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Abstract
When one-way ANOVA is statistically significant, a multiple comparison problem arises, hence 
post-hoc tests are needed to elucidate between which groups significant differences are found. 
Different post-hoc tests have been proposed for each situation regarding heteroscedasticity and 
sample size groups. This study aims to compare the Type I error (α) rate of 10 post-hoc tests in four 
different conditions based on heteroscedasticity and balance between-group sample size. A 
Montecarlo simulation study was carried out on a total of 28 data sets, with 10,000 resamples in 
each, distributed through four conditions. One-way ANOVA tests and post-hoc tests were 
conducted to estimate the α rate at a 95% confidence level. The percentage of times the null 
hypothesis was falsely refused is used to compare the tests. Three out of four conditions 
demonstrated considerable variability among sample sizes. However, the best post-hoc test in the 
second condition (heteroscedastic and balance group) did not depend on simple size. In some cases, 
inappropriate post-hoc tests were more accurate. Homoscedasticity and balance between-group 
sample size should be considered for appropriate post-hoc test selection.
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The analysis of variance (ANOVA) is a standard statistical method in many scientific 
disciplines and one of the most used techniques in social and health research (Counsell 
& Harlow, 2017; Howell, 2010). The wide use of ANOVA has been attributed to its useful­
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ness to answer to experimental method´s and general research problems. The objective 
of this technique is using a F-statistic to test the null hypothesis (H0) of equality of 
group means when more than two groups are compared. ANOVA enables not only the 
individual effect of each independent variable separately, but also the interacting effects 
of the k independent variables.

ANOVA is a parametric test that depends on three distributional assumptions: (a) 
study groups scores must be independent; (b) distribution of each group scores must 
be normal (normality); (c) the variances of group scores must be equal or constant 
(homoscedasticity). The violation of these assumptions is affected the Type I error rate 
(α; when the null hypothesis is falsely rejected) (Ruscio & Roche, 2012; Sharma & Kibria, 
2013; Zimmerman, 2004). Unfortunately, it is difficult to obtain normally distributed and 
homoscedastic samples, especially in social sciences. This usual limitation has increased 
the interest in the robustness of ANOVA when these assumptions are violated (Bhat et 
al., 2002; Keselman et al., 1998). Accordingly, some authors point out that ANOVA is 
robust to departures from normality even group sample sizes are different (unbalanced 
groups) (Blanca et al., 2017; Sarstedt & Mooi, 2019). Nevertheless, the robustness of 
ANOVA is questionable for violations of homoscedasticity, so it must be tested. This 
violation is particularly relevant when groups are unbalanced, and sample sizes are lower 
than 30 per group (Sarstedt & Mooi, 2019). Therefore, the imbalance between group 
sample sizes should be considered in addition to homoscedasticity/heteroscedasticity.

ANOVA detects the presence or the absence of a global effect of the independent 
variable on the dependent variable. When the null hypothesis is rejected (p ≤ .05), it 
informs the researcher that there is at least one comparison that is statistically signifi­
cant, but it does not inform the researcher about which pair of means are significantly 
different. Thus, post-hoc tests (also called a posteriori analysis or multiple comparison 
analysis tests) must be used to determine which levels of independent variable means 
differ significantly from other levels (Kim, 2015; McHugh, 2011; Meyers et al., 2016).

In order to overcome the multiple-comparison problem and the potential limitations 
joined to this analysis (e.g., familywise error) (see Wilcox, 2023 for a further review), 
different available post-hoc tests have been proposed (Cramer et al., 2016; McHugh, 
2011). In SPSS these tests are encompassed into two groups, depending on whether equal 
variances are assumed or not. Some post-hoc tests present in SPSS are briefly reviewed.

Post-hoc tests from SPSS only consider the difference in homoscedasticity, whereas 
other conditions, such as sample size and imbalance between group sizes, are also 
influencing the capability to detect potential differences amongst groups. Tests included 
in this category are Fisher’s Least Significant Difference, Bonferroni-Dunn’s test, Šidák’s 
test, Scheffé’s test, Tukey’s Honestly Significant Differences, Hochberg’s GT2, and Gabri­
el’s.

Fisher’s Least Significant Difference (LSD) (Fisher, 1935) is one of the first multiple 
comparisons procedures (Hayter, 1986). Fisher’s LSD is a set of individual t-tests, so it 
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does not make any correction for multiple comparisons (Ato & Vallejo, 2015), although 
some authors have indicated its appropriateness under homoscedasticity (Meyers et al., 
2016). The lack of multiple comparison correction makes this test the most liberal, thus, it 
has high statistical power, but greater likelihood of committing a Type I error (Meyers et 
al., 2016).

Bonferroni-Dunn’s test (Dunn, 1961) is appropriate when groups’ sample sizes are 
equal (Day & Quinn, 1989; McHugh, 2011; Sarstedt & Mooi, 2019). This post-hoc test 
is characterized by higher control of Type I error when the assumptions are violated 
compared with other tests, even though it loses test power (Abdi & Williams, 2010). 
The higher control of Type I error is based on the Bonferroni correction. Briefly, the 
Bonferroni correction is applied to every single test to maintain the p critical (α) level 
at .05 to all tests dividing it by the number of tests carried out (m) (Sedgwick, 2012). 
The Bonferroni’s test is intended for the confirmation of the hypothesis basing on the 
planned comparison (McHugh, 2011).

Šidák’s test (Šidák, 1967), as Bonferroni’s test, is appropriate when groups’ sizes are 
equal (Day & Quinn, 1989; Lee & Lee, 2020). This test is usually considered better than 
Bonferroni’s test because of its smaller Type I error (Abdi, 2007; Abdi & Williams, 2010; 
Ruxton & Beauchamp, 2008). Nevertheless, this higher control of the Type I error is 
achieved at the expense of losing test power (Ruxton & Beauchamp, 2008). It makes the 
test very conservative when the number of comparisons increases and the groups are not 
independent (Abdi, 2007).

Scheffé’s test (Scheffé, 1953) is the best option when no previous results or theoreti­
cal framework guides the analysis because it is the only test entirely consistent with 
ANOVA results (McHugh, 2011; Ruxton & Beauchamp, 2008). It is a particularly good 
estimator when the groups are balanced (Day & Quinn, 1989; McHugh, 2011; Ruxton 
& Beauchamp, 2008; Shaffer, 1995). However, it can be used even when groups are 
unbalanced due to similar robustness to normality and homoscedasticity violations such 
as ANOVA (Ruxton & Beauchamp, 2008). Despite it has been considered less sensitive 
than other tests (e.g., Tukey or Bonferroni) for pairwise comparisons (Brown, 2005; 
Keppel & Wickens, 2004; Lee & Lee, 2020), Abdi and Williams (2010) have pointed out 
that Scheffé’s test is less conservative than Bonferroni’s when group means are equal.

Tukey’s Honestly Significant Differences (HSD) (Tukey, 1953) is the most common 
used post-hoc test, considered the most adequate in several situations (Brown, 2005). It 
is recommended when balanced groups are compared (Abdi & Williams, 2010; Day & 
Quinn, 1989; Lee & Lee, 2020; Sarstedt & Mooi, 2019), but it is considered robust for 
imbalance between groups’ sizes under homoscedasticity (Brown, 2005; Jaccard et al., 
1984; McHugh, 2011), especially if the unbalance is not severe (Spjøtvoll & Stoline, 1973). 
Regardless of whether it is relatively conservative (Brown, 2005), it is more liberal, and 
thus, more powerful alternative to the Bonferroni’s test (Abdi & Williams, 2010) and, 
therefore, than the Šidák’s and Scheffé’s tests (Ruxton & Beauchamp, 2008).
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Hochberg’s GT2 (Hochberg, 1974) is a modification of Tukey’s method appropriate 
to test differences between unbalanced groups (Day & Quinn, 1989; Hochberg, 1974; 
Ruxton & Beauchamp, 2008), although it could also be used for comparison of imbalance 
groups even under heteroscedasticity (Hochberg, 1974) due to its conservative nature 
(Hochberg, 1975; Tamhane, 1979). Nevertheless, of note is that the robustness of the GT2 
test is at the expense of losing power. It has been suggested as an appropriate alternative 
when a correction is required, but Bonferroni’s method is considered too conservative 
(Armstrong, 2014).

Gabriel’s test (Gabriel, 1978) is a more liberal variation of Hochberg’s GT2 (Meyers 
et al., 2016). Thus, it is also recommended for unbalanced groups comparison (Day & 
Quinn, 1989). Its liberal nature makes this test generally more powerful than Hochberg’s 
test among other (e.g., Keppel & Wickens, 2004). Concerning post-hoc tests encompassed 
in the SPSS category of “equal variances are not assumed”, they are presumably accurate 
when comparison groups’ variances are unequal (heteroscedastic). As in the case of 
previous tests, the capability to detect potential differences between groups could be 
affected by other conditions as sample size and unbalanced sizes between groups. The 
Games-Howell’s test, Tamhane’s T2, and Dunnett’s T3 are some tests included in this 
category.

Games-Howell’s test (Games & Howell, 1976; Howell & Games, 1974) is an appropri­
ate option for pairwise comparisons when group sample-sizes are different (unbalanced 
groups) (Day & Quinn, 1989; Sarstedt & Mooi, 2019). However, it can produce Type I 
error slightly above the significance level in small sizes: Thus, it is recommended when 
test power is more important than significance (Day & Quinn, 1989; Dunnett, 1980; 
Jaccard et al., 1984; Tamhane, 1979).

Tamhane’s T2 (Tamhane, 1977, 1979) is a modified version of the Games-Howell 
test. Like the previous test, it is appropriate when sample sizes are different (Day & 
Quinn, 1989). Nevertheless, it is more conservative than Games-Howell’s test, which is 
somewhat liberal under conditions of heteroscedasticity and unbalances between-groups 
sample sizes (Jaccard et al., 1984; Tamhane, 1979).

Dunnett’s T3 (Dunnett, 1980) is a variation of Tamhane’s T2, more conservative 
and appropriate to a comparison of balanced groups (Day & Quinn, 1989; Ruxton & 
Beauchamp, 2008). It is not robust for unequal sample sizes and has more power in small 
samples (n < 15) (Day & Quinn, 1989).

In this background, choosing the accurate test in each situation would facilitate the 
correct assessment of the differences between groups, and thus obtain results that are 
more precise to make conclusions (Grinde et al., 2017). To our knowledge, simulation 
research has not been conducted to determine the suitable post-hoc test for one-way 
ANOVA. Considering the characteristics of different post-hoc tests for one-way ANOVA, 
the potential strengths and limitations of each of them, the present study aimed to 
compare the Type I error rate of ten post-hoc tests in four different conditions based on 
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homoscedasticity and balance between group sample size when positive pairing between 
group sample-size and group variance, as well as big variance ratio, was maintained.

Method

Data Simulation
A Montecarlo simulation study was conducted to generate 280,000 data distributed in 
seven sample sizes in each of the four conditions. Hence, a total of 28 data sets were 
generated with 10,000 resamples in each, to guarantee the stability of estimations. Nor­
mal distribution condition was imposed for all simulated data. Open software R (Version 
3.5.1) using the R commander (Rcmdr) package (Fox, 2005) was utilized to carry out the 
simulations.

Procedure
In each of the 28 sets, data were distributed among three groups. Group means were 
maintained constant whereas standard deviations and group sample sizes were manipu­
lated to create four different conditions. In the first condition, groups were homoscedas­
tic and balanced, in the second condition groups were homoscedastic and unbalanced, in 
the third condition groups were heteroscedastic and balanced, and, finally, in the fourth 
condition groups were heteroscedastic and unbalanced. Seven sample sizes (N) were 
used: 30, 90, 150, 300, 750, 1,500, and 3,000. In those conditions with balanced groups, 
group sizes (n) were identical in the three groups (e.g., N = 30 condition implicate n1 
= 10, n2 = 10, and n3 = 10). In conditions with unbalanced groups, groups-sizes were 
manipulated to get imbalance (e.g., N = 30 condition implicate n1 = 5, n2 = 10, n3 = 15, 
following the same rule in all cases; imbalance ratio = 3). Regarding the heterogeneity of 
variances, in homoscedastic groups, the standard deviation was 10 in each group, where­
as in heteroscedastic groups, the standard deviation was manipulated to get imbalances 
(σx1 = 1, σx2 = 5, σx3 = 10; variance ratio = 100), to guarantee big heteroscedasticity. 
In this research, only positive pairing was analyzed. In other words, the group with the 
biggest sample size always had the biggest variance and the smallest group always had 
the smallest variance.

Data Analysis
One-way ANOVA and ten (seven for equal variances and three for unequal variances) 
post-hoc tests were conducted in each condition and for all sample sizes to estimate the 
F statistic Type I error rate at a 95% confidence level and assume a normal distribution of 
group scores. Estimators’ power to detect statistical differences among groups was better 
when Type I error was near 5% (see Pedrosa et al., 2015 for a similar approach) based 
on Bradley’s liberal criterion, according to which Type I error rate higher than 5.25 is 
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considered conservative and lower than 4.75 liberal (Bradley, 1978). IBM SPSS Statistics 
software was used to calculate one-way ANOVAs (IBM, 2016).

Results

Condition 1: Homoscedastic and Balanced Groups
In the first condition (homoscedastic and balanced groups) some consistency was ob­
served across the different group sizes (see Table 1). In general, Bonferroni’s (αrate = 
4.76–5.17), Šidák’s (αrate = 4.86–5.20), Hochberg’s GT2 (αrate = 4.95–5.20), and Gabriel’s 
(αrate = 4.89–5.20) tests were the most accurate for the majority of sample sizes (excepting 
N = 150 and N = 750). For sample sizes of N = 90, N = 300, N = 1500 and N = 3000, also 
Tamhane’s T2 (αrate = 4.93–5.11) and Dunnett’s T3 (αrate = 4.95–5.22) tests were accurate. 
The Games-Howell test was the unique test accurate for the sample size of N = 150. None 
of the tests was accurate for N = 750 sample size, being nearest to desirable accuracy 
Bonferroni´s (αrate = 5.26), Tamhane´s T2 (αrate = 5.27), and Dunnett´s T3 (αrate = 5.28) 
tests respectively.

Table 1

Percentage of Times Null Hypothesis Is Refused When Is True (Type I Error) When Groups Are Homoscedastic and 
Balanced

Sample size (N)

Test 30 90 150 300 750 1500 3000

Equal variances are assumed
LSD 14.88 15.19 13.75 15.07 15.38 16.71 14.20

Bonferroni 4.76* 4.85* 4.59 4.91* 5.26 5.13* 5.17*

Šidák 4.85* 4.94* 4.65 4.96* 5.33 5.20* 4.94*

Scheffé 4.28 4.39 3.93 4.28 4.46 4.43 4.14

HSD 5.78 5.65 5.26 5.59 5.94 5.84 5.57

GT2 4.95* 4.96* 4.65 4.96* 5.33 5.20* 4.95*

Gabriel 4.95* 4.96* 4.65 4.96* 5.33 5.20* 4.89*

Equal variances are not assumed
T2 4.46 5.11* 4.40 4.95* 5.27 5.22* 4.93*

T3 4.60 5.13* 4.48 4.95* 5.28 5.22* 5*

Games-Howell 5.34 5.73 5.07* 5.50 5.91 5.86 5.69

Note. * indicates the accurate tests for the given sample size.

Juarros-Basterretxea, Aonso-Diego, Postigo et al. 89

Methodology
2024, Vol. 20(2), 84–99
https://doi.org/10.5964/meth.11721

https://www.psychopen.eu/


Condition 2: Heteroscedastic and Balanced Groups
All tests assuming equal variances were excessively liberal for this condition, whereas 
tests that assume unequal variances performed systematically better when groups were 
heteroscedastic and balanced, but none of the tests assuming heteroscedasticity was 
accurate for all sample sizes (see Table 2). Particularly, Tamhane’s T2 (αrate = 5.04–5.23) 
and Dunnett’s T3 (αrate = 5.10–5.24) were the most accurate tests for N = 150, N = 750, 
and N = 3000. Nevertheless, no test was enough accurate for sample sizes of N = 30 and 
N = 90 (the most accurate was Tamhane’s T2, αrate = 5.32 and αrate = 5.70 respectively), N 
= 300 (Tamanhe’s T2 αrate = 5.26 and Dunnett’s T3 αrate = 5.27), and N = 1500 (Tamanhe’s 
T2 and Dunnet’s T3 αrate = 5.37).

Table 2

Percentage of Times Null Hypothesis Is Refused When Is True (Type I Error) when Groups Are Heteroscedastic and 
Balanced

Sample size (N)

Test 30 90 150 300 750 1500 3000

Equal variances are assumed
LSD 21.14 19.12 16.84 18.27 17.84 19.13 18.32

Bonferroni 10.14 8.89 7.56 7.84 7.76 8.30 7.62

Šidák 9.13 8.97 8.57 7.92 7.83 8.74 7.72

Scheffé 9.62 8.13 6.71 7.04 7.23 7.94 6.83

HSD 10.77 9.80 8.51 8.67 8.63 9.50 8.31

GT2 9.74 8.99 7.71 7.93 7.84 8.74 7.72

Gabriel 9.74 8.99 7.70 7.93 7.84 8.74 7.72

Equal variances are not assumed
T2 5.32 5.70 5.04* 5.26 5.13* 5.37 5.23*

T3 5.58 5.75 5.10* 5.27 5.13* 5.37 5.24*

Games-Howell 6.51 6.43 5.41 5.96 5.83 5.94 6.01

Note. * indicates the accurate tests for the given sample size.

Condition 3: Homoscedastic and Unbalanced Groups
In the third condition (homoscedastic and unbalanced), more variation than in previous 
conditions was observed (Table 3). For sample size of N = 30, Bonferroni’s (αrate = 5), 
Šidák’s (αrate = 5.08) and Hochberg’s GT2 (αrate = 5.17) were the most accurate. As for N = 
30, for N = 90 sample size, Bonferroni’s (αrate = 4.82), Šidák (αrate = 4.92) and Hochberg’s 
GT2 (αrate = 4.94), but also Tamanhe’s T2 (αrate = 5.20) were the most accurate. For N = 
300, Tamanhe’s T2 (αrate = 4.75) and Dunnett’s T3 (αrate = 4.79) showed greater accuracy. 
For sample sizes of N = 750 and N = 3000, Bonferroni’s (αrate = 5.05 and 5.06), Šidák’s 
(αrate = 5.08 and 5.17), Tamanhe’s T2 (αrate = 5.13 and 5.16) and Dunnett’s T3 (αrate = 5.16 
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in both cases) tests were the most accurate. Finally, Šidák’s (αrate = 4.87) Tamanhe’s T2 
(αrate = 4.89) and Dunnett’s T3 (αrate = 4.91) tests were the most accurate for the sample 
size of N = 1500. According to the used criteria, no test was accurate enough for N = 
150 sample size, being the Scheffé test (αrate = 4.60) the most nearest to the desirable 
accuracy.

Condition 4: Heteroscedastic and Unbalanced Group
In the fourth condition (heteroscedastic and unbalanced groups), tests assuming equal 
variances were generally conservative, excepting Fisher’s LSD (Table 4). Specifically, LSD 
test showed appropriate accuracy for all sample sizes (αrate = 4.74–5.21) excepting or N 
= 15000. Similarly, Tamhane’s T2 was accurate for all sample sizes (αrate = 5.05–5.20) 
excepting for N = 150 and N = 750. Finally, Dunnett’s T3 test was accurate for sample 
sizes of N = 90, 300, 1,500 and 3,000 (αrate = 5.11–5.20).

Table 3

Percentage of Times Null Hypothesis Is Refused When Is True (Type I Error) When Groups Are Homoscedastic and 
Imbalanced

Sample size (N)

Test 30 90 150 300 750 1500 3000

Equal variances are assumed
LSD 14.90 15.41 15.85 13.62 14.57 14.21 14.86

Bonferroni 5* 4.82* 5.41 4.55 5.05* 4.71 5.06*

Šidák 5.08* 4.92* 5.48 4.69 5.08* 4.87* 5.17*

Scheffé 4.69 4.36 4.60 3.92 4.47 4.16 4.42

HSD 6.05 5.68 6.27 5.28 5.84 5.48 5.72

GT2 5.17* 4.94* 5.50 4.69 5.09* 4.85* 5.17*

Gabriel 5.87 5.61 6.29 5.30 5.74 5.51 5.76

Equal variances are not assumed
T2 5.81 5.20* 5.48 4.75* 5.13* 4.89* 5.16*

T3 6 5.27 5.55 4.79* 5.16* 4.91* 5.16*

Games-Howell 6.75 6.08 6.28 5.36 5.85 5.52 5.80

Note. * indicates the accurate tests for the given sample size.
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Table 4

Percentage of Times Null Hypothesis Is Refused When Is True (Type I Error) When Groups Are Heteroscedastic and 
Imbalanced

Sample size (N)

Test 30 90 150 300 750 1500 3000

Equal variances are assumed
LSD 5.12* 5.21* 4.88* 5.05* 5.14* 4.72 4.75*

Bonferroni 1.74 1.31 1.44 1.43 1.68 1.53 1.52

Šidák 1.76 1.33 1.50 1.44 1.69 1.56 1.54

Scheffé 1.61 1.18 1.30 1.25 1.42 1.25 1.32

HSD 2.02 1.45 1.7 1.75 2.14 1.86 1.72

GT2 1.78 1.33 1.50 1.44 1.69 1.56 1.54

Gabriel 1.85 1.36 1.56 153 1.79 1.66 1.60

Equal variances are not assumed
T2 5.15* 5.05* 5.29 5.11* 5.56 5.20* 5.10*

T3 5.33 5.11* 5.30 5.13* 5.56 5.20* 5.11*

Games-Howell 6.06 5.78 5.99 5.76 6.20 5.77 5.83

Note. * indicates the accurate tests for the given sample size.

Discussion
The present study aimed to determine the suitability of ten post-hoc tests for one-way 
ANOVA in four different conditions and seven sample sizes in 28 different data sets for 
the best case scenario of normal distributions. Then, samples were normally distributed 
and group means were equal, but group sample sizes (balanced vs. unbalanced) and 
group variances (homoscedastic vs. heteroscedastic) were manipulated. Furthermore, in 
all these conditions positive pairing between group sample size and group variance as 
well as big variance ratio was maintained.

Following the obtained results, two different conclusions can be highlighted. Firstly, 
regarding the appropriateness of post-hoc tests, big variability was observed through 
different sample sizes, except in the second condition (heteroscedastic and balanced). 
Second, some incongruences were detected regarding the nature of the test (e.g., the test 
which assumes equal variances) and the condition in which the test is more accurate 
(e.g., in heteroscedastic condition). Some post-hoc tests were designed for heteroscedastic 
or homoscedastic conditions and were more accurate in homoscedastic or heteroscedas­
tic conditions, respectively.

Regarding the variability of best estimators in different conditions, only in the second 
condition (heteroscedastic and balanced groups), the same post-hoc test was the best 
estimator in all sample sizes and should be selected under these conditions: Tamhane’s 
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T2. As expected, when between-group sizes are the same (balanced groups), and under 
the violation of the homoscedasticity assumption, those tests which do not assume equal 
variances were systematically better estimators. Nevertheless, following Bradley’s liberal 
criterion (Bradley, 1978), only Tamanhe’s T2 and Dunnett’s T3 tests were accurate and 
only for N = 150, N = 750 and N = 3,000, being out of the ± .25 range for considering 
one test accurate. Contrary to expectations, Dunnett’s T3, which is designed for this 
condition, was not the most accurate nor more conservative than Tamhane’s T2 (Day 
& Quinn, 1989; Ruxton & Beauchamp, 2008). In general, Dunnett’s T3 was more liberal 
and its performance worse than Tamanhe’s T2. On the contrary, accordingly to Tamhane 
(1979), Games-Howell’s test was the most liberal of these three post-hoc tests. Regarding 
the tests assuming equal variances, they were systematically more liberal, demonstrating 
that the use of these post-hoc tests under heteroscedasticity increased the Type I error 
when positive pairing and normal distribution even when the groups are balanced. 
Likewise, it is important to note that all post-hoc tests used in the present research were 
liberal in this condition.

Contrary to the results obtained in the second condition, variability is remarkable 
in the first, third, and fourth conditions. In the first condition (homoscedastic and 
balanced), and according to previous research, Scheffé’s test (more conservative) and 
Tukey’s HSD (more liberal) would theoretically be the better estimators for comparison 
of balanced groups under homoscedasticity (Day & Quinn, 1989; Shaffer, 1995). Never­
theless, findings indicated that Scheffé’s test was systematically too conservative, while 
Tukey’s HSD test was systematically too liberal.

Considering the conditions of the study, these results are in line with previous 
research. At first, it was expected to obtain results that are more conservative with 
Scheffé’s test than with Bonferroni’s, Šidák’s, or Tukey’s HSD´s tests (Brown, 2005; 
Keppel & Wickens, 2004; Lee & Lee, 2020). In addition, the excessively conservative 
results of Scheffé’s test are in line with recent research. As recent literature has shown 
when ANOVA is carried out under certain conditions according to current research 
(i.e., positive pairing and big variance ratio), the probability of committing Type I error 
tends to decrease under positive pairing condition, which makes conservative (Blanca, 
et al., 2018), and Scheffé’s test is the unique test entirely consistent with ANOVA 
results (McHugh, 2011; Ruxton & Beauchamp, 2008). On the other hand, more liberal 
results with Tukey’s HSD was observed compared to Bonferroni’s, Šidák’s, or Scheffé’s 
tests (Abdi & Williams, 2010; Ruxton & Beauchamp, 2008). In line with these results, 
Bonferroni’s, Šidák’s, Hochberg’s GT2 and Gabriel’s tests achieved the ideal accuracy for 
this condition and they are considered the preferable alternatives. These four tests are 
characterized as for being more conservative than Tukey’s HSD test and more liberal 
than Scheffé’s test. Bonferroni’s and Šidák’s tests were expected to perform well in this 
first condition considering that they are made for comparing balanced groups under ho­
moscedasticity (Day & Quinn, 1989; McHugh, 2011; Sarstedt & Mooi, 2019). Hochberg’s 
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GT2 and Gabriel’s tests yielded an expected performance. Based on the literature, these 
tests are a more conservative alternative to Tukey’s HSD recommended for unbalanced 
group comparison (see Day & Quinn, 1989; Ruxton & Beauchamp, 2008). Hochberg’s GT2 
findings were the expected: more conservative than Tukey’s HSD, but more liberal than 
Bonferroni’s test, so than Scheffé’s test (Armstrong, 2014).

Maybe more surprising are the results obtained with Gabriel’s test, which is a more 
liberal variation of Hochberg’s GT2 (Meyers et al., 2016) but it was indistinguishable 
from it. In spite of Tamanhe’s T2 and Dunnett’s T3 tests showing appropriate accuracy 
for some sample sizes, considering the overall results and conditions, the previously 
mentioned four tests seem to be the best option.

Regarding the third condition (homoscedastic and unbalanced), higher variability 
than in the first condition was observed, but some similarities too. As in the first 
condition, Scheffé’s test was systematically too conservative and Šidák’s test was system­
atically too liberal when groups are unbalanced contradicting previous literature (see 
Brown, 2005; Ruxton & Beauchamp, 2008). Regarding Scheffé’s test, the same as in the 
first condition could be argued: ANOVA tends to be conservative when positive pairing 
and big variance ratio (Blanca et al., 2018) occur and the Scheffé’s test is the only test 
entirely consistent with ANOVA results. In respect to Tukey’s HSD test, some authors 
have pointed out that it is robust enough when the group sample size imbalance is not 
severe (Spjøtvoll & Stoline, 1973), but as in the first condition, excessively liberal results 
were obtained. Similar to the first condition, other tests assuming equal variances were 
more liberal than Scheffé’s test and more conservative than Tukey’s HSD, showing the 
highest accuracy, but little differences were observed. For example, Hochberg’s GT2 and 
its more liberal version Gabriel’s test should be the most accurate tests for this condition 
(see Day & Quinn, 1989; Ruxton & Beauchamp, 2008), but contrary to what was expected, 
the second one was excessively liberal for all sample sizes. On the contrary, Bonferroni’s, 
Šidák’s and Hochberg’s GT2 tests were generally accurate except for medium sample 
sizes. These results support the idea of the appropriateness of Hochberg’s GT2, but 
also the robustness of Bonferroni’s and Šidák’s test to imbalance for this specific condi­
tion. Furthermore, obtained results also show, as in the first condition, the tendency 
to higher liberality of Hochberg’s GT2 compared with Bonferroni’s test as indicated 
in previous literature (Armstrong, 2014). Finally, Tamanhe’s T2 and Dunnett’s T3 also 
showed general accuracy, despite the fact that they were designed for heteroscedasticity. 
Games-Howell´s test was liberal when groups were unbalanced without the necessity 
of heteroscedasticity (Jaccard et al., 1984; Tamhane, 1979), but the more conservative 
alternative, Tamanhe’s T2, show accuracy not only for medium to big sample sizes but 
also for N = 90. In addition, Dunnett’s T3 showed good accuracy for medium to big 
sample sizes, but in line with other studies (Day & Quinn, 1989), it was not accurate for 
small sample sizes.
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Regarding the fourth condition (heteroscedastic and unbalanced), three estimators 
were predominantly better, making them the most appropriate alternatives: Dunnett’s 
T3, Tamhane’s T2, and Fisher’s LSD. As pointed out by other authors (Day & Quinn, 
1989; Dunnett, 1980; Jaccard et al., 1984; Tamhane, 1979), Games-Howell’s test was 
systematically liberal in this condition, although it is theoretically appropriate for an 
unbalanced group comparison under heteroscedasticity.

On the contrary, Tamanhe’s T2 and Dunnett’s T3 were more conservative but also 
were generally accurate. Even though Dunnett’s T3 has been considered more conserva­
tive than Tamanhe’s T2, in the present research it was similar but slightly more liberal, 
probably because it is more appropriate for balanced groups (Day & Quinn, 1989; Ruxton 
& Beauchamp, 2008). Likewise, these differences were minimal except for the smallest 
sample size (N = 30). In this case, Dunnett´s T3 was excessively liberal, demonstrating 
that is not robust for unequal and small sample sizes (Day & Quinn, 1989). Finally, the 
post-hoc tests that assume equal variances were excessively conservative in all cases, 
except Fisher’s LSD. This test has been criticized due to its liberal nature, cause of its 
lack of correction for multiple comparisons. According to expected, this liberality was 
manifest in the first, second and third conditions (Meyers et al., 2016). Contrarily, while 
all tests for the heteroscedastic condition were excessively conservative, Fisher’s LSD 
was accurate for six of seven sample sizes.

Despite the irrefutable importance of the accuracy of the test, other theoretical issues 
must be considered also. In this sense, the relative importance of the Type I (and Type 
II) error rate will be dependent on the specific hypothesis. As Armstrong (2014) pointed 
out, in certain situations it is preferable to avoid the missing possible effects and then 
more liberal tests are more appropriate, while in other conditions the objective is to be 
sure (to extend the possible) of particular effects and then more conservative options are 
more desirable. For example, following this premise, in an exploratory study for the third 
condition (homoscedastic and unbalanced), Šidák’s and Hochberg’s GT2 tests are more 
appropriate, while on the contrary situation, where specific effects interest, Bonferroni’s 
test is the better option.

Strengths and Limitations
The present research contributes to a deeper knowledge of the appropriateness of 
different post-hoc tests in particular conditions. More specifically, this work provides 
researchers with a guide for post-hoc test selection in different four conditions when 
data scores are normally distributed and group-variance pairing is positive. The obtained 
results demonstrate the relevance of sample sizes, between-group sizes (balanced vs. 
unbalanced), and the violation of the homoscedasticity assumption (homoscedastic vs. 
heteroscedastic) in the choice of post-hoc tests for one-way ANOVA. Contrary to the 
idea that some tests (e.g., Tukey’s HSD) are appropriate in a variety of situations (Brown, 
2005), significant variability was detected through different group sizes in each condi­

Juarros-Basterretxea, Aonso-Diego, Postigo et al. 95

Methodology
2024, Vol. 20(2), 84–99
https://doi.org/10.5964/meth.11721

https://www.psychopen.eu/


tion, except for the second condition (heteroscedastic and balanced). Nevertheless, it is 
important to note that the conclusions yielded from this research are not applicable to 
every condition, then the researchers should be cautious with the generalization of these 
results.

These finding must be interpreted under several limitations. First, our data simulation 
was focused on a particular condition of positive paring between group size and group 
variance (the smallest group had the smallest variance and the biggest group had the 
biggest variance). Second, heteroscedasticity conditions had a big ratio variance. Third, 
the case of the best scenario of normal distribution was analyzed. Fourth, only ten 
post-hoc tests’ accuracy was studied here. In line with these limitations, future research 
should conduct simulation studies with the same conditions, but with a negative pairing 
between group size and variance (the smallest group have the biggest variance and 
the biggest group has the smallest variance) as well as with different variance ratios 
(see e.g., Blanca et al., 2018; Kirk, 2013). It would be also crucial for future research 
to test other scenarios (heavy-tailed distributions, outliers, and difference in skewness). 
Furthermore, future research should study the accuracy of other post-hoc tests different 
from those analyzed here (e.g., those aimed at controlling familywise error rate without 
first rejecting the global hypothesis) (Wilcox, 2023) under the same conditions as well as 
in new study conditions.
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