
Original Article

Comparison of Lasso and Stepwise Regression in 
Psychological Data

Di Jody Zhou 1 , Rajpreet Chahal 2 , Ian H. Gotlib 2 , Siwei Liu 1

[1] Department of Human Ecology, University of California, Davis, CA, USA. [2] Department of Psychology, Stanford 

University, Stanford, CA, USA. 

Methodology, 2024, Vol. 20(2), 121–143, https://doi.org/10.5964/meth.11523

Received: 2023-03-08 • Accepted: 2024-05-31 • Published (VoR): 2024-06-28

Handling Editor: Shahab Jolani, Maastricht University, Maastricht, the Netherlands

Corresponding Author: Di Jody Zhou, Department of Human Ecology, University of California, Davis, CA, USA. E-
mail: jodzhou@ucdavis.edu

Supplementary Materials: Code, Materials

Abstract
Identifying significant predictors of behavioral outcomes is of great interest in many psychological 
studies. Lasso regression, as an alternative to stepwise regression for variable selection, has started 
gaining traction among psychologists. Yet, further investigation is valuable to fully understand its 
performance across various psychological data conditions. Using a Monte Carlo simulation and an 
empirical demonstration, we compared Lasso regression to stepwise regression in typical 
psychological datasets varying in sample size, predictor size, sparsity, and signal-to-noise ratio. We 
found that: (1) Lasso regression was more accurate in within-sample selection and yielded more 
consistent out-of-sample prediction accuracy than stepwise regression; (2) Lasso with a harsher 
shrinkage parameter was more accurate, parsimonious, and robust to sampling variability than the 
prediction-optimizing Lasso. Finally, we concluded with cautious notes and recommendations in 
practice on the application of Lasso regression.
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For many years, social and behavioral scientists have been advised against using step­
wise regression methods due to several shortcomings concerning their variable selection 
accuracy and predictive ability (Thompson, 1995). Specifically, stepwise regression based 
on null hypothesis testing is prone to inflated false positive rates due to multiple testing 
(Derksen & Keselman, 1992), and the selected model might not include the most infor­

METHODOLOGY

This is an open access article distributed under the terms of the Creative Commons 
Attribution 4.0 International License, CC BY 4.0, which permits unrestricted use, 
distribution, and reproduction, provided the original work is properly cited.

https://crossmark.crossref.org/dialog/?doi=10.5964/meth.11523&domain=pdf&date_stamp=2024-06-28
https://orcid.org/0000-0003-2118-2096
https://orcid.org/0000-0003-0985-5622
https://orcid.org/0000-0002-3622-3199
https://orcid.org/0000-0002-2972-426X
https://www.psychopen.eu/
https://meth.psychopen.eu/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


mative predictors as it is heavily influenced by the selection order in which predictors 
are added or removed (Lovell, 1983; Wilkinson, 1979). Moreover, the selection criteria 
used in stepwise regression are often too liberal, producing overly complex models with 
unnecessary predictors that perform poorly on new, unseen data, a phenomenon known 
as overfitting (Babyak, 2004). Overfitting is commonly seen in psychology research 
when the primary focus is to describe behavioral patterns within a specific theoretical 
framework (Yarkoni & Westfall, 2017). Most studies follow the conventional wisdom 
of quantitative analysis to select models that best approximate the characteristics of 
the data at hand (Davis-Stober et al., 2018). However, the best-fitted model does not 
guarantee reliable and replicable findings (Yarkoni & Westfall, 2017). This is because 
well-fitted models that closely capture all information in the data, often includes random 
fluctuations specific to a particular sample. The resulting failure of out-of-sample predic­
tion contributes to the current replicability crisis in the behavioral sciences, in which 
replication studies often produce null results or smaller effects than the original studies 
(Laws, 2016).

In addressing this problem, some researchers have advocated for adopting machine 
learning approaches in psychology, which optimize prediction in new samples (Yarkoni 
& Westfall, 2017). According to this perspective, to enhance research replicability, it is 
pivotal to shift the analytical attention from mainly on explanation to a balance between 
explanation and prediction (Shmueli, 2010). In the context of variable selection, the goal 
is thus to select variables that are predictable in different samples of the same population 
and to disregard those that only capture nuances of a specific sample. Two approaches 
aiming at reducing model complexity can reduce overfitting and optimize model predict­
ability. One is to reduce the number of predictors selected by stepwise regression using 
information-based fit indices, such as the Akaike information criterion (AIC; Akaike, 
1974) and the Bayesian information criterion (BIC; Schwarz, 1978). The other applies 
regularization on coefficient estimates through, for example, the least absolute shrinkage 
and selection operator (Lasso; Tibshirani, 1996). This study aims to investigate Lasso’s 
performance as a variable selection method compared to stepwise regression in typical 
psychological data. In the following sections, we review the details of each approach.

Stepwise Regression Using the F-Test
Traditionally, variable selection in stepwise regression is carried out based on null hy­
pothesis testing, such as the F-test. In forward selection (i.e., selection starts with an 
empty model or just the intercept), for example, the p-value for each candidate predictor 
at each step t is calculated based on the partial F statistic as follows:

∆ F = RSSt − RSSt − 1
RSSt − 1

∑
i = 1

N
yi − ∑

j = 1

p
βj × xij

2
    (1).
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Each step selects the predictor with the smallest p-value. This iterative algorithm termi­
nates when no remaining predictors meet the inclusion threshold (i.e., a prespecified α
value). The magnitude of this α value determines the selection liberty: a higher α allows 
for the inclusion of more predictors but increases the false positive rate. Backward elimi­
nation does the opposite of forward selection. Starting with a full model that includes all 
variables, each step prunes a variable until no remaining predictor has a p-value larger 
than the prespecified inclusion threshold. Both-directional stepwise regression combines 
forward selection and backward elimination by either adding a variable or pruning a 
variable at each step; a variable that enters the model at a prior step can also be removed 
later. Regardless of the direction of variable selection, these methods aim to arrive at a 
final model that best fits the given data.

Stepwise Regression With Information-Based Fit Indices
Information-based fit indices penalize the number of predictors included in the stepwise 
regression to maximize model fit with the fewest predictors1. The two most common 
indices, namely, AIC and BIC, differ in the degree of penalty they place on the number of 
predictors. AIC has a fixed penalty of 2, whereas the penalty level of BIC, ln(N), increases 
with the sample size. As ln(N) is typically larger than 2 in psychological research, BIC 
generally favors more parsimonious models than AIC. Specifically, at each step t, the 
difference in AIC and BIC is calculated as follows:

∆ AIC = N × ln RSSt
N − N × ln RSSt − 1

N + 2 × Kt − Kt − 1     2 ,

∆ BIC = N × ln RSSt
N − N × ln RSSt − 1

N +   ln N × Kt − Kt − 1     3 ,

where K  is the number of predictors to be estimated in the model. Hence, Kt − Kt − 1 is 1 
for forward selection and -1 for backward elimination.

Lasso Regression
The Lasso regression aims to reduce overfitting with regularization, a general approach 
to reduce prediction error in unseen samples by finding a balance between bias and 
variance. In the context of regression, bias refers to the distance of the estimated 
coefficients from the true coefficients, and variance refers to the uncertainty of the 
coefficient estimates due to sampling variability. The two elements often compete with 

1) Despite the addition of the penalty terms, prior studies have shown that stepwise regression methods with 
information-based fit indices perform similarly to traditional stepwise regression methods based on hypothesis 
testing (Heinze et al., 2018; Sauerbrei, 1999).
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each other, a phenomenon known as the bias-variance tradeoff (Helwig, 2017; Liu & 
Rhemtulla, 2022; McNeish, 2015). Out-of-sample prediction errors are affected by both 
bias and variance. Hence, if the analytical goal is to optimize predictive performance, 
arriving at a model with minimal bias may not be ideal; instead, it may be helpful to 
enlarge bias for smaller variance. In regression, this is done by shrinking the coefficient 
estimates towards zero. Popular regularization methods include Ridge regression, Lasso 
regression, and Elastic-net methods. Among them, Lasso regression is arguably the most 
frequently used variable selection method (Tibshirani, 1996; Zou et al., 2007). In addition 
to minimizing the RSS, Lasso adds a penalty on the sum of the absolute values of the beta 
coefficients:

βlasso = argmin RSS + λ × ∑
j = 1

p
βj   (4).

This constraint attenuates the coefficients of all predictors, with the degree of attenua­
tion determined by the tuning parameter λ. As λ increases, the coefficients of predictors 
with small effects on the outcome variable will be quickly shrunk to zero, whereas the 
coefficients of predictors with larger effects will remain non-zero.

As different λ selects different sets of variables, an important task in Lasso regression 
is to select the optimal value of λ to reach a desired level of model sparsity. A too-small 
λ would include almost all variables. A too-large λ can result in an under-fitted model 
with too few predictors. The information-based fit indices AIC or BIC (Zou et al., 2007) 
and the k-fold cross-validation method (Golub et al., 1979) can be used to determine 
an appropriate level of λ. Among these methods, k-fold cross-validation is used more 
frequently because information-based fit indices require the calculation of degrees of 
freedom, which is challenging (McNeish, 2015; Tibshirani & Taylor, 2012). K-fold cross-
validation splits the dataset into k samples. Each sample takes turns validating the model 
trained by the rest of the k-1 samples. For each iteration of training and validation, a ser­
ies of the λ values are used to generate and compare the cross-validation mean-squared 
error (MSE)2. The λ value that minimizes the cross-validation MSE (hereinafter denoted 
as λmin) is recommended for variable selection. Alternatively, others recommend using 
the largest λ value that produces a cross-validation MSE within one standard error of the 
minimum cross-validation MSE (hereinafter denoted as λ1se) for better model parsimony 
(Friedman et al., 2010; McNeish, 2015).

Lasso regression has been recently introduced to psychologists (Helwig, 2017; 
Jacobucci et al., 2019; McNeish, 2015), and has been gaining traction in empirical anal­
yses to enhance the prediction of psychological behaviors (Haynos et al., 2021; Smith 

2) The relation between λ and the average MSE across iterations typically follows a U-shape pattern because 
underfitted and overfitted models would both produce large cross-validation errors.

Comparison of Lasso and Stepwise Regression in Psychological Data 124

Methodology
2024, Vol. 20(2), 121–143
https://doi.org/10.5964/meth.11523

https://www.psychopen.eu/


et al., 2020). Yet, most methodological studies assessing its performance focused on 
high-dimensional data (i.e., the number of predictors is far larger than the sample size; 
Bickel et al., 2009; Fan & Lv, 2010; Sirimongkolkasem & Drikvandi, 2019). In contrast, 
psychological datasets often contain more observations than variables. Although a few 
recent studies have found that Lasso is more accurate in predicting the hold-out sample 
than stepwise regression when applied to low-dimensional datasets (Ahrens et al., 2020; 
Greenwood et al., 2020; Xu et al., 2012), others have shown that this improvement in 
prediction is very small and limited to a few conditions (Hastie et al., 2020; Pavlou et al., 
2016; Wester et al., 2022). The differences in data characteristics are the primary reason 
for these mixed findings. Among these studies, two investigated categorical response 
variables from a single empirical dataset (Greenwood et al., 2020; Xu et al., 2012), where­
as others included continuous response variables in simulated datasets (Ahrens et al., 
2020; Hastie et al., 2020; Wester et al., 2022). Moreover, their simulated data did not well 
represent characteristics of data commonly seen in psychological research. For example, 
Ahrens et al. (2020) and Hastie et al. (2020) examined datasets with 100 candidate predic­
tors, which is rarely the case in psychological research. In Wester et al. (2022), which 
focuses on the selection of interactions to model treatment effect heterogeneity, relevant 
and irrelevant predictors were simulated to be independent. However, this assumption 
is unrealistic, given that correlated covariates are ubiquitous in psychological studies. 
Therefore, it is still unclear how this novel Lasso regression method compares to the 
more popular stepwise regression method when applied to psychological data. Given the 
increasing popularity of the Lasso method in psychology, more research is needed to 
better understand its performance in typical psychological data, especially its selection 
accuracy, which Lasso regression was not developed to optimize but is highly desired in 
psychological research to draw inferential conclusions.

To address this issue, we conducted a Monte Carlo simulation study to compare Lasso 
and stepwise regression across a representative range of data conditions that are typical 
in psychological studies. We organize the remainder of this article as follows. First, we 
describe our simulation study comparing Lasso and stepwise regression in out-of-sample 
prediction, within-sample selection accuracy, and model sparsity. Next, we demonstrate 
their differences in an empirical study that aims to identify risk factors of adolescent 
externalizing problems. Finally, we conclude with cautious notes and recommendations 
about the application of these methods in practice.

Method

Simulation Design
Based on our literature review of recent psychological studies that involve variable 
selection methods (see Supplementary Material A in Zhou et al., 2024), we simulated data 
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using a four-way factorial design. Specifically, we manipulated: 1) sample size (N), which 
can be 100, 200, 400, or 800; 2) candidate predictor size (p), which can be 5, 15, 25, 35, 
or 803; 3) signal-to-noise ratio (SNR), defined as Var y

Var y − y   or   R2

1 − R2 , can be 0.2, 0.5, 0.8, 
or 2; and 4) level of sparsity (s), defined as the percentage of non-informative predictors, 
which can be 20%, 40%, or 80%. In total, the factorial design yielded 240 (4×5×4×3) condi­
tions, with 100 replications of each simulation condition. All data were simulated based 
on the multiple linear regression model without the intercept:y = Xβ + ϵ, where X  is an 
N × p  matrix of candidate predictor values drawn from Np 0, Σ . Σ is a p × p correlation 
matrix with the elements on the diagonal fixed to 1, and the other entries randomly and 
independently drawn from Beta 3.5, 3.5  bounded between -1 and 1. We used this distri­
bution so that most correlations among the candidate predictors ranged between -0.5 and 
0.5, but some candidate predictors were allowed to be highly correlated with each other. 
We ensured that the predictor correlation matrix was positive semi-definite by replacing 
a non-positive definite correlation matrix with the nearest positive-definite correlation 
matrix (Higham, 2002). In each replication, a unique correlation matrix Σ was used to 
generate the candidate predictor values. β = β1, …, βp

T
 contains regression coefficients 

with set J1 = j, βj = 1  representing the informative predictors and set J2 = j,   βj = 0  
the non-informative predictors. y = y1, …, yn T

 is the outcome variable from Nn Xβ, σ2In
where σ2 = Var Xβ

SNR , and In is the n × n identity matrix. Within each replication, we simula­
ted a training set and a test set using the same parameter values. The test set was used to 
calculate the out-of-sample predictive accuracy, as described below.

Simulation Analysis
The stepAIC function in the MASS package was used (Venables & Ripley, 2002) to perform 
forward selection, backward elimination, and both-direction stepwise regression with 
three different selection criteria including the traditional F-statistic method with α = 0.15 
(i.e., the threshold criteria compared to the p-value of each predictor) as recommended 
in the literature (Derksen & Keselman, 1992; Flack & Chang, 1987), and the information-
based fit indices AIC and BIC. We then used the cv.glmnet function in the glmnet package 
(Friedman et al., 2010) to conduct Lasso regression. Five-fold cross-validation was used 
to optimize the tuning parameter λ. We performed Lasso with both λmin and λ1se (respec­
tively denoted as Lasso.min and Lasso.1se below). Because Lasso is sensitive to the scale 
of the coefficient values during variable selection, all variables were standardized prior to 
the analysis (Hastie et al., 2009, Chapter 3)4.

3) Although p = 80 is outside the range of data characteristics found in our literature review (see Supplementary 
Material A in Zhou et al., 2024), we included this condition to represent characteristics of “big data,” which is gaining 
momentum in studies with access to online data and team science work.

4) Previous research showed that Lasso does not select the true model asymptotically (i.e., when the sample size is 
sufficiently large) unless the irrepresentable condition (IRC) holds, in which the correlations between important and 
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Comparison Criteria
Out-of-Sample Predictive Accuracy

Predictive accuracy is measured by the out-of-sample MSE, which is the mean squared 
distance between the outcome values estimated by the train set and the true outcome 
values in the corresponding test set:

MSE =   1N ∑
i = 1

N
y i − yi 2     (5),

where y i  is the ith outcome value estimated by the train set, and yi is the ith true 
outcome value in the test set.

Within-Sample Selection Accuracy

We examined three measures of selection accuracy in the training set, including sensitiv­
ity, specificity, and the Matthew correlation coefficient (MCC) (Baldi et al., 2000). They 
are calculated as follows:

Sensitivity = TP
TP + FN , Specificity = TN

TN + FP ,

and MCC = TP × TN − FP × FN
TP + FP × TP + FN × TN + FP × TN + FN  (6),

where true positive (TP) is the number of selected predictors that are truly informative; 
true negative (TN) is the number of eliminated predictors that are truly non-informative; 
false positive (FP) is the number of selected predictors that are truly informative in the 
true model, and false negative (FN) is the number of selected predictors that are not 
important in the true model.

Both sensitivity and specificity range from 0 to 1, with higher values indicative 
of higher selection rates of truly informative predictors and higher exclusion rates of 
non-informative predictors, respectively (Altman & Bland, 1994). MCC measures the 
overall selection accuracy of the estimated model by accounting for all four categories 
of the confusion matrix (i.e., TP, TN, FP, FN) in a single metric. We chose MCC as the 

unimportant predictors are weak (Zhao & Yu, 2006). We investigated the effect of IRC and the interaction effect of 
IRC and selection method on selection accuracy and predictive performance. We found that IRC was associated with 
more accurate selection and prediction, but the interaction effect of IRC and selection method is very small (η2 < 
0.01). The ANOVA results are in Table 4 of the Supplementary Material C of Zhou et al. (2024). This means that 
Lasso is not more or less susceptible to IRC than stepwise regression methods in the data conditions generated by 
our simulation. Therefore, we did not separate the IRC and non-IRC conditions when presenting our results as we 
would expect that both Lasso regression and stepwise regression perform better in the IRC conditions, but no method 
benefits more than others.

Zhou, Chahal, Gotlib, & Liu 127

Methodology
2024, Vol. 20(2), 121–143
https://doi.org/10.5964/meth.11523

https://www.psychopen.eu/


third comparing criterion for its comprehensive evaluation of the selection quality that 
captures the balance between sensitivity and specificity. This metric ranges between 
-1 and 1, with values close to 1 representing a strong positive correlation between 
the estimated model and the true model, and values close to -1 representing a strong 
negative correlation between the estimated model and the true model.

Model Sparsity

Model sparsity measures model parsimony. It represents the percentage of non-selected 
predictors among all candidate predictors. This measure ranges from 0 to 1.

Analysis
We conducted a factorial repeated-measures analysis of variance (RM-ANOVA; Myers, 
1979) to investigate the main effects of predictor size, sample size, SNR, sparsity, selec­
tion method, and their interaction effects on each comparison criterion. We evaluated 
those effect sizes through the generalized eta squared (ηG2 ) (Olejnik & Algina, 2003). 
Because there were many terms in the ANOVA models, we only reported results with 
at least a small effect size (i.e., ηG2 ≥ 0.01; Cohen, 1988), and we focused on interaction ef­
fects that involve selection methods. All steps of simulation and analyses were conducted 
in R Version 4.0.0 (R Core Team, 2020), and the simulation code is in the Supplementary 
Material B of Zhou et al. (2024).

Simulation Study Results

Preliminary Analyses
All three backward elimination methods (i.e., backward elimination with F-statistic, 
AIC, and BIC) produced far more complex models with significantly poorer predictive 
performance and selection accuracy. For example, the MSE of all backward elimination 
methods with small sample sizes (N < 200) were disproportionately high with values 
larger than 2000; the MCC of all backward elimination methods were almost 0 when 
predictor size was larger than 15; increase in sample size did not improve sensitivity as 
other methods did5. We also found that the forward selection methods performed very 

5) A careful look at the data suggests that this was due to multicollinearity. For example, in one dataset with five 
predictors, a sample size of 100, sparsity as 0.4, and SNR as 0.2, the minimum variance inflated factor (VIF) was 849. 
High VIF suggests a severe degree of multicollinearity. Moreover, pruning collinear variables of similar significance 
backward starting from a full model of all candidate predictors might exacerbate the selection of unnecessary 
variables, distorting the magnitudes of regression coefficients. The cross-validation MSE is thus extremely large. In 
some other programs (e.g., SPSS), candidate variables with VIF > 10 are automatically excluded from the selection 
procedure (IBM Corp, 2020). The stepAIC function in R does not have this built-in feature. In this article, we 
decided to exclude backward elimination methods in the following comparison analyses because: 1) the sensitivity 
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similarly to the both-directional stepwise regression methods. Hence, we only report the 
results of both-directional stepwise regression methods below6. The descriptive statistics 
for all methods are included in Supplementary Material C of Zhou et al. (2024), and Table 
5 in Supplementary Material C of Zhou et al. (2024) details the ANOVA results for the 
both-directional stepwise regression methods and the Lasso methods.

Out-of-Sample Predictive Accuracy

There was no sizeable difference in MSE across conditions or methods, as none of 
the main or interactive effects had an effect size η2 larger than 0.01. The descriptive 
statistics (see Table 1) show that Lasso.min returns with the lowest prediction error, al­
though its difference with stepwise regression, especially with Stepwise.bic, is very small. 
The standard deviations of the two Lasso methods were smaller than most stepwise 
regression methods, except for being almost identical as Stepwise.bic, indicating a more 
consistent predictive accuracy than most stepwise regression methods. Stepwise.bic was 
the most accurate and consistent stepwise regression method.

Table 1

MSE Across Methods

MSE Lasso.1se Lasso.min Stepwise.aic Stepwise.bic Stepwise.f

M 0.68 0.64 6.76 0.66 3.15

Mdn 0.69 0.65 0.66 0.67 0.66

SD 0.21 0.20 317 0.21 130

Within-Sample Selection Accuracy

Sensitivity — Figure 1 depicts the levels of sensitivity across conditions and methods. 
Only sample size of 100 is shown here for demonstration because, 1) it is the closest to 

to multicollinearity is a unique problem related to the stepAIC function we used, not a universal problem across 
statistical programs; 2) the problem can be solved by applying prescreening methods such as those in SPSS. Interested 
readers can find the results of the backward elimination methods in the Supplementary Material C of Zhou et al. 
(2024). We also address the issue of multicollinearity in the discussion.

6) The recent literature has recommended the integration of cross-validation into stepwise regression for better 
performance (Hastie et al., 2020 and Wester et al., 2022). We conducted forward selection and backward elimination 
with 10-fold cross-validation following Wester et al. (2022) to optimize predictor size that is associated with the 
best out-of-sample performance. While forward selection with cross-validation still does not outperform Lasso in 
within-sample selection and out-of-sample prediction, backward elimination benefits substantially from cross-valida­
tion for a better selection and prediction accuracy. However, it still performs worse than forward and both-directional 
stepwise regression. We did not include them in our main analysis because stepwise regression with cross-validation 
has not been widely used by psychologists due to the lack of available statistical software options.

Zhou, Chahal, Gotlib, & Liu 129

Methodology
2024, Vol. 20(2), 121–143
https://doi.org/10.5964/meth.11523

https://www.psychopen.eu/


our empirical data sample size, and 2) sample size has the least influence on all measures 
without imposing any interaction effects with the analytical method.

Figure 1

Average Sensitivity Across Methods and Across Conditions When Sample Size Was 100

The results of different sample sizes are included in the Supplementary Material C of 
Zhou et al. (2024) for interested readers. There were large main effects of predictor size 
(η2 = 0.65), sparsity (η2 = 0.4), selection method (η2 = 0.26), SNR (η2 = 0.19), and sample 
size (η2 = 0.15). There were also small interaction effects between SNR and selection 
method (η2 = 0.03), between predictor size and selection method (η2 = 0.03), and a three-
way interaction effect between predictor size, sparsity, and selection method (η2 = 0.02). 
Specifically, sensitivity increased as sparsity, SNR, and sample size increased (see Table 
2.2 in the Supplementary Material C of Zhou et al., 2024) but decreased as predictor size 
increased. The Lasso methods, especially Lasso.min had the greatest sensitivity across all 
conditions. Lasso.1se had higher sensitivity than stepwise regression unless SNR was as 
small as 0.2. This means that the Lasso methods were generally better at identifying the 
informative predictors than the stepwise regression methods unless the data were very 
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noisy. Furthermore, the difference in sensitivity between Lasso and stepwise regression 
was minimal when only a few candidate predictors were considered (p = 5), and only a 
few were informative (s = 0.8). This difference was larger when predictor size and the 
number of informative predictors increased.

Specificity — Similar to sensitivity, all of the five factors of interest: selection method 
(η2 = 0.17), predictor size (η2 = 0.07), sparsity (η2 = 0.06), SNR (η2 = 0.04), and sample 
size (η2 = 0.02), had at least small effects on specificity. The interaction between predictor 
size and selection method yielded a small effect (η2 = 0.02). Figure 2 depicts the levels of 
specificity across conditions and methods.

Figure 2

Average Specificity Across Methods and Across Conditions When Sample Size Was 100

Larger predictor sizes and sparsity levels, lower SNR, and smaller sample sizes (see 
Table 2.3 in the Supplementary Material C of Zhou et al., 2024) were associated with a 
higher level of specificity. Lasso.min had the lowest specificity across all conditions, and 
Lasso.1se outperformed stepwise regression methods only when SNR was lower than 0.5. 
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This indicates that Lasso.min was more likely to classify non-informative predictors as 
significant and thus produced models with larger false positive or Type 1 error rate than 
all others. Lasso.1se was better but did not outmatch stepwise regression methods unless 
in conditions wherein only a small proportion of the outcome variance was explainable 
by the linear regression. Moreover, the difference in specificity across methods was 
magnified in conditions with only five predictors. For example, Lasso.min’s degree of 
specificity was almost twice as small as most other methods, and the specificity of 
Lasso.1se was the highest.

MCC — Sparsity level (η2 = 0.3) and predictor size (η2 = 0.22) had a large effect size 
when predicting MCC. Selection method (η2 = 0.02) and the three-way interaction effect 
between predictor size, sparsity, and selection method (η2 = 0.02) exhibited small effects 
on MCC. Figure 3 depicts the levels of MCC across conditions and methods.

Figure 3

Average MCC Across Methods and Across Conditions When Sample Size Was 100
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In general, MCC increased with higher sparsity levels and smaller candidate predictor 
sizes. This implies that selection is generally more accurate when dealing with a small 
pool of candidate variables of which only a few are truly informative. Across methods, 
although Lasso.min had the lowest MCC when predictor size was small (p < 25) and 
only a few were informative (s = 0.8), Lasso regression methods had higher MCC across 
most other conditions. In particular, Lasso.1se had the highest MCC across all conditions. 
This indicates that Lasso regression methods, especially Lasso with a harsher shrinkage 
tuning parameter, were more likely to produce models with better selection accuracy 
than stepwise regression methods.

Model Sparsity — All the five main effects yielded large effect size: predictor size (η2 = 
0.63), selection method (η2 = 0.47), sparsity (η2 = 0.26), SNR (η2 = 0.24), and sample size 
(η2 = 0.17). There were also two small-size interaction effects with the selection method: 
SNR and selection method (η2 = 0.04), and predictor size and selection method (η2 = 0.03). 
Figure 4 depicts differences in model sparsity across conditions and methods.

Figure 4

Average Model Sparsity Across Methods and Across Conditions When Sample Size Was 100
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Model sparsity generally increased when predictor size and sparsity level increased; it 
decreased when sample size (see Table 2.5 in Supplementary Material C of Zhou et al., 
2024) and SNR increased. This means that for all methods, a more parsimonious model 
was more likely to be obtained if the candidate predictor pool was large, a few predic­
tors were truly relevant, the sample size was small, and the data were noisy. Between 
methods, Lasso.min produced the least parsimonious models across all conditions. On the 
other hand, stepwise regression with BIC produced more parsimonious models than all 
other methods in most conditions except when the SNR was 0.2 or when the predictor 
size was 5. In such cases, Lasso.1se produced models similar in size or more parsimonious 
than stepwise regression with BIC.

Empirical Example

The Empirical Data
We demonstrate the variable selection differences between Lasso and stepwise regression 
in an empirical study aimed at predicting externalizing behavior (i.e., disruptive, aggres­
sive, or delinquent actions that are directed outwardly) during adolescence. The data 
were drawn from the second timepoint of the Stanford Early Life Stress Study (Chahal et 
al., 2022; Gotlib et al., 2021), where externalizing behavior is assessed by the aggressive 
behavior and rule-breaking behavior scales of the Youth Self-Report (YSR; Achenbach, 
2001), a widely used measure of behavioral problems in adolescents. Thirty-three exter­
nalizing-behavioral–relevant variables from the domains of pubertal development, sensi­
tivity to stress and reward, emotional and behavioral problems, social support, physical 
and emotional neglect, emotional and affective regulation, early life stress severity, and 
demographic information of the child and parents, were pre-selected as predictors of 
externalizing behavior. Complete case analysis was conducted with a sample size of 141. 
A detailed description of the measures of the predictors and the sample is included in the 
Supplementary Material D of Zhou et al. (2024).

Analysis
To examine the predictive performance of the models, we split the full dataset into 
a training set with 80% of the sample and a test set with the remaining 20%. This 
random splitting procedure was repeated 1000 times to investigate selection variability 
due to sample variation. Methods were compared in terms of their average out-of-sample 
predictive accuracy (i.e., MSE), average model sparsity (i.e., the percentage of variables 
not selected across the 1000 iterations), and selection rate of each variable.
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Empirical Study Results
Model Predictive Accuracy and Model Sparsity Across Methods

Table 2 shows the statistical summary of out-of-sample MSE, model size (i.e., number 
of predictors selected), estimated model sparsity, and SNR for each method across the 
1000 iterations of model training and testing. Similar to the simulation results, methods 
did not differ much in the out-of-sample predictive accuracy. Stepwise regression with 
BIC yielded the most parsimonious model, and it was more consistent in model size 
than other methods, as indicated by a smaller standard deviation. On the other hand, 
Lasso.min tended to produce the most complicated model and varied most in model size, 
as indicated by a larger standard deviation. Because the true model was unknown, it 
was impossible to compare across methods in selection accuracy. However, based on our 
simulation results on the average MCC for a sample size of 100 (see Figure 3), we would 
expect the selection accuracy of Lasso.1se to be the best given the characteristics of the 
data (i.e., predictor size = 33; sample size = 113; estimated sparsity level ranging from 0.55 
to 0.84; estimated SNR ranging from 0.64 to 2.14).

Summary of Selection

Figure 5 shows the selection rate of each candidate predictor. Internalizing problems, 
impulsivity, affective reactivity, sex (being male), and sensitivity to punishment were 
selected most often by all methods. Among these methods, stepwise regression with BIC, 
stepwise regression with F statistic, and Lasso.1se tended to produce more parsimonious 
models than stepwise regression with AIC and Lasso.min. Moreover, they were more 
consistent in their selection, an indicator that these three methods were more robust 
to sample variability. It should be noted that, however, this discrepancy in selection 
consistency is confounded by model sparsity.

Table 2

Summary of Method Performance Across 1000 Iterations

MSE Model Size Estimated Sparsity Estimated Snr

Selection 
Method M SD M SD M SD M SD
Lasso.1se 0.53 0.11 5.54 2.96 0.83 0.09 0.64 0.28

Lasso.min 0.51 0.13 15 6.48 0.55 0.2 1.47 0.49

Stepwise.aic 0.56 0.15 10.4 2.27 0.69 0.07 2.14 0.33

Stepwise.bic 0.5 0.15 5.31 0.91 0.84 0.03 1.69 0.24

Stepwise.f 0.5 0.15 5.78 1.04 0.83 0.03 1.75 0.25
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Discussion
Our study evaluated the variable selection performance of Lasso regression in compari­
son to the most commonly used stepwise regression in psychological data. We found 
Lasso regression a competitive alternative to stepwise regression for their more accurate 
selection and more consistent out-of-sample prediction across different scenarios. How­
ever, Lasso’s improvement in minimizing prediction errors was negligible (η2 < 0.001), 
which is consistent with findings of previous simulation studies in low-dimensional data 
(Pavlou et al., 2016; Wester et al., 2022; Williams et al., 2019; Williams & Rodriguez, 2020). 
In terms of model sparsity, Lasso regression did not always yield more parsimonious 
models than stepwise regression unless the SNR was low (i.e., SNR is 0.2 or R2 is 0.17) 
and the candidate predictor pool was small (i.e., only five predictors). Stepwise.bic was 
overall the best stepwise regression, but others produced far more complex models and 
inconsistent prediction errors, which align well with the literature concerning their 
unreliable selection results. Finally, results from our empirical study are consistent with 

Figure 5

Selection Rate of Each Candidate Variable Across Methods
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the current psychopathology development literature, where internalizing problems are 
most salient for explaining externalizing problems (Chahal et al., 2022).

Our findings also corroborate previous research on the tradeoff between sensitivity 
and specificity (Su et al., 2017). Although Lasso regression is better at identifying the 
truly “significant” predictors of the outcome (i.e., higher sensitivity), its ability to exclude 
non-informative predictors is worse (i.e., lower specificity or higher false positive rate) 
than stepwise regression, especially when predictor size is very small and λ1se is used 
for selection (Freijeiro-González et al., 2022; Greenwood et al., 2020; Guo et al., 2015; 
Pavlou et al., 2016; Xu et al., 2012). Between the two Lasso regression methods, the Lasso 
regression with a harsher penalty is known to produce models with a more balanced 
combination of power and false positive rate, leading to better overall selection accuracy 
(Hastie et al., 2020). We found this disparity most prominent when the predictor size was 
small and only a few were truly informative. In addition, we also found that the larger 
penalty parameter resulted in higher selection consistency (Meinshausen & Bühlmann, 
2006) and a comparable model size as the stepwise regression with BIC (Morozova et al., 
2015) produced the simplest models across most conditions.

Cautious Notes and Recommendations in Practice
We recommend researchers to carefully consider their analytical goals and data charac­
teristics before choosing a variable selection method. Lasso regression is generally more 
consistent in out-of-sample prediction, although its improvement in magnitude in typical 
psychological data is not as pronounced as it is in high-dimensional datasets. Lasso 
regression is also a competitive alternative to stepwise regression if the aim is to make 
accurate explanation for its better within-sample selection accuracy. However, neither of 
the two Lasso methods investigated here exhibited sufficiently high selection accuracy 
across all conditions. As shown in Figure 3, even for Lasso.1se, the one with the highest 
MCC, its MCC hardly exceeded 0.4 unless the predictor size was very small (p = 5) or 
the sparsity level was very high (s = 0.8). Because the sparsity level of the true model is 
unknown in empirical data, researchers may consider prescreening predictors based on 
theoretical knowledge or prior empirical evidence to narrow down the candidate pool to 
a size smaller than 15, if possible.

Given the tradeoff between power and sensitivity in variable selection, the ideal 
method should consider the analytical priority, such as to capture true effects or to 
avoid spurious findings. If statistical power is more of a concern, we recommend Lasso 
regression with the harsher penalty term (λ1se) for lower false positive rate, better overall 
selection accuracy, lower model complexity, and more consistent selection. On the other 
hand, when the priority is to reach lower false positive rate and to improve model 
interpretability, Lasso does not yield better results than stepwise regression with infor­
mation-based fit indices, especially the BIC, particularly when the predictor size is small 
and only a small fraction of the predictors is truly relevant. To improve the false posi­
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tive rate of the Lasso regression, we encourage researchers to consider more advanced 
derivatives such as the adaptive Lasso (Fan & Li, 2001; Zou, 2006) and the relaxed Lasso 
(Meinshausen, 2007). These methods further exclude less influential variables through 
their weighted degree of shrinkage that imposes a magnified penalty on non-informative 
predictors.

Following the machine learning literature, we recommend researchers to check the 
IRC assumption to evaluate the selection consistency when using Lasso (Meinshausen 
& Bühlmann, 2006; Zhao & Yu, 2006). It is important to note that the presence of 
multicollinearity—a common issue in psychological data where predictors are highly 
linearly dependent—can worsen the selection consistency of Lasso regression. This is 
because Lasso randomly selects one variable out of a group of highly correlated ones to 
reach a sparser model (Zou & Hastie, 2005). If researchers are interested in delivering a 
consistent model that contains all highly correlated predictors to include both interaction 
and main effects, derivatives of Lasso such as the elastic-net (Zou & Hastie, 2005) and the 
grouped Lasso (Yuan & Lin, 2006) are generally recommended. Another remedy for the 
unstable selection is to integrate Bayesian selection into variable selection. For example, 
the stochastic search variable selection (SSVS) assigns higher prior probability to more 
promising predictors (Bainter et al., 2020).

Funding: The authors have no funding to report.

Acknowledgments: We thank Dr. Donald R. Williams for his insightful comments and for drafting the initial R code 

to check the IRC assumption.

Competing Interests: The authors have declared that no competing interests exist.

References

Achenbach, T. M. (2001). Manual for ASEBA school-age forms & profiles. University of Vermont, 
Research Center for Children, Youth & Families.

Ahrens, A., Hansen, C. B., & Schaffer, M. E. (2020). lassopack: Model selection and prediction with 
regularized regression in Stata. Stata Journal, 20(1), 176–235. 
https://doi.org/10.1177/1536867X20909697

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic 
Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705

Altman, D. G., & Bland, J. M. (1994). Diagnostic tests. 1: Sensitivity and specificity. BMJ (Clinical 
Research Ed.), 308, Article 1552. https://doi.org/10.1136/bmj.308.6943.1552

Babyak, M. A. (2004). What you see may not be what you get: A brief, nontechnical introduction to 
overfitting in regression-type models. Psychosomatic Medicine, 66(3), 411–421. 
https://doi.org/10.1097/01.psy.0000127692.23278.a9

Comparison of Lasso and Stepwise Regression in Psychological Data 138

Methodology
2024, Vol. 20(2), 121–143
https://doi.org/10.5964/meth.11523

https://doi.org/10.1177/1536867X20909697
https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1136/bmj.308.6943.1552
https://doi.org/10.1097/01.psy.0000127692.23278.a9
https://www.psychopen.eu/


Baldi, P. A., Brunak, S., Chauvin, Y., Andersen, C. A. F., & Nielsen, H. (2000). Assessing the accuracy 
of prediction algorithms for classification: An overview. Bioinformatics, 16(5), 412–424. 
https://doi.org/10.1093/bioinformatics/16.5.412

Bainter, S. A., McCauley, T. G., Wager, T., & Losin, E. A. R. (2020). Improving practices for selecting 
a subset of important predictors in psychology: An application to predicting pain. Advances in 
Methods and Practices in Psychological Science, 3(1), 66–80. 
https://doi.org/10.1177/2515245919885617

Bickel, P. J., Ritov, Y. A., & Tsybakov, A. B. (2009). Simultaneous analysis of Lasso and Dantzig 
selector. Annals of Statistics, 37(4), 1705–1732. https://doi.org/10.1214/08-AOS620

Chahal, R., Miller, J. G., Yuan, J. P., Buthmann, J. L., & Gotlib, I. H. (2022). An exploration of 
dimensions of early adversity and the development of functional brain network connectivity 
during adolescence: Implications for trajectories of internalizing symptoms. Development and 
Psychopathology, 34(2), 557–571. https://doi.org/10.1017/S0954579421001814

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum 
Associates.

Davis-Stober, C. P., Dana, J., & Rouder, J. N. (2018). Estimation accuracy in the psychological 
sciences. PLoS One, 13(11), Article e0207239. https://doi.org/10.1371/journal.pone.0207239

Derksen, S., & Keselman, H. J. (1992). Backward, forward and stepwise automated subset selection 
algorithms: Frequency of obtaining authentic and noise variables. British Journal of 
Mathematical & Statistical Psychology, 45(2), 265–282. 
https://doi.org/10.1111/j.2044-8317.1992.tb00992.x

Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle 
properties. Journal of the American Statistical Association, 96(456), 1348–1360. 
https://doi.org/10.1198/016214501753382273

Fan, J., & Lv, J. (2010). A selective overview of variable selection in high dimensional feature space. 
Statistica Sinica, 20(1), 101–148. 

Flack, V. F., & Chang, P. C. (1987). Frequency of selecting noise variables in subset regression 
analysis: A simulation study. American Statistician, 41(1), 84–86. 
https://doi.org/10.1080/00031305.1987.10475450

Freijeiro‐González, L., Febrero‐Bande, M., & González‐Manteiga, W. (2022). A critical review of 
LASSO and its derivatives for variable selection under dependence among covariates. 
International Statistical Review, 90(1), 118–145. https://doi.org/10.1111/insr.12469

Friedman, J., Hastie, T., & Tibshirani, R. (2010). Regularization paths for generalized linear models 
via coordinate descent. Journal of Statistical Software, 33(1), 1–22. 
https://doi.org/10.18637/jss.v033.i01

Golub, G. H., Heath, M., & Wahba, G. (1979). Generalized cross-validation as a method for choosing 
a good ridge parameter. Technometrics, 21(2), 215–223. 
https://doi.org/10.1080/00401706.1979.10489751

Gotlib, I. H., Borchers, L. R., Chahal, R., Gifuni, A. J., Teresi, G. I., & Ho, T. C. (2021). Early life stress 
predicts depressive symptoms in adolescents during the COVID-19 pandemic: The mediating 

Zhou, Chahal, Gotlib, & Liu 139

Methodology
2024, Vol. 20(2), 121–143
https://doi.org/10.5964/meth.11523

https://doi.org/10.1093/bioinformatics/16.5.412
https://doi.org/10.1177/2515245919885617
https://doi.org/10.1214/08-AOS620
https://doi.org/10.1017/S0954579421001814
https://doi.org/10.1371/journal.pone.0207239
https://doi.org/10.1111/j.2044-8317.1992.tb00992.x
https://doi.org/10.1198/016214501753382273
https://doi.org/10.1080/00031305.1987.10475450
https://doi.org/10.1111/insr.12469
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1080/00401706.1979.10489751
https://www.psychopen.eu/


role of perceived stress. Frontiers in Psychology, 11, Article 603748. 
https://doi.org/10.3389/fpsyg.2020.603748

Greenwood, C. J., Youssef, G. J., Letcher, P., Macdonald, J. A., Hagg, L. J., Sanson, A., Mcintosh, J., 
Hutchinson, D. M., Toumbourou, J. W., Fuller-Tyszkiewicz, M., & Olsson, C. A. (2020). A 
comparison of penalised regression methods for informing the selection of predictive markers. 
PLoS One, 15(11), Article e0242730. https://doi.org/10.1371/journal.pone.0242730

Guo, P., Zeng, F., Hu, X., Zhang, D., Zhu, S., Deng, Y., & Hao, Y. (2015). Improved variable selection 
algorithm using a LASSO-type penalty, with an application to assessing Hepatitis B infection 
relevant factors in community residents. PLoS One, 10(7), Article e0134151. 
https://doi.org/10.1371/journal.pone.0134151

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, 
inference and prediction (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-84858-7

Hastie, T., Tibshirani, R., & Tibshirani, R. (2020). Best subset, forward stepwise or LASSO? analysis 
and recommendations based on extensive comparisons. Statistical Science, 35(4), 579–592. 
https://doi.org/10.1214/19-STS733

Haynos, A. F., Wang, S. B., Lipson, S., Peterson, C. B., Mitchell, J. E., Halmi, K. A., Agras, W. S., & 
Crow, S. J. (2021). Machine learning enhances prediction of illness course: A longitudinal study 
in eating disorders. Psychological Medicine, 51(8), 1392–1402. 
https://doi.org/10.1017/S0033291720000227

Heinze, G., Wallisch, C., & Dunkler, D. (2018). Variable selection—A review and recommendations 
for the practicing statistician. Biometrical Journal. Biometrische Zeitschrift, 60(3), 431–449. 
https://doi.org/10.1002/bimj.201700067

Helwig, N. E. (2017). Adding bias to reduce variance in psychological results: A tutorial on 
penalized regression. Quantitative Methods for Psychology, 13(1), 1–19. 
https://doi.org/10.20982/tqmp.13.1.p001

Higham, N. J. (2002). Computing the nearest correlation matrix—A problem from finance. IMA 
Journal of Numerical Analysis, 22(3), 329–343. https://doi.org/10.1093/imanum/22.3.329

IBM Corp. (2020). IBM SPSS statistics for Windows (Version 27.0) [Computer software]. IBM Corp.
Jacobucci, R., Brandmaier, A. M., & Kievit, R. A. (2019). A practical guide to variable selection in 

structural equation modeling by using regularized multiple-indicators, multiple-causes models. 
Advances in Methods and Practices in Psychological Science, 2(1), 55–76. 
https://doi.org/10.1177/2515245919826527

Laws, K. R. (2016). Psychology, replication & beyond. BMC Psychology, 4, Article 30. 
https://doi.org/10.1186/s40359-016-0135-2

Liu, S., & Rhemtulla, M. (2022). Treating random effects as observed versus latent predictors: The 
bias–variance tradeoff in small samples. British Journal of Mathematical & Statistical 
Psychology, 75(1), 158–181. https://doi.org/10.1111/bmsp.12253

Lovell, M. C. (1983). Data mining. Review of Economics and Statistics, 65(1), 1–12. 
https://doi.org/10.2307/1924403

Comparison of Lasso and Stepwise Regression in Psychological Data 140

Methodology
2024, Vol. 20(2), 121–143
https://doi.org/10.5964/meth.11523

https://doi.org/10.3389/fpsyg.2020.603748
https://doi.org/10.1371/journal.pone.0242730
https://doi.org/10.1371/journal.pone.0134151
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1214/19-STS733
https://doi.org/10.1017/S0033291720000227
https://doi.org/10.1002/bimj.201700067
https://doi.org/10.20982/tqmp.13.1.p001
https://doi.org/10.1093/imanum/22.3.329
https://doi.org/10.1177/2515245919826527
https://doi.org/10.1186/s40359-016-0135-2
https://doi.org/10.1111/bmsp.12253
https://doi.org/10.2307/1924403
https://www.psychopen.eu/


McNeish, D. M. (2015). Using lasso for predictor selection and to assuage overfitting: A method 
long overlooked in behavioral sciences. Multivariate Behavioral Research, 50(5), 471–484. 
https://doi.org/10.1080/00273171.2015.1036965

Meinshausen, N. (2007). Relaxed lasso. Computational Statistics & Data Analysis, 52(1), 374–393. 
https://doi.org/10.1016/j.csda.2006.12.019

Meinshausen, N., & Bühlmann, P. (2006). High-dimensional graphs and variable selection with the 
lasso. Annals of Statistics, 34(3), 1436–1462. https://doi.org/10.1214/009053606000000281

Morozova, O., Levina, O., Uusküla, A., & Heimer, R. (2015). Comparison of subset selection 
methods in linear regression in the context of health-related quality of life and substance abuse 
in Russia. BMC Medical Research Methodology, 15(1), Article 71. 
https://doi.org/10.1186/s12874-015-0066-2

Myers, J. L. (1979). Fundamentals of experimental design (3rd ed.). Allyn and Bacon.
Olejnik, S., & Algina, J. (2003). Generalized eta and omega squared statistics: Measures of effect size 

for some common research designs. Psychological Methods, 8(4), 434–447. 
https://doi.org/10.1037/1082-989X.8.4.434

Pavlou, M., Ambler, G., Seaman, S., De Iorio, M., & Omar, R. Z. (2016). Review and evaluation of 
penalised regression methods for risk prediction in low-dimensional data with few events. 
Statistics in Medicine, 35(7), 1159–1177. https://doi.org/10.1002/sim.6782

R Core Team. (2020). R: A language and environment for statistical computing. R Foundation for 
Statistical Computing. https://www.R-project.org/

Sauerbrei, W. (1999). The use of resampling methods to simplify regression models in medical 
statistics. Journal of the Royal Statistical Society. Series C, Applied Statistics, 48(3), 313–329. 
https://doi.org/10.1111/1467-9876.00155

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464. 
https://doi.org/10.1214/aos/1176344136

Shmueli, G. (2010). To explain or to predict? Statistical Science, 25(3), 289–310. 
https://doi.org/10.1214/10-STS330

Sirimongkolkasem, T., & Drikvandi, R. (2019). On regularisation methods for analysis of high 
dimensional data. Annals of Data Science, 6(4), 737–763. 
https://doi.org/10.1007/s40745-019-00209-4

Smith, D. M., Wang, S. B., Carter, M. L., Fox, K. R., & Hooley, J. M. (2020). Longitudinal predictors of 
self-injurious thoughts and behaviors in sexual and gender minority adolescents. Journal of 
Abnormal Psychology, 129(1), 114–121. https://doi.org/10.1037/abn0000483

Su, W., Bogdan, M., & Candes, E. (2017). False discoveries occur early on the lasso path. Annals of 
Statistics, 45(5), 2133–2150. https://doi.org/10.1214/16-AOS1521

Thompson, B. (1995). Stepwise regression and stepwise discriminant analysis need not apply here: 
A guidelines editorial. Educational and Psychological Measurement, 55(4), 525–534. 
https://doi.org/10.1177/0013164495055004001

Zhou, Chahal, Gotlib, & Liu 141

Methodology
2024, Vol. 20(2), 121–143
https://doi.org/10.5964/meth.11523

https://doi.org/10.1080/00273171.2015.1036965
https://doi.org/10.1016/j.csda.2006.12.019
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1186/s12874-015-0066-2
https://doi.org/10.1037/1082-989X.8.4.434
https://doi.org/10.1002/sim.6782
https://www.R-project.org/
https://doi.org/10.1111/1467-9876.00155
https://doi.org/10.1214/aos/1176344136
https://doi.org/10.1214/10-STS330
https://doi.org/10.1007/s40745-019-00209-4
https://doi.org/10.1037/abn0000483
https://doi.org/10.1214/16-AOS1521
https://doi.org/10.1177/0013164495055004001
https://www.psychopen.eu/


Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal 
Statistical Society. Series B. Methodological, 58(1), 267–288. 
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

Tibshirani, R. J., & Taylor, J. (2012). Degrees of freedom in lasso problems. Annals of Statistics, 40(2), 
1198–1232. https://doi.org/10.1214/12-AOS1003

Venables, W. N., & Ripley, B. D. (2002). Modern applied statistics with S (4th ed.). Springer.
Wester, R. A., Rubel, J., & Mayer, A. (2022). Covariate selection for estimating individual treatment 

effects in psychotherapy research: A simulation study and empirical example. Clinical 
Psychological Science, 10(5), 920–940. https://doi.org/10.1177/21677026211071043

Wilkinson, L. (1979). Tests of significance in stepwise regression. Psychological Bulletin, 86(1), 168–
174. https://doi.org/10.1037/0033-2909.86.1.168

Williams, D. R., Rhemtulla, M., Wysocki, A. C., & Rast, P. (2019). On nonregularized estimation of 
psychological networks. Multivariate Behavioral Research, 54(5), 719–750. 
https://doi.org/10.1080/00273171.2019.1575716

Williams, D. R., & Rodriguez, J. E. (2020, March 3). Why overfitting is not (usually) a problem in 
partial correlation networks. PsyArXiv. https://doi.org/10.31234/osf.io/8pr9b

Xu, C. J., van der Schaaf, A., Schilstra, C., Langendijk, J. A., & van't Veld, A. A. (2012). Impact of 
statistical learning methods on the predictive power of multivariate normal tissue complication 
probability models. International Journal of Radiation Oncology*Biology* Physics, 82(4), e677–
e684. https://doi.org/10.1016/j.ijrobp.2011.09.036

Yarkoni, T., & Westfall, J. (2017). Choosing prediction over explanation in psychology: Lessons 
from machine learning. Perspectives on Psychological Science, 12(6), 1100–1122. 
https://doi.org/10.1177/1745691617693393

Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. 
Journal of the Royal Statistical Society. Series B. Statistical Methodology, 68(1), 49–67. 
https://doi.org/10.1111/j.1467-9868.2005.00532.x

Zhao, P., & Yu, B. (2006). On model selection consistency of Lasso. Journal of Machine Learning 
Research, 7, 2541–2563. 

Zhou, D. J., Chahal, R., Gotlib, I. H., & Liu, S. (2024). Comparison of Lasso and stepwise regression in 
psychological data [OSF project page containing literature review table, additional simulation 
results table, empirical data details table, R codes for generating simulation data of study]. OSF. 
https://osf.io/uws2j/?view_only=9c0e8fbe8a8341d487598b7dc528fa0d

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the 
Royal Statistical Society. Series B. Statistical Methodology, 67(2), 301–320. 
https://doi.org/10.1111/j.1467-9868.2005.00503.x

Zou, H., Hastie, T., & Tibshirani, R. (2007). On the “degrees of freedom” of the lasso. Annals of 
Statistics, 35(5), 2173–2192. https://doi.org/10.1214/009053607000000127

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American Statistical 
Association, 101, 1418–1429. https://doi.org/10.1198/016214506000000735

Comparison of Lasso and Stepwise Regression in Psychological Data 142

Methodology
2024, Vol. 20(2), 121–143
https://doi.org/10.5964/meth.11523

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1214/12-AOS1003
https://doi.org/10.1177/21677026211071043
https://doi.org/10.1037/0033-2909.86.1.168
https://doi.org/10.1080/00273171.2019.1575716
https://doi.org/10.31234/osf.io/8pr9b
https://doi.org/10.1016/j.ijrobp.2011.09.036
https://doi.org/10.1177/1745691617693393
https://doi.org/10.1111/j.1467-9868.2005.00532.x
https://osf.io/uws2j/?view_only=9c0e8fbe8a8341d487598b7dc528fa0d
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1214/009053607000000127
https://doi.org/10.1198/016214506000000735
https://www.psychopen.eu/


Methodology is the official journal 
of the European Association of 
Methodology (EAM).

PsychOpen GOLD is a publishing 
service by Leibniz Institute for 
Psychology (ZPID), Germany.

Zhou, Chahal, Gotlib, & Liu 143

Methodology
2024, Vol. 20(2), 121–143
https://doi.org/10.5964/meth.11523

https://www.psychopen.eu/

	Comparison of Lasso and Stepwise Regression in Psychological Data
	(Introduction)
	Stepwise Regression Using the F-Test
	Stepwise Regression With Information-Based Fit Indices
	Lasso Regression

	Method
	Simulation Design
	Simulation Analysis
	Comparison Criteria
	Analysis

	Simulation Study Results
	Preliminary Analyses

	Empirical Example
	The Empirical Data
	Analysis
	Empirical Study Results

	Discussion
	Cautious Notes and Recommendations in Practice

	(Additional Information)
	Funding
	Acknowledgments
	Competing Interests

	References


