authors used beta regression models as 
global surrogates, to identify the brain features that contributed most to prediction in the 
original classifiers and quantify their relative importance. Despite the high correlations 

8) In the following discussion, I focus specifically on the first version of Sanchis-Segura et al.’s preprint. These 
authors later published the preprint as a paper (Sanchis-Segura et al., 2022), in which they cited an early version 
of the present article, acknowledged the problems highlighted in this section, and partially revised their analytic 
approach.
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between the five PCAM scores (the average correlation was .87 without correcting for 
total brain volume, .70 in a corrected dataset; see Sanchis-Segura et al., 2021, Figure 7D), 
the relative importance of different brain regions varied substantially across classifiers, 
yielding low levels of consistency by most measures (see Sanchis-Segura et al., 2021, pp. 
6–7, Figures 5 and 6).9

The authors correctly noted that “because they differ in their statistical assumptions 
and operations, distinct algorithms rely on distinct brain features […] and assign differ
ent PCAM scores to the same subjects” (p. 7). But then they went on to write:

“Therefore, it is apparent that—despite working with identical data 
from the same individuals—the different algorithms tested in the 
present study do not provide directly exchangeable outcomes or 
identify a single, coherent, and reproducible subset of brain features 
as the source of the males-females multivariate differences […] To
gether, these sources of empirical evidence directly challenge the 
binary sex views of human brains […] these views assume that, 
because distinct ML algorithms are able to correctly ‘predict’ sex 
from neuroanatomical features in 80–90% of the cases, all these al
gorithms must be identifying two distinct brain types in the human 
species, one typical of males and the other typical of females […]. 
However, these universal ‘brain types’ do not seem to really exist, 
given that different algorithms identify distinct brain features as the 
landmarks of ‘male/ female brains’ in different samples of females 
and males and when applied to the same subjects” (pp. 7–8).

In this interpretation of the results, the authors committed two instances of the predic
tion-explanation fallacy. First and more obviously, they read the lack of concordance 
among models as evidence against the existence of universal male/female “brain types”; 
because different classifiers can be expected to rely on different sets of predictors, even 
when trained on the same data, this inference is unwarranted.10 The second fallacy 
concerns the use of boosted beta regression to infer the relative importance of brain fea
tures according to different classifiers. This algorithm uses gradient boosting and cross-
validation to select an optimal subset of variables for prediction (Schmid et al., 2013). 

9) Of note, the authors also calculated aggregate levels of consistency, identified a list of top predictors across 
classifiers (see Sanchis-Segura et al., 2021, Figures 5 and 6), and suggested that comparing the results of several 
algorithms should lead to more valid conclusions than focusing on any single one of them (p. 9). These are all useful 
strategies to reduce the problems associated with prediction-explanation tradeoffs (see also Sanchis-Segura et al., 
2022).

10) Of course, there are many other reasons—theoretical as well as empirical—to reject the simplistic idea that there 
are only two homogeneous “brain types”, one for male and one for females; see for example Del Giudice (2021), Joel 
(2021), and other findings in Sanchis-Segura et al. (2021, 2022).
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The resulting surrogate models can be expected to maximize predictive performance at 
the expense of explanatory accuracy, and to show a degree of instability when faced 
with many redundant predictors. In other words, different regression models trained on 
similar PCAM scores may select somewhat different sets of “important predictors” for 
reasons that have nothing to do with a lack of consistency between the original classi
fiers. It remains unclear to what extent the discordance on display in Sanchis-Segura 
et al. (2021), Figures 5 and 6 is due to actual differences among the classifiers, or to 
instability in the regression models used to explain their functioning. These surrogates 
identified similar sets of important predictors for logistic regression and LDA, which is 
encouraging given the strong similarity between these algorithms (see James et al., 2021). 
At the same time, the PCAM scores produced by the two classifiers correlated at .99, 
making this a limit case of almost perfect consistency.

Neural Correlates of Emotions

Most biological theories of emotions (e.g., Ekman, 1999; Panksepp, 1998) postulate the 
existence of brain mechanisms specialized to produce specific emotional responses. Ac
cording to these theories, the experience of different emotions—such as happiness, anger, 
or disgust—should correlate with somewhat distinctive patterns of brain activity (“neural 
signatures”). The existence of such signatures should make it possible to accurately 
predict the emotional state of a person from measures of his/her brain activity. By 
applying ML methods to functional neuroimaging data, researchers have been able to 
classify participants’ emotional states into discrete categories with significant accuracy 
(e.g., Kassam et al., 2013; Kragel & LaBar, 2015; Saarimäki et al., 2016).11

Some of the studies in this area can serve to illustrate the prediction-explanation 
fallacy in its subtler forms. For example, Kragel and LaBar (2015) trained a set of partial 
least square discriminant analysis models, and employed cross-validation to select the 
number of latent variables. They then used model coefficients to identify the brain voxels 
that contributed most strongly to predicting each specific emotion (see Kragel & LaBar, 
2015, Figure 3). The authors noted that the voxels selected by the predictive models 
overlapped only in part with those that showed significant differences in univariate 
GLMs; however, they did not discuss the respective biases and limitations of the two 
types of models, and presented their results in a way that blurred the line between 
prediction and explanation. For instance:

11) Studies in this area tend to be based on very small samples (N = 10 to 48 for the three studies cited here), which 
raises legitimate concerns about generalizability and replicability. Because, (a) I am using these studies as illustrative 
examples of a conceptual point, and (b) the argument would still apply if the studies were based on larger samples, 
I will not discuss these issues further. Also, I will not discuss the other potential limitations of this kind of study 
(e.g., the pitfalls of trying to identify specific brain mechanisms based on folk labels such as “anger” or “fear”; see 
Scarantino, 2012).
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“Our analysis of regression coefficients revealed that this informa
tion was contained within diverse patterns of activation, spanning 
a number of cortical and subcortical brain regions. […] Maps for 
contentment included precuneus, medial prefrontal, cingulate and 
primary somatosensory cortices […] Despite engaging partially 
overlapping neural substrates at the macro-scale, emotion-predictive 
patterns were largely non-overlapping at the voxel level. Such sepa
rability of emotional states at the voxel level may explain why meta-
analytic works […] have associated neural activity with discrete 
emotions (e.g., correspondence between activation within the amyg
dala and fear or dorsal anterior cingulate and happiness), yet have 
failed to consistently identify emotion-specific neural substrates” 
(pp. 1444–1445).

In a similar study, Saarimäki et al. (2016) trained neural networks to classify emotional 
experiences into discrete categories, and used model weights to calculate and plot the 
“importance values” associated with each brain voxel (see Saarimäki et al., 2016, Figure 
3). Even if they did not discuss the tradeoffs between prediction and explanation, these 
authors were generally careful to explicitly frame their results in terms of prediction, and 
managed to avoid confusions between the two domains throughout most of the paper. 
However, both in the title (“discrete neural signatures of basic emotions”) and at various 
points of the discussion they seemed to equivocate between the sets of predictive voxels 
used by the neural networks and the broader (explanatory) concept of neural signatures. 
For example:

“Our results reveal that basic emotions are supported by discrete 
neural signatures within several brain areas, as evidenced by the 
high classification accuracy of emotions from hemodynamic brain 
signals. […] The distributed emotion-specific activation patterns 
may provide maps of internal states that correspond to specific 
subjectively experienced, discrete emotions […] In our study, the 
medial prefrontal and medial posterior regions […] contributed most 
significantly to classification between different basic emotions […]. 
Thus, local activation patterns within these areas differ across emo
tions and thus presumably reflect distinct neuronal signatures for 
different emotions” (pp. 7–8).

Lacking an explicit discussion of the explanatory limits of the analysis, the readers of 
this paper may easily look at the results and draw unwarranted conclusions about the 
“signatures” of different emotions and their localization.

In contrast with classical emotion theorists, constructivist scholars deny the existence 
of specialized emotion mechanisms in the brain. An influential example of this approach 
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is the theory of constructed emotion (Barrett, 2017). According to the theory, emotions 
consist of complex and highly variable patterns of sensory inputs, interoceptive sensa
tions, facial movements, and so on; these patterns do not arise from the activity of 
dedicated mechanisms, but instead get categorized as instances of a certain emotion 
through the incessant concept-forming activity of the brain. One implication of this view 
is that emotions should not be associated with specific neural signatures. In reviewing 
the empirical data in support of the theory, Barrett (2017) wrote:

“Ironically, perhaps the strongest evidence to date for the theory 
comes from studies that use pattern classification to distinguish 
categories of emotion. Several recent articles taking this approach 
have reported success in differentiating one emotion category from 
another—a finding that is routinely construed as providing the long 
awaited support for the classical view (Kassam et al., 2013; Kragel 
and LaBar, 2015; Saarimäki et al., 2016). However, patterns that 
distinguish among the categories in one study do not replicate in the 
other studies” (p. 15).

The deeper irony of this passage is that the author’s interpretation of the literature is a 
conspicuous example of the prediction-explanation fallacy. The regions/voxels identified 
as most predictive can be expected to vary from one study to the next, even if the 
underlying patterns of brain activity are stable and consistent. (Note that the variability 
is going to be magnified if the studies are based on small samples, as in this case.) 
Discordances between prediction-optimized models are par for the course; it is a mistake 
to conclude that a phenomenon lacks robustness just because different predictive models 
fail to agree with one another. Of course, this does not automatically count as a vindica
tion of classical theories, or a falsification of Barrett’s theory of constructed emotions 
(which might well be the better model of how emotions work); but it does challenge the 
notion that the theory receives strong support from the sheer variability of brain imaging 
results.

Mitigating Factors and Strategies
Throughout this paper I have emphasized the differences and tradeoffs between pre
diction and explanation, but it is important to stress once again that these goals are 
not always or necessarily in tension.12 The biases introduced to maximize prediction 
accuracy can also improve explanatory accuracy if they happen to match the structure of 
the phenomenon under study. For example, algorithms that make sparsity assumptions 

12) For a broader discussion of the potential for integration and synergy between explanatory and predictive 
modeling, see Hofman et al. (2021).
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can generate accurate explanations when the data-generating process is actually sparse 
(e.g., Epskamp et al., 2017). Thus, using a prediction-optimized model for explanatory 
purposes can be justified if there are theoretical and/or empirical reasons to believe that 
the assumptions of the model are closely matched to the structure of the underlying 
phenomenon. Indeed, strategically introducing biases of this kind can also improve the 
explanatory accuracy of models that are not intended or used for prediction at all (see 
also Footnote 5). From a complementary angle, it may be possible to gain insight into 
the structure of a phenomenon precisely by comparing the performance of alternative 
models that incorporate different assumptions and biases (e.g., sparsity vs. density; see 
Yarkoni & Westfall, 2017). Needless to say, this kind of comparison must be approached 
with great care to avoid the risk of other interpretive fallacies. One should also consider 
that regularization has a stronger impact when sample size is small for the number of 
model parameters; thus, some of the tradeoffs I discussed here tend to become less severe 
when working with large datasets.

As I noted earlier, one strategy that can be used to avoid the prediction-explanation 
fallacy is to fit different types of models to the data, some optimized for prediction 
and other for accurate explanation. If done with care, comparisons between different 
types of models can be illuminating, and may even act as springboards for new and 
better theories of a phenomenon (Hofman et al., 2021). Another way of lessening the 
problem is to avoid focusing on a single best-performing model, and instead capitalize 
on the Rashomon effect by training and examining a set of well-performing models, 
each with somewhat different explanatory biases (see e.g., Sanchis-Segura et al., 2022). In 
this regard, ML researchers have begun to develop specialized methods to systematically 
explore model variability across the so-called “Rashomon set” for a predictive task, that 
is, the full set of (approximately) equally accurate models of a given class. For instance, 
Fisher et al. (2019) proposed to measure the range of importance assumed by each 
variable across models (model class reliance). Another recent example is the work on 
variable importance clouds (Dong & Rudin, 2020), a visualization technique that maps the 
importance of each variable across the models in the set. Variable importance clouds go 
beyond aggregate estimates of importance and can reveal the existence of explanatory 
tradeoffs between variables, so that when one of the variables has high importance in a 
model, the other tends to have low importance (and vice versa). For a discussion of some 
conceptual complications in the analysis of variable importance measures, see Watson 
(2022).

Crucially, the mitigating strategies discussed above rely on statistical indices that 
are blind to the causal structure of the data. But as I noted earlier, a variable can be 
singled out as an “important” predictor even if it plays a spurious role in the true causal 
explanation of the phenomenon, or possibly just because it has been measured with less 
error than other, more causally meaningful variables. The only antidote to these threats 
to accurate explanation is explicit causal reasoning, which can be aided by the rapidly 
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expanding toolkit of formal causal modeling (see Pearl et al., 2016; Pearl & Mackenzie, 
2018; Rohrer, 2018; Wiedermann & Von Eye, 2016; see also Zhao & Hastie, 2021 for some 
considerations about the causal interpretation of black-box ML models).

Conclusion
Scientific applications of ML techniques can be extremely powerful; they also raise new 
problems and complications, both in their use and in the interpretation of their results. 
One of these problems—which seems to be particularly widespread—is the uncritical 
use of prediction-optimized models for explanatory purposes. Here I tried to pinpoint 
this fallacy, explain it in simple terms, and give it a convenient and descriptive name. 
The prediction-explanation fallacy can take a number of related forms; it can range 
from mild, ambiguous cases to glaring misinterpretations of the information provided by 
predictive models. The solution is not to prescribe that one should never use predictive 
models for explanation; that would be just a different sort of fallacy. Instead, researchers 
should explicitly address the tension between explanation and prediction in their analy
ses, consider potential mitigating factors, and—when feasible—use appropriate strategies 
to limit or circumvent the problem.

Raising awareness about the prediction-explanation fallacy will become especially 
critical as more psychologists and neuroscientists begin to follow Yarkoni and Westfall’s 
(2017) exhortation to put prediction at the center of their work. As demonstrated by 
the examples I reviewed here, it is easy to start with a purely predictive question but 
then unwittingly slip back into a “default” explanatory mode, without clearly realizing 
the implications and potential pitfalls. I hope this paper will contribute to improve the 
applied use of ML by helping researchers run more transparent, informative analyses and 
avoid drawing misleading conclusions from the data.

Funding: The author has no funding to report.

Acknowledgments: I wish to thank Andrew Cutler and Carla Sanchis-Segura for their generous feedback on earlier 

drafts of this paper.

Competing Interests: The author has declared that no competing interests exist.

References

Anderson, N. E., Harenski, K. A., Harenski, C. L., Koenigs, M. R., Decety, J., Calhoun, V. D., & Kiehl, 
K. A. (2019). Machine learning of brain gray matter differentiates sex in a large forensic sample. 
Human Brain Mapping, 40(5), 1496–1506. https://doi.org/10.1002/hbm.24462

Austerweil, J. L., Gershman, S. J., Tenenbaum, J. B., & Griffiths, T. L. (2015). Structure and flexibility 
in Bayesian models of cognition. In J. R. Busemeyer, Z. Wang, J. T. Townsend, & A. Eidels 

Del Giudice 41

Methodology
2024, Vol. 20(1), 22–46
https://doi.org/10.5964/meth.11235

https://doi.org/10.1002/hbm.24462
https://www.psychopen.eu/


(Eds.), Oxford handbook of computational and mathematical psychology (pp. 187–208). Oxford 
University Press.

Barrett, L. F. (2017). The theory of constructed emotion: An active inference account of 
interoception and categorization. Social Cognitive and Affective Neuroscience, 12(1), 1–23. 
https://doi.org/10.1093/scan/nsx060

Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Reconciling modern machine-learning practice and 
the classical bias–variance trade-off. Proceedings of the National Academy of Sciences of the 
United States of America, 116(32), 15849–15854. https://doi.org/10.1073/pnas.1903070116

Berk, R. A. (2016). Statistical learning from a regression perspective. Springer.
Biecek, P., & Burzykowski, T. (2021). Explanatory model analysis: explore, explain, and examine 

predictive models. CRC Press.
Boge, F. J. (2022). Two dimensions of opacity and the deep learning predicament. Minds and 

Machines, 32, 43–75. https://doi.org/10.1007/s11023-021-09569-4
Breiman, L. (2001). Statistical modeling: The two cultures. Statistical Science, 16(3), 199–231. 

https://doi.org/10.1214/ss/1009213726
Bzdok, D., & Ioannidis, J. P. (2019). Exploration, inference, and prediction in neuroscience and 

biomedicine. Trends in Neurosciences, 42(4), 251–262. https://doi.org/10.1016/j.tins.2019.02.001
Chater, N. (2012). Building blocks of human decision making. In P. Hammerstein & J. R. Stevens 

(Eds.), Evolution and the mechanisms of decision making (pp. 53–67). MIT Press.
Clark, A. (2016). Surfing uncertainty: Prediction, action, and the embodied mind. Oxford University 

Press.
Costantini, G., Epskamp, S., Borsboom, D., Perugini, M., Mõttus, R., Waldorp, L. J., & Cramer, A. O. 

(2015). State of the aRt personality research: A tutorial on network analysis of personality data 
in R. Journal of Research in Personality, 54, 13–29. https://doi.org/10.1016/j.jrp.2014.07.003

D’Amour, A. (2021). Revisiting Rashomon: A comment on “The Two Cultures”. Observational 
Studies, 7(1), 59–63. https://doi.org/10.1353/obs.2021.0022

D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C., Deaton, J., 
Eisenstein, J., Hoffman, M. D., Hormozdiari, F., Houlsby, N., Hou, S., Jerfel, G., 
Karthikesalingam, A., Lucic, M., Ma, Y., McLean, C., Mincu, D., . . . Sculley, D. (2020). 
Underspecification presents challenges for credibility in modern machine learning (arXiv, 
2011.03395). arXiv. https://doi.org/10.48550/arXiv.2011.03395

Dar, Y., Muthukumar, V., & Baraniuk, R. G. (2021). A farewell to the bias-variance tradeoff? An 
overview of the theory of overparameterized machine learning (arXiv, 2109.02355). arXiv. 
https://doi.org/10.48550/arXiv.2109.02355

Dawes, R. M. (1979). The robust beauty of improper linear models in decision making. American 
Psychologist, 34(7), 571–582. https://doi.org/10.1037/0003-066X.34.7.571

Del Giudice, M. (2021). Binary thinking about the sex binary: A comment on Joel (2021). 
Neuroscience and Biobehavioral Reviews, 127, 144–145. 
https://doi.org/10.1016/j.neubiorev.2021.04.020

The Prediction-Explanation Fallacy 42

Methodology
2024, Vol. 20(1), 22–46
https://doi.org/10.5964/meth.11235

https://doi.org/10.1093/scan/nsx060
https://doi.org/10.1073/pnas.1903070116
https://doi.org/10.1007/s11023-021-09569-4
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1016/j.tins.2019.02.001
https://doi.org/10.1016/j.jrp.2014.07.003
https://doi.org/10.1353/obs.2021.0022
https://doi.org/10.48550/arXiv.2011.03395
https://doi.org/10.48550/arXiv.2109.02355
https://doi.org/10.1037/0003-066X.34.7.571
https://doi.org/10.1016/j.neubiorev.2021.04.020
https://www.psychopen.eu/


Del Giudice, M., & Crespi, B. J. (2018). Basic functional trade-offs in cognition: An integrative 
framework. Cognition, 179, 56–70. https://doi.org/10.1016/j.cognition.2018.06.008

Dong, J., & Rudin, C. (2020). Exploring the cloud of variable importance for the set of all good 
models. Nature Machine Intelligence, 2, 810–824. https://doi.org/10.1038/s42256-020-00264-0

Douglas, H. E. (2009). Reintroducing prediction to explanation. Philosophy of Science, 76(4), 444–
463. https://doi.org/10.1086/648111

Efron, B., & Hastie, T. (2016). Computer age statistical inference. Cambridge University Press.
Ekman, P. E. (1999). Basic emotions. In T. Dalgleish & T. Power (Eds.), Handbook of cognition and 

emotion (pp. 45–60). Wiley.
Eliot, L., Ahmed, A., Khan, H., & Patel, J. (2021). Dump the “dimorphism”: Comprehensive synthesis 

of human brain studies reveals few male-female differences beyond size. Neuroscience and 
Biobehavioral Reviews, 125, 667–697. https://doi.org/10.1016/j.neubiorev.2021.02.026

Elwert, F., & Winship, C. (2014). Endogenous selection bias: The problem of conditioning on a 
collider variable. Annual Review of Sociology, 40, 31–53. 
https://doi.org/10.1146/annurev-soc-071913-043455

Epskamp, S., Borsboom, D., & Fried, E. I. (2018). Estimating psychological networks and their 
accuracy: A tutorial paper. Behavior Research Methods, 50, 195–212. 
https://doi.org/10.3758/s13428-017-0862-1

Epskamp, S., & Fried, E. I. (2018). A tutorial on regularized partial correlation networks. 
Psychological Methods, 23(4), 617–634. https://doi.org/10.1037/met0000167

Epskamp, S., Kruis, J., & Marsman, M. (2017). Estimating psychopathological networks: Be careful 
what you wish for. PLoS One, 12(6), Article e0179891. 
https://doi.org/10.1371/journal.pone.0179891

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of 
classifiers to solve real world classification problems? Journal of Machine Learning Research, 15, 
3133–3181. https://www.jmlr.org/papers/volume15/delgado14a/delgado14a.pdf

Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many are useful: Learning a 
variable’s importance by studying an entire class of prediction models simultaneously. Journal 
of Machine Learning Research, 20, 1–81. 
https://www.jmlr.org/papers/volume20/18-760/18-760.pdf

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews. Neuroscience, 
11, 127–138. https://doi.org/10.1038/nrn2787

Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: Why biased minds make better inferences. 
Topics in Cognitive Science, 1(1), 107–143. https://doi.org/10.1111/j.1756-8765.2008.01006.x

Hagen, H. H., Chater, N., Gallistel, C. R., Houston, A., Kacelnik, A., Kalenscher, T., Nettle, D., 
Oppenheimer, D., & Stephens, D. W. (2012). Decision making: What can evolution do for us? In 
P. Hammerstein & J. R. Stevens (Eds.), Evolution and the mechanisms of decision making (pp. 97–
126). MIT Press.

Hagerty, M. R., & Srinivasan, V. (1991). Comparing the predictive powers of alternative multiple 
regression models. Psychometrika, 56, 77–85. https://doi.org/10.1007/BF02294587

Del Giudice 43

Methodology
2024, Vol. 20(1), 22–46
https://doi.org/10.5964/meth.11235

https://doi.org/10.1016/j.cognition.2018.06.008
https://doi.org/10.1038/s42256-020-00264-0
https://doi.org/10.1086/648111
https://doi.org/10.1016/j.neubiorev.2021.02.026
https://doi.org/10.1146/annurev-soc-071913-043455
https://doi.org/10.3758/s13428-017-0862-1
https://doi.org/10.1037/met0000167
https://doi.org/10.1371/journal.pone.0179891
https://www.jmlr.org/papers/volume15/delgado14a/delgado14a.pdf
https://www.jmlr.org/papers/volume20/18-760/18-760.pdf
https://doi.org/10.1038/nrn2787
https://doi.org/10.1111/j.1756-8765.2008.01006.x
https://doi.org/10.1007/BF02294587
https://www.psychopen.eu/


Hancox-Li, L. (2020). Robustness in machine learning explanations: Does it matter? In Proceedings 
of the 2020 Conference on Fairness, Accountability, and Transparency (pp. 640–647). Association 
for Computing Machinery. https://doi.org/10.1145/3351095.3372836

Hasson, U., Nastase, S. A., & Goldstein, A. (2020). Direct fit to nature: An evolutionary perspective 
on biological and artificial neural networks. Neuron, 105(3), 416–434. 
https://doi.org/10.1016/j.neuron.2019.12.002

Hastie, T., Montanari, A., Rosset, S., & Tibshirani, R. J. (2019). Surprises in high-dimensional ridgeless 
least squares interpolation (arXiv, 1903.08560). arXiv. https://arxiv.org/abs/1903.08560v4

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, 
inference, and prediction (2nd ed.). Springer.

Hofman, J. M., Watts, D. J., Athey, S., Garip, F., Griffiths, T. L., Kleinberg, J., Margetts, H., 
Mullainathan, S., Salganik, M. J., Vazire, S., Vespignani, A., & Yarkoni, T. (2021). Integrating 
explanation and prediction in computational social science. Nature, 595, 181–188. 
https://doi.org/10.1038/s41586-021-03659-0

Hohwy, J. (2013). The predictive mind. Oxford University Press.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An introduction to statistical learning with 

applications in R (2nd ed.). Springer.
Joel, D. (2021). Beyond the binary: Rethinking sex and the brain. Neuroscience and Biobehavioral 

Reviews, 122, 165–175. https://doi.org/10.1016/j.neubiorev.2020.11.018
Kassam, K. S., Markey, A. R., Cherkassky, V. L., Loewenstein, G., & Just, M. A. (2013). Identifying 

emotions on the basis of neural activation. PLoS One, 8(6), Article e66032. 
https://doi.org/10.1371/journal.pone.0066032

Koul, A., Becchio, C., & Cavallo, A. (2018). PredPsych: A toolbox for predictive machine learning-
based approach in experimental psychology research. Behavior Research Methods, 50, 1657–
1672. https://doi.org/10.3758/s13428-017-0987-2

Kragel, P. A., & LaBar, K. S. (2015). Multivariate neural biomarkers of emotional states are 
categorically distinct. Social Cognitive and Affective Neuroscience, 10(11), 1437–1448. 
https://doi.org/10.1093/scan/nsv032

Kumar, M., Ellis, C. T., Lu, Q., Zhang, H., Capotă, M., Willke, T. L., Ramadge, P. J., Turk-Browne, N. 
B., & Norman, K. A. (2020). BrainIAK tutorials: User-friendly learning materials for advanced 
fMRI analysis. PLoS Computational Biology, 16(1), Article e1007549. 
https://doi.org/10.1371/journal.pcbi.1007549

Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S. M., & Davatzikos, C. (2004). Morphological 
classification of brains via high-dimensional shape transformations and machine learning 
methods. NeuroImage, 21(1), 46–57. https://doi.org/10.1016/j.neuroimage.2003.09.027

Lemoine, N. P. (2019). Moving beyond noninformative priors: Why and how to choose weakly 
informative priors in Bayesian analyses. Oikos, 128(7), 912–928. 
https://doi.org/10.1111/oik.05985

Linardatos, P., Papastefanopoulos, V., & Kotsiantis, S. (2021). Explainable AI: A review of machine 
learning interpretability methods. Entropy, 23(1), Article 18. https://doi.org/10.3390/e23010018

The Prediction-Explanation Fallacy 44

Methodology
2024, Vol. 20(1), 22–46
https://doi.org/10.5964/meth.11235

https://doi.org/10.1145/3351095.3372836
https://doi.org/10.1016/j.neuron.2019.12.002
https://arxiv.org/abs/1903.08560v4
https://doi.org/10.1038/s41586-021-03659-0
https://doi.org/10.1016/j.neubiorev.2020.11.018
https://doi.org/10.1371/journal.pone.0066032
https://doi.org/10.3758/s13428-017-0987-2
https://doi.org/10.1093/scan/nsv032
https://doi.org/10.1371/journal.pcbi.1007549
https://doi.org/10.1016/j.neuroimage.2003.09.027
https://doi.org/10.1111/oik.05985
https://doi.org/10.3390/e23010018
https://www.psychopen.eu/


Luo, Z., Hou, C., Wang, L., & Hu, D. (2019). Gender identification of human cortical 3-D 
morphology using hierarchical sparsity. Frontiers in Human Neuroscience, 13, Article 29. 
https://doi.org/10.3389/fnhum.2019.00029

McElreath, R. (2020). Statistical rethinking: A Bayesian course with examples in R and Stan. CRC 
Press.

McNally, R. J. (2016). Can network analysis transform psychopathology? Behaviour Research and 
Therapy, 86, 95–104. https://doi.org/10.1016/j.brat.2016.06.006

Molnar, C. (2019). Interpretable machine learning. A guide for making black box models explainable. 
https://christophm.github.io/interpretable-ml-book/

Mõttus, R., Wood, D., Condon, D. M., Back, M. D., Baumert, A., Costantini, G., Epskamp, S., Greiff, 
S., Johnson, W., Lukaszewski, A., Murray, A., Revelle, W., Wright, A. G. C., Yarkoni, T., Ziegler, 
M., & Zimmermann, J. (2020). Descriptive, predictive and explanatory personality research: 
Different goals, different approaches, but a shared need to move beyond the Big Few traits. 
European Journal of Personality, 34(6), 1175–1201. https://doi.org/10.1002/per.2311

Panksepp, J. (1998). Affective neuroscience: The foundations of human and animal emotions. Oxford 
University Press.

Pargent, F., Schoedel, R., & Stachl, C. (2023). Best practices in supervised machine learning: A 
tutorial for psychologists. Advances in Methods and Practices in Psychological Science, 6(3), 1–35. 
https://doi.org/10.1177/25152459231162559

Pearl, J., Glymour, M., & Jewell, N. P. (2016). Causal inference in statistics: A primer. Wiley.
Pearl, J., & Mackenzie, D. (2018). The book of why: The new science of cause and effect. Basic Books.
Rohrer, J. M. (2018). Thinking clearly about correlations and causation: Graphical causal models for 

observational data. Advances in Methods and Practices in Psychological Science, 1(1), 27–42. 
https://doi.org/10.1177/2515245917745629

Rosenbusch, H., Soldner, F., Evans, A. M., & Zeelenberg, M. (2021). Supervised machine learning 
methods in psychology: A practical introduction with annotated R code. Social and Personality 
Psychology Compass, 15(2), Article e12579. https://doi.org/10.1111/spc3.12579

Rudin, C. (2019). Please stop explaining black box models for high stakes decisions 
(arXiv:1811.10154v3). arXiv. https://arxiv.org/abs/1811.10154v3

Saarimäki, H., Gotsopoulos, A., Jääskeläinen, I. P., Lampinen, J., Vuilleumier, P., Hari, R., Sams, M., 
& Nummenmaa, L. (2016). Discrete neural signatures of basic emotions. Cerebral Cortex, 26(6), 
2563–2573. https://doi.org/10.1093/cercor/bhv086

Sanchis-Segura, C., Aguirre, N., Cruz-Gómez, Á. J., Félix, S., & Forn, C. (2021). Beyond “sex 
prediction”: Estimating and interpreting multivariate sex differences and similarities in the brain. 
ResearchSquare. https://doi.org/10.21203/rs.3.rs-741734/v1

Sanchis-Segura, C., Aguirre, N., Cruz-Gómez, Á. J., Félix, S., & Forn, C. (2022). Beyond “sex 
prediction”: Estimating and interpreting multivariate sex differences and similarities in the 
brain. NeuroImage, 257, Article 119343. https://doi.org/10.1016/j.neuroimage.2022.119343

Scarantino, A. (2012). How to define emotions scientifically. Emotion Review, 4(4), 358–368. 
https://doi.org/10.1177/1754073912445810

Del Giudice 45

Methodology
2024, Vol. 20(1), 22–46
https://doi.org/10.5964/meth.11235

https://doi.org/10.3389/fnhum.2019.00029
https://doi.org/10.1016/j.brat.2016.06.006
https://christophm.github.io/interpretable-ml-book/
https://doi.org/10.1002/per.2311
https://doi.org/10.1177/25152459231162559
https://doi.org/10.1177/2515245917745629
https://doi.org/10.1111/spc3.12579
https://arxiv.org/abs/1811.10154v3
https://doi.org/10.1093/cercor/bhv086
https://doi.org/10.21203/rs.3.rs-741734/v1
https://doi.org/10.1016/j.neuroimage.2022.119343
https://doi.org/10.1177/1754073912445810
https://www.psychopen.eu/


Schaffer, C. (1993). Overfitting avoidance as bias. Machine Learning, 10, 153–178. 
https://doi.org/10.1007/BF00993504

Schmid, M., Wickler, F., Maloney, K. O., Mitchell, R., Fenske, N., & Mayr, A. (2013). Boosted beta 
regression. PLoS One, 8(4), Article e61623. https://doi.org/10.1371/journal.pone.0061623

Sepehrband, F., Lynch, K. M., Cabeen, R. P., Gonzalez-Zacarias, C., Zhao, L., D’Arcy, M., Kesselman, 
C., Herting, M. M., Dinov, I. D., Toga, A. W., & Clark, K. A. (2018). Neuroanatomical 
morphometric characterization of sex differences in youth using statistical learning. 
NeuroImage, 172, 217–227. https://doi.org/10.1016/j.neuroimage.2018.01.065

Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310. 
https://doi.org/10.1214/10-STS330

Srećković, S., Berber, A., & Filipović, N. (2022). The automated Laplacean demon: How ML 
challenges our views on prediction and explanation. Minds and Machines, 32, 159–183. 
https://doi.org/10.1007/s11023-021-09575-6

Tunç, B., Solmaz, B., Parker, D., Satterthwaite, T. D., Elliott, M. A., Calkins, M. E., Ruparel, K., Gur, 
R. E., & Verma, R. (2016). Establishing a link between sex-related differences in the structural 
connectome and behaviour. Philosophical Transactions of the Royal Society of London B, 
371(1688), Article 20150111. https://doi.org/10.1098/rstb.2015.0111

van Eijk, L., Zhu, D., Couvy-Duchesne, B., Strike, L. T., Lee, A. J., Hansell, N. K., Thompson, P. M., 
de Zubicaray, G. I., McMahon, K. L., Wright, M. J., & Zietsch, B. P. (2021). Are sex differences in 
human brain structure associated with sex differences in behavior? Psychological Science, 32(8), 
1183–1197. https://doi.org/10.1177/0956797621996664

Watson, D. S. (2022). Conceptual challenges for interpretable machine learning. Synthese, 200, 
Article 65. https://doi.org/10.1007/s11229-022-03485-5

Wiedermann, W., & Von Eye, A. (2016). Statistics and causality. Wiley.
Yang, Z., Yu, Y., You, C., Steinhardt, J., & Ma, Y. (2020). Rethinking bias-variance trade-off for 

generalization of neural networks. In H. Daumé, III & A. Singh (Eds.), Proceedings of the 37th 
International Conference on Machine Learning (pp. 10767–10777). PLMR. 
https://proceedings.mlr.press/v119/yang20j.html

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons 
from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122. 
https://doi.org/10.1177/1745691617693393

Zhao, Q., & Hastie, T. (2021). Causal interpretations of black-box models. Journal of Business & 
Economic Statistics, 39(1), 272–281. https://doi.org/10.1080/07350015.2019.1624293

Methodology is the official journal 
of the European Association of 
Methodology (EAM).

PsychOpen GOLD is a publishing 
service by Leibniz Institute for 
Psychology (ZPID), Germany.

The Prediction-Explanation Fallacy 46

Methodology
2024, Vol. 20(1), 22–46
https://doi.org/10.5964/meth.11235

https://doi.org/10.1007/BF00993504
https://doi.org/10.1371/journal.pone.0061623
https://doi.org/10.1016/j.neuroimage.2018.01.065
https://doi.org/10.1214/10-STS330
https://doi.org/10.1007/s11023-021-09575-6
https://doi.org/10.1098/rstb.2015.0111
https://doi.org/10.1177/0956797621996664
https://doi.org/10.1007/s11229-022-03485-5
https://proceedings.mlr.press/v119/yang20j.html
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1080/07350015.2019.1624293
https://www.psychopen.eu/

	The Prediction-Explanation Fallacy
	(Introduction)
	Prediction ≠ Explanation

	Illustrative Examples
	Sex Differences in Brain Structure

	Mitigating Factors and Strategies
	Conclusion

	(Additional Information)
	Funding
	Acknowledgments
	Competing Interests

	References


