
Original Article

A Quantile Shift Approach to Main Effects and 
Interactions in a 2-by-2 Design

Rand R. Wilcox 1 , Guillaume A. Rousselet 2

[1] Department of Psychology, University of Southern California, Los Angeles, CA, USA. [2] School of Psychology and 

Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom. 

Methodology, 2024, Vol. 20(1), 47–71, https://doi.org/10.5964/meth.12271

Received: 2023-06-27 • Accepted: 2023-12-03 • Published (VoR): 2024-03-22

Handling Editor: Katrijn van Deun, Tilburg University, Tilburg, the Netherlands

Corresponding Author: Rand R. Wilcox, Dept. of Psychology, University of Southern California, 3620 S. 
McClintock Ave. Los Angeles, CA 90089-1061, USA. E-mail: rwilcox@usc.edu

Abstract
When comparing two independent groups, shift functions are basically techniques that compare 
multiple quantiles rather than a single measure of location, the goal being to get a more detailed 
understanding of how the distributions differ. Various versions have been proposed and studied. 
This paper deals with extensions of these methods to main effects and interactions in a between-
by-between, 2-by-2 design. Two approaches are studied, one that compares the deciles of the 
distributions, and one that has a certain connection to the Wilcoxon–Mann–Whitney method. 
There are many quantile estimators, but for reasons summarized in the paper, the focus is on using 
the Harrell–Davis quantile estimator used in conjunction with a percentile bootstrap method. 
Included are results comparing two methods aimed at controlling the probability of one or more 
Type I errors.
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When comparing two distributions, certainly the most common approach is to focus on 
a single measure of location, typically the mean or median. An alternative approach is 
to compare multiple quantiles with the goal of getting a more detailed understanding 
of where groups differ and by how much (Rousselet et al., 2017). Several methods have 
been derived for dealing with this issue (e.g., Doksum & Sievers, 1976; Goldman & 
Kaplan, 2018; Lombard, 2005; Wilcox, 1995; Wilcox et al., 2014). Extant results suggest 
how to generalize these methods to a between-by-between, 2-by-2 design. One goal here 
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is to report results on two methods for controlling the family wise error rate (FWER), 
meaning the probability of one or more Type I errors.

Here, two distinct approaches are considered. The first defines interactions and main 
effects with means replaced by a collection of quantiles with an emphasis on the deciles. 
For example, if θjk denotes the .2 quantile corresponding to level j of the first factor and 
level k of second factor, one goal is to test

H0: θ11 − θ12 = θ21 − θ22, (1)

which mimics the usual notion of an interaction in an obvious way. Here, however, 
the goal is to use multiple quantiles and to assess how well the FWER is controlled. 
Of course, a related issue is computing a reasonably accurate confidence interval for 
θ11 − θ12 − θ21 + θ22. As is evident, main effects can be addressed as well. For example, 
one can test

H0: θ11 + θ12 = θ21 + θ22, (2)

for a collection of quantiles.
The second approach, when dealing with an interaction, has a certain connection to 

a rank-based method proposed by Patel and Hoel (1973) that in turn has a connection 
with the classic Wilcoxon–Mann–Whitney test. To describe the Patel–Hoel approach, let 
Xjk denote four independent random variables where X11 and X12 correspond to the first 
level of the first factor in a 2-by-2 design, while X21 and X22 correspond to the second 
level of the first factor. Let p1 = P(X11 < X12) and p2 = P(X21 < X22). The hypothesis of 
no interaction is

H0:p1 = p2 . (3)

And there is the issue of computing a 1 − α confidence interval for p1 − p2. Wilcox (2022, 
Section 7.9.2) describes a method for making inferences about this measure of effect size 
that performs well in simulations. For some related rank-based methods, see Gao and 
Alvo (2005), as well as De Neve and Thas (2017).

Let X ijk denote a random sample from the jth level of the first factor and the kth level 
of the second factor (i = 1, …, njk; j = 1, 2; k=1, 2). For convenience momentarily focus on 
p1 and let Diℎ = Xi11 − Xℎ12 (i = 1, …, n11; ℎ = 1,…, n12). An estimate of p1 is simply

p1 = 1
n1n2∑∑I(Diℎ), (4)

where the indicator function I (Diℎ) = 1 if Diℎ < 0; otherwise I (Diℎ) = 0. The estimator p1
is the estimator used by the classic Wilcoxon–Mann–Whitney test.

Let θ1 denote the median of D and notice that
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H0:p1 = .5 (5)

is the same as

H0: θ1 = 0. (6)

The parameter θ1 is defined based on Level 1 of the first factor. Let θ2 denote the analog 
of θ1 when dealing with Level 2 of the first factor. Then an analog of the Patel–Hoel in­
teraction is θ1 − θ2. Here, however, the goal is to consider the broader issue of comparing 
the deciles of these two distributions. More formally, let q1 and q2 denote the qth quantile 
of the distribution D for Level 1 of the first factor and Level 2 of first factor, respectively. 
The goal is to test

H0: q1 = q2 (7)

and to compute a 1 − α confidence interval for q1 − q2 for q = .1, .2, …, .9. A second goal is 
to control the FWER in a reasonably accurate manner.

Notice that when testing Equation (1), there is no distinction between 
θ11 − θ12 = θ21 − θ22 and θ11 − θ22 = θ12 − θ22. That is, interchanging the rows and col­
umns does not alter the estimated effect size. However, when dealing with Equation (7), 
interchanging the rows and columns can yield different results.

To illustrate this point, consider, for example, a situation where for the first level 
of the first factor, both levels of the second factor have standard normal normal distribu­
tions, while for the second level of the first factor, the two levels of the second factor 
have lognormal distributions. Data were generated as just described based on sample 
sizes of 50 per group and the 50th quantile was estimated. The estimate of q1 − q2 was 
.027. But interchanging the rows and columns, now the estimate was −.088. The code 
to reproduce this example can be found in the R notebook apd_ex.Rmd, which is 
available as part of the companion reproducibility package for this article (Wilcox & 
Rousselet, 2023) and on GitHub (Rousselet, 2023).

The Proposed Methods
First, consider testing Equation (1). The first issue is choosing a reasonable quantile 
estimator from among the many estimators that might be used. The focus here is on 
the estimator derived by Harrell and Davis (1982) for two fundamental reasons. The 
first has to do with tied values. When comparing two independent groups using the 
usual sample median, tied values can be accommodated using a slight generalization of 
a standard percentile bootstrap method. However, when comparing other quantiles using 
an estimator based on only one or two order statistics, such as those summarized by 
Hyndman and Fan (1996), this approach no longer performs in an adequate manner (e.g., 
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Wilcox, 2022). Simulation results reported in the Simulation Results section indicate that 
this remains the case for the situation at hand.

In contrast to the estimators considered by Hyndman and Fan (1996), the Harrell–Da­
vis estimator uses a weighted average of all the order statistics. Moreover, when using 
the Harrell–Davis estimator in conjunction with a percentile bootstrap method, all in­
dications are that this approach does perform well when comparing two independent 
groups and there are tied values. An issue here is whether this continues to be the 
case when dealing with a two-way design. A second reason for using the Harrell–Davis 
estimator is that is has better efficiency under normality compared to using a weighted 
average of only two order statistics.

For completeness, it is noted that comparing quantiles can be accomplished using the 
quantile regression estimator derived by Koenker and Bassett (1978). However, this is 
tantamount to using one or two order statistics. When comparing the medians of two 
independent groups, for example, and the sample sizes are odd, in effect the usual sample 
median is being used. Evidently, there is no generalization of the Koenker–Bassett meth­
od that captures the spirit of the Harrell–Davis estimator.

There are several quantile estimators, in addition to the Harrell–Davis estimator, 
that use all of the order statistics (e.g., Liu et al., 2022; Navruz & Özdemir, 2020). A 
possible criticism is that these estimators, including the Harrell–Davis estimator, have a 
breakdown point of only 1/n. That is, the minimum number of order statistics that must 
be altered to make the estimate arbitrarily large is one. In practice this issue might not 
be a serious concern because the extreme order statistics get a relatively small weight. In 
a situation where the breakdown point is an issue, one possibility is to use the trimmed 
Harrell–Davis estimator derived by Akinshin (2022).

Let U be a random variable having a beta distribution with parameters a = (n + 1)q
and b = (n + 1)(1 − q). Let

W i = P i − 1
n ≤ U ≤ i

n .

The Harrell–Davis estimate of the qth quantile is

θq = ∑
i = 1

n W iX(i), (8)

where X(1) ≤ ⋯ ≤ X(n) are the values written in ascending order. The beta weights used 
to calculate the deciles for a sample size of n = 50 are illustrated in Figure 1.
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Figure 1

Beta Weights Used to Calculate the Harrell-Davis Estimates of the Deciles With a Sample Size of 50

As an alternative to the Harrell–Davis estimator, we considered the default 
quantile estimator in R, called using the command quantile(x, probs = 
seq(0.1,0.9,0.1), Type = 7), to compute the deciles. This estimator, in ad­
dition to being widely used, relies on two order statistics (Hyndman & Fan, 1996), 
and could thus be more robust to outliers than the Harrell–Davis estimator in some 
situations.

To test Equation (1), we considered a percentile bootstrap method combined with the 
Harrell–Davis estimator and the quantile(Type = 7) estimator. The percentile bootstrap 
method begins by generating bootstrap samples by sampling with replacement njk values 
from the data associated with the jth level of the first factor and the kth level of second 
factor yielding X ijk* (i = 1, …, njk). Based on these bootstrap samples, compute the qth 
quantile using the Harrell–Davis estimator, or the quantile(Type = 7) estimator, yielding 
θjk*  followed by

Ψ* = θ11* − θ12* − θ21* + θ22* . (9)

Repeat this process B times yielding Ψ1*, …, ΨB*. Let A denote the number of Ψ* values that 
are less than zero and let D denote the number of Ψ* values that are equal to zero. Let

P = A
B + .5DB . (10)
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A p-value, when testing Equation (1), is 2min P, 1 − P . The term D/B is important when 
dealing with tied values (e.g., Wilcox, 2022). To compute a 1 − α confidence interval, 
put Ψ1*, …, ΨB* in ascending order yielding Ψ(1)* ≤ ⋯ ≤ Ψ(B)* . Let ℓ = αB/2, rounded to the 
nearest integer. Let u = n − ℓ. Then a 1 − α confidence interval for Ψ is

(Ψ(ℓ + 1)* , Ψ(u)* ) . (11)

Here, B = 2000 is used.
Note that the same bootstrap samples were used for each of the quantiles being 

compared. An alternative approach is to use separate bootstrap samples for each 
test to be performed (Wilcox, 1995). Both approaches were considered and there is 
no indication that separate bootstrap samples offer a practical advantage in terms 
of controlling the Type I error probability. Results of the simulations comparing the 
two bootstrap approaches are available in the R notebooks sim_fp_b1b9.Rmd and 
sim_fp_apd_b1b9.Rmd (Wilcox & Rousselet, 2023). Using the same bootstrap sam­
ples for all of the tests performed considerably reduces execution time, which is why it is 
assumed henceforth.

When performing C tests, there is the issue of controlling the FWER, meaning the 
probability of one or more Type I errors. Two approaches are considered here. The first is 
Hochberg’s (1988) improvement on the Bonferroni method. Let p1, …, pC be the p-values 
associated with the C tests. Put these p-values in descending order, and label the results 
p[1] ≥ p[2] ≥ ⋯ ≥ p[C]. Set k = 0 and proceed as follows:

1. Increment k by 1. If

p[k] ≤ α
k ,

stop and reject all hypotheses having a p-value less than or equal to p[k].
2. If p[k] > α/k, repeat Step 1.
3. Repeat Steps 1 and 2 until a significant result is obtained or all C hypotheses have 

been tested.

The second method for controlling the FWER was Benjamini and Hochberg (1995), 
which is aimed at controlling the false discovery rate (FDR). That is, the goal is to control 
the expected proportion of false positives among the rejected hypotheses. It is known 
that there are situations where the Benjamini–Hochberg method ensures that the false 
discovery rate is less than or equal to α, but it does not necessarily control the FWER 
(Hommel, 1988). However, the simulations described in the Simulation Results section, 
below, indicated that when using Hochberg's method, the FWER is always below the 
nominal level. Consequently, there was interest in how well the Benjamini–Hochberg 
method performs. It is readily verified that the Benjamini–Hochberg method always has 
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as much or more power than Hochberg's method. Consequently, provided the Benjami­
ni–Hochberg method controls the FWER for the situation at hand, it has a practical 
advantage over Hochberg's method.

The Benjamini–Hochberg method is applied simply by replacing p[k] ≤ α/k in Step 1 
of Hochberg’s method with

p[k] ≤
(C − k + 1)α

C (12)

As for testing Equation (7), again both the Harrell–Davis and the quantile(Type = 7) esti­
mators were considered, in conjunction with a percentile bootstrap method. Bootstrap 
samples are generated as before yielding estimates of q1 and q2, which are labelled q1*
and q2*. This process is repeated B times and the results are used to compute a 1 − α
confidence interval for q1 − q2, as well as a p-value, in essentially the same manner as 
done when testing Equation (1).

Simulation Results
Simulations were used to check the FWER when testing Equation (1) and Equation (7), 
as well as how the power of these methods compares to the classic ANOVA F test and a 
method for comparing 20% trimmed mean, which is described in Wilcox (2022); Section 
7.4.3. Data were generated from four continuous distributions as well as three discrete 
distributions. The discrete distributions were a Poisson distribution having mean 9, and 
two beta-binomial distributions, one with parameter r = 1, the other with r = 9, and the 
other parameters set to s = 9, and 10 bins. The three discrete distributions were included 
as a partial check on the impact of tied values. The four continuous distributions were 
standard normal, mixed normal, lognormal and mixed lognormal. The distribution of the 
mixed normal is

H(x) = .9Φ(x) + .1Φ(x), (13)

where Φ(x) is the standard normal distribution. The mixed normal is a symmetric distri­
bution with heavy tails, roughly meaning that outliers are likely to occur. The mixed 
lognormal distribution is given by Equation (13), but with Φ replaced by the lognormal 
distribution.

Based on over 1,500 estimates of skewness and kurtosis reported in various journal 
articles, Cain et al. (2017) report that 99% of the estimates were less than the skewness 
and kurtosis of a lognormal distribution. This suggests that if a method performs reason­
ably when dealing with a lognormal distribution, it is highly likely to perform reasonably 
well in practice. However, a possible concern is that when dealing with heavy-tailed 
distributions, the standard error of the usual kurtosis estimator can be quite high even 
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when the sample size is fairly large. Moreover, the usual estimate of kurtosis can grossly 
under estimate the true value.

Consider, for example, a lognormal distribution, which has kurtosis 113.9. Based on 
a sample of 100,000, the kurtosis of the lognormal distribution was estimated and this 
process was repeated 1000 times. It was found that 79% of the estimates were less 
than the true value. The median estimate was 82. This process was repeated using the 
mixed lognormal distribution which is skewed and very heavy-tailed. The kurtosis of 
this distribution was estimated based on a sample size of one million. This process was 
repeated 1000 times yielding estimates ranging between 242 and 16400. The median 
estimate was 429. Consequently, the mixed lognormal distribution was used here as an 
additional check on how well the methods perform. The code for these simulations is 
available in the notebook kurtosis_estimation.Rmd (Wilcox & Rousselet, 2023).

Simulations were performed for sample sizes 20, 30, 40, ..., 100 per group, using 
10,000 iterations. This was done using both types of quantile estimators and for the two 
main effects and the interaction. A p-value was computed for each of the nine quantiles 
to be compared. In terms of controlling the FWER, both Hochberg's method and the 
Benjamini–Hochberg method were considered. And as previously indicated, this was 
done for seven distributions. So in terms of Type I errors there is a total of 3402 results (7 
distributions * 2 quantile estimators * 3 contrasts * 9 deciles * 9 sample sizes).

Finally, simulations were performed dealing with power. Various situations were 
considered, including shifting the four continuous distributions used to estimate Type 
I errors, varying the skewness of g-and-h distributions (Hoaglin, 1985), and the skew­
ness of Poisson and beta-binomial distributions. In all situations, the distributions were 
adjusted to provide high power at the maximal sample size, to better differentiate the 
various methods. Complete details, including the code that was used, are reported in files 
available on figshare (Wilcox & Rousselet, 2023) and on GitHub (Rousselet, 2023). The 
main R packages used to perform the simulations and illustrate the results were Rcpp 
(Eddelbuettel & Francois, 2011), ggplot2 (Wickham, 2016) and cowplot (Wilke, 2017).

First we consider the results for testing Equation (1), then for testing Equation (7).

Results When Testing Equation (1)
The results regarding the FWER were highly consistent over the conditions considered, 
making it a simple matter to briefly summarize the relative merits of the methods being 
considered. All indications are that the actual FWER is less than the nominal .05 level 
using the Hochberg method as well as the Benjamini–Hochberg method. Consequently, 
the Benjamini–Hochberg method is recommended because it always has as much or 
more power than Hochberg's method.
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Type I Errors

To illustrate some of the Type I error simulation results, Figure 2 contains results for 
the normal and lognormal populations, separately for the interaction and the two main 
effects. Results with Hochberg's method are omitted but detailed figures are available 
in the notebook sim_fp.Rmd. The FWER without correction for multiple comparison 
(grey lines) is lower than expected if the 9 tests were independent, which in theory 
would be 1 − (1 − α)9 = 0.37. The results in Figure 2 and Figure 3 are about half of that 
expected value, supporting the use of the FDR correction over Hochberg's.

Figure 2

False Positive Results for Normal and Lognormal Populations

Note. FWER (across quantiles) are plotted as a function of sample size per group for the interaction and the two 
main effects A and B. ANOVA.M = ANOVA using means. ANOVA.TM = ANOVA using 20% trimmed means. 
FDR (Benjamini–Hochberg method) and No corr. (no correction) refer to the percentile bootstrap method in 
conjunction with the Harrell–Davis estimator (HD) and the quantile(Type = 7) estimator (QT7). Horizontal 
ribbons: dark grey indicates Bradley’s (1978) satisfactory range [0.025; 0.075]; light grey indicates Bradley’s 
(1978) ideal range [0.045; 0.055].
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Figure 3

False Positive Results for Poisson and One of the Two Beta-Binomial Populations

Note. See details in Figure 2 note.

As a sanity check, results for the two types of ANOVAs are included, confirming false 
positives very close to the nominal level when sampling from a normal population. 
Although the percentile bootstrap led to conservative estimates for both quantile estima­
tors, the Harrell–Davis estimator clearly outperforms quantile(Type = 7).

The gap between the two estimators increases when we consider samples from 
discrete populations, because the performance of quantile(Type = 7) deteriorates while 
that of Harrell–Davis remains stable (Figure 3).

Bradley (1978) suggested, as a general guide, that when testing at the .05 level, the 
actual level should be between .025 and .075. This criterion was met in most situations 
for the Harrell–Davis estimator but not for the quantile(Type = 7) estimator.

The higher performance of the Harrell-Davis estimator compared to the quan­
tile(Type = 7) estimator can be observed at individual deciles as well (Figure 4). However, 
for the first and last deciles, the Type I error rate is higher than the nominal level when 
using the Harrell–Davis estimator and n = 20, a result that confirms earlier observations 
(Wilcox et al., 2014).
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Figure 4

False Positive Results at Individual Deciles for Normal and Beta-Binomial Populations

Note. Type I error rates are plotted at each decile, separately for the different sample sizes per group (n) and for 
the Harrell–Davis estimator (HD) and the quantile(Type = 7) estimator (QT7). Horizontal ribbons: dark grey 
indicates Bradley’s (1978) satisfactory range [0.025; 0.075]; light grey indicates Bradley’s (1978) ideal range 
[0.045; 0.055].

Power

Not surprisingly, there are situations where inferences based on means or a 20% trimmed 
have more power. But there are situations where comparing deciles provides more 
power: no single method dominates. To illustrate, Figure 5 presents results for normal 
and lognormal populations. In each case, data were generated for the four groups by 
sampling from the standard normal and lognormal distributions, before shifting the 
groups by different amounts. When sampling from normal populations, the ANOVA on 
means dominates other methods. To compare methods, we report familywise power for 
the decile methods (bootstrap p-values with and without FDR correction), the probability 
of at least one rejection among the 9 tests. The ANOVA on 20% trimmed means is a bit 
less powerful, followed by the bootstrap method using the Harrell–Davis estimator, and 
last the bootstrap method combined with the quantile(Type = 7) estimator. Switching to 
lognormal populations, the power of both ANOVA tests is dramatically lower than the 
bootstrap approach. This figure and the next one were generated using the notebook 
sim_tp.Rmd.

Figure 6 presents results from populations in which tied values were common. In 
both cases, the ANOVA on means dominates other methods. When using the bootstrap 
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approach, the gap between the Harrell–Davis estimator and the quantile(Type = 7) 
estimator is larger than what was observed when sampling from continuous populations.

Figure 5

Power Results for Normal and Lognormal Populations

Note. ANOVA.M = ANOVA using means. ANOVA.TM = ANOVA using 20% trimmed means. FDR (Benjamini–
Hochberg method) and No corr. (no correction) refer to the percentile bootstrap method in conjunction with 
the Harrell–Davis estimator (HD) and the quantile(Type = 7) estimator (QT7). The black horizontal line marks 
0.05.
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Figure 6

Power Results for Poisson and Beta-Binomial Populations

Note. See details in Figure 5 note.

Compare Deciles of Distributions of All Pairwise Differences – Test 
Equation (7)
To assess the bootstrap method aimed at testing Equation (7), we used the same ap­
proach employed in the previous section. Now only the interaction is considered. The 
simulations and illustrations of the Type I error rates can be found in the notebook 
sim_fp_apd.Rmd. For power, see notebook sim_tp_apd.Rmd.

Type I Errors

Again we observed FWERs much lower than expected if the deciles were independent 
(Figure 7). For continuous distributions (panels A-D in Figure 7), results were very 
similar for the Harrell–Davis and quantile(Type = 7) estimators. Both methods were 
conservative. When sampling from distributions in which tied values are likely, now the 
Harrell–Davis estimator outperforms the quantile(Type = 7) method (Panels E and F in 
Figure 7).

For continuous distributions, the similarity in performance between the two quantile 
methods is evident at the level of individual deciles as well (Figure 8). Under normality, 
all deciles were associated with Type I error rates close to the nominal level, irrespective 
of the sample size per group (Panel A in Figure 8). In the worst situation tested, when 
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sampling from a mixed lognormal, results are a bit conservative, especially for the ex­
treme deciles. In both situation, there is very little separating the two quantile methods.

Figure 7

FWER Results for the Comparison of the Deciles of Distributions of All Pairwise Differences
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Figure 8

Type I Error Rates for the Comparison of the Deciles of Distributions of All Pairwise Differences: Continuous 
Distributions

When sampling from a Poisson distribution (M = 9 in all groups), the Type I error rates 
for the Harrell–Davis estimator remain near 0.05, irrespective of sample size (Panel A in 
Figure 9). However, the quantile(Type = 7) is conservative and the situation deteriorates 
with increasing sample size. In the most extreme situation considered, when sampling 
from a beta-binomial distribution with r = 1, s = 9, nbin = 10, the Type I error rates were 
lower for both quantile estimators relative to the Poisson case (Panel B in Figure 9), or 
when sampling from a beta-binomial distribution with r = 9 (not illustrated here, but see 
notebook sim_fp_apd.Rmd). Although the situation got worse with increasing sample 
size for both estimators, Harrell–Davis outperformed quantile(Type = 7) in all situations.
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Figure 9

Type I Error Rates for the Comparison of the Deciles of Distributions of All Pairwise Differences: Discrete 
Distributions

Power

Under normality, the ANOVA on means performed best, followed by ANOVA on trim­
med means and finally the bootstrap method (Panel A in Figure 10). When sampling 
from lognormal distributions, power was low for the ANOVAs relative to the bootstrap 
method, and much more so when making inferences about means (Panel B in Figure 
10). For the mixed normal distributions, again the ANOVA on means performed poorly, 
but now the ANOVA on trimmed means dominates the bootstrap approach (Panel C in 
Figure 10). If sampling from mixed lognormal distributions, now the bootstrap method is 
the most powerful (Panel D in Figure 10). In all these situations, the Harrell–Davis and 
quantile(Type = 7) estimators gave very similar results. Finally, in the presence of tied 
values, the ANOVA on means dominated the other approaches, and the Harrell–Davis 
estimator led to higher power than the quantile(Type = 7) estimator (Panels E and F in 
Figure 10).
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Figure 10

Power Results for the Comparison of the Deciles of Distributions of All Pairwise Differences

Note. See details in Figure 5 note.

An Illustration
Both methods are illustrated using data dealing with perceived health (PH) among older 
adults (Clark et al., 2011). The first factor consists of two educational groups: those who 
did not complete high school and those who have some college or technical training. The 
other two groups are based on a measure of depressive symptoms (CESD). One group 
corresponds to participants with a CESD score greater than 15, which is often taken to 
indicate mild depression or worse. The other level consists of participants with CESD 
scores less than or equal to 15. The four groups are defined like this:
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• A1B1 = lower education, lower CESD.
• A1B2 = lower education, higher CESD.
• A2B1 = higher education, lower CESD.
• A2B2 = higher education, higher CESD.

Perceived health results are illustrated for the four groups in Figure 11A. The figure 
was generated using the notebook examples.Rmd.

Figure 11

Example: Comparison of the Deciles of Perceived Health

Note. (A) Perceived health scores in the 4 groups, with superimposed deciles indicated by horizontal lines. 
Medians appear as thicker lines. (B-C) Comparisons between B1 and B2 (lower/higher CESD) at each level of A. 
(D-E) Main effects. (F) Interaction. Grey disks: decile differences plotted as a function of the deciles in one 
group. Thick vertical lines mark 50% confidence intervals. Thin vertical lines mark 95% confidence intervals. 
Vertical dashed lines mark medians.
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A 2x2 ANOVA on means returns these p-values: main effect of A (education) = 0.001; 
main effect of B (depression) < 0.0001; interaction = 0.09. Should we conclude that we 
have failed to obtain sufficient evidence about the presence of an interaction? This 
conclusion would be appropriate if the populations were symmetric and differed only in 
central tendency. However, the plot of marginals suggests differences in skewness and 
spread (Figure 11A). In keeping with this observation, considering the deciles reveals a 
more complex picture, as illustrated in Panels B-F of Figure 11, with patterns of non-uni­
form group differences. Panels B and C illustrate the shift functions comparing B1 and 
B2 at each level of A: the decile differences between two groups are plotted as a function 
of the deciles in one group. Panels D and E illustrate the main effects. The values along 
the x axis (A1 and B1) correspond to the deciles of observations pooled across groups (for 
instance A1 = (A1B1, A1B2). Computing the average of the deciles leads to very similar 
graphs. Finally, Panel F illustrates the interaction, which is highly non-linear, growing 
from the first decile to the median, and then decreasing and reversing sign.

The output of the decinter R function that tests Equation (1) is shown in Table 
1. As can be seen, the unadjusted p-values suggest that there is an interaction for the 
.2-.6 quantiles. Shown are the adjusted p-values based on Hochberg’s method (using 
the R function p.adjust) in order to underscore the practical advantage of the Benja­
mini–Hochberg method. As indicated, no significant difference is found at the .05 level 
using Hochberg’s method. But using the Benjamini–Hochberg correction when testing 
Equation (1), the adjusted p-values, when dealing with the .3, .4 and .5 quantiles are all 
equal to .030.

Table 1

Result for Perceived Health When Testing Equation (1)

Quant Est.Lev 1 Est.Lev 2 Dif ci.low ci.up p-value p.adj

[1,] 0.1 2.137558 5.295364 −3.157806 −9.898611 3.9567186 0.389 0.775

[2,] 0.2 2.334238 9.091485 −6.757246 −13.234037 −0.3524981 0.039 0.195

[3,] 0.3 2.865681 11.685416 −8.819735 −15.196697 −2.2297824 0.010 0.070

[4,] 0.4 2.670866 12.699564 −10.028698 −16.657294 −2.9629910 0.008 0.070

[5,] 0.5 3.098901 13.724232 −10.625331 −17.541216 −3.2211028 0.009 0.070

[6,] 0.6 4.539717 14.729066 −10.189350 −16.841309 −0.8789187 0.036 0.195

[7,] 0.7 6.823277 11.374696 −4.551418 −14.407102 5.1928292 0.348 0.775

[8,] 0.8 7.708862 5.545448 2.163415 −8.824631 9.6404128 0.775 0.775

[9,] 0.9 6.201298 2.407586 3.793712 −4.813915 10.4323243 0.362 0.775

When testing Equation (7), plots of the difference scores help provide perspective. Figure 
12A illustrates this point. For each level of education (A1 = lower level; A2 = higher 
level), every participant with a lower CESD score was compared to every participant 
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with a higher CESD score. As previously noted, when two distributions are identical, 
the distribution of D is symmetric about zero. Figure 12A suggests that for both groups 
the distribution of the difference scores is shifted to the right, but with a stronger shift 
for Group 2 (completed high school – lower panel in Figure 12A). A positive difference 
indicates higher perceived health in not depressed participants relative to depressed par­
ticipants. For the second group, testing the hypothesis that the median of the difference 
scores is zero, the estimate is 10.5, with a [4.2, 14.7] 95% confidence interval, p = 0. In the 
first group the median is 4.21 [0, 8.4], p = 0.0765.

Figure 12

Example: Comparison of the Deciles of All Pairwise Differences of Perceived Health.

Note. (A) Distributions of all pairwise differences between participants with lower and higher CESD scores. 
Participants with lower levels of education are shown at the top, participants with higher levels at the bottom. 
The vertical lines mark the deciles, with a thicker line for the median. (B). Interaction plot; see details in Figure 
11.

Table 2 summarizes the results when testing Equation (7). Here, the .1, .25, .5, .75 and .9 
quantiles are used, which is the default for the R function iband that was used. Now 
the unadjusted p-values indicate an interaction in the upper tails of the two distributions. 
For example, the estimates of the 0.75 quantile indicate that for the first level of the 
first factor (did not complete high school), when comparing the not depressed group 
to the depressed group, there is 25% chance of getting a difference between perceived 
health values greater than 14.75, while for the second group there is 25% chance of 
getting a difference greater than 22. But using the Hochberg adjustment shown here, no 
significant difference is found at the .05 level and this remains the case when using the 
Benjamini–Hochberg method.
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Table 2

Result for Perceived Health When Testing Equation (7)

Quant Est.Lev 1 Est.Lev 2 Dif ci.low ci.up p-value p.adj

[1,] 0.10 −15.380695 −14.229966 −1.150729 −8.58284 4.6709548 0.607 0.607

[2,] 0.25 −6.342360 −2.168466 −4.173895 −10.51543 2.0383410 0.165 0.330

[3,] 0.50 4.206226 10.466616 −6.260390 −12.44074 0.1001971 0.058 0.174

[4,] 0.75 14.746649 22.041140 −7.294491 −12.55662 −1.5587962 0.013 0.065

[5,] 0.90 24.529027 29.460025 −4.930998 −10.51350 −0.1045500 0.039 0.156

Concluding Remarks
The two new methods presented in this article help gain a deeper understanding of 
where and by how much groups differ in a 2x2 factorial design. With a sample size of at 
least 30 per group, all indications are that the methods perform well even when dealing 
with distributions that have a relatively high amount of skewness and kurtosis. These 
methods are implemented in the functions decinter to test Equation (1) and iband 
to test Equation (7). The R functions decinter and iband can be found in the file 
Rallfun-v41.txt, downloadable from Wilcox (2024). These functions, the R code for 
the simulation and the figures are available in the reproducibility package for the article 
(Wilcox & Rousselet, 2023) and on GitHub (Rousselet, 2023). The reproducibility package 
also contains Rcpp code that is much faster to execute than the base R version (see 
notebook examples.Rmd). By default, these functions use 2000 bootstrap samples and 
correct for multiple comparison using the FDR correction from Benjamini & Hochberg 
(1995), which outperformed the FWER correction of Hochberg (1988) in our simulations. 
Even with the FDR correction, the two methods presented here remain conservative, so it 
would be worthwhile to explore other correction strategies. We have already considered 
several alternative methods, but they do not improve matters (Benjamini et al., 2006; 
Benjamini & Yekutieli, 2001; Blanchard & Roquain, 2008). Preliminary investigations of 
yet other approaches to control the FWER, such as using a maximum statistic distribu­
tion (Nichols & Holmes, 2002), have not revealed any method that could significantly 
improve power in all situations, making recommendations difficult. While this issue 
requires further work, for the moment we recommend to use the FDR correction from 
Benjamini and Hochberg (1995) by default.

More generally, the obvious concern with comparing multiple quantiles is that power 
might be negatively impacted due to controlling the FWER. But power might also be 
negatively impacted when focusing on a single quantile simply because other quantiles 
are being ignored. The example in the previous section demonstrated the risk of drawing 
conclusions from a single measure of central tendency or quantile. It is also worth 
keeping in mind that there is no free lunch in inference: methods that can reveal more 
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complex patterns in the data, such as those proposed here, necessarily require larger 
sample sizes to reveal where and by how much distributions differ. For applications to 
the deciles considered here, given the increased uncertainty associated with the estima­
tion of the 1st and 9th deciles, we recommend sample sizes of at least 30, echoing earlier 
recommendations (Wilcox et al., 2014).

Several strategies are worth considering to boost power, starting with testing more 
specific hypotheses involving only a subset of quantiles. For instance, one could imagine 
a cross-validation approach in which a large dataset is split between a discovery set 
and a testing set. Instead of testing each quantile individually, one could also look for 
specific patterns across quantiles, such as stochastic dominance, which is characterised 
by all quantile differences having the same sign, or differences in spread, which are 
characterised by monotonic trends across quantile differences (Rousselet et al. 2017). 
Other obvious strategies are to consider different quantile estimators and bootstrap 
methods. Preliminary investigations suggest that using the quantile(Type = 8) estimator 
recommended by Hyndman and Fan (1996) improves Type I error rates and power rela­
tive to the quantile(Type = 7) estimator for instance, but is still outperformed by the Har­
rell–Davis estimator in all situations. As for parametric methods, Goldman and Kaplan 
(2018) have proposed a fast and powerful extension of the Kolmogorov–Smirnov test 
to compare all the quantiles of two independent groups (Kolmogorov, 1992; Stephens, 
1992). However, their approach assumes no tied values, and it is unclear how it could be 
generalised to deal with interactions.

A bootstrap approach provides enough flexibility to deal with a variety of experi­
mental designs. As such, this work could be extended to mixed designs with within- 
and between-subject factors. A covariate could be handled using different strategies, 
including non-parametric methods with smoothers (Wilcox, 1997; Wilcox, 2022, Chapter 
12).

A referee inquired about how applied researchers might report results based on the 
methods studied here. We suggest reporting results as done in Table 1 and Table 2.
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