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Abstract
Mplus and LatentGOLD implement the Vuong-Lo-Mendell-Rubin test (comparing models with K 
and K + 1 latent classes) in slightly differ manners. While LatentGOLD uses the formulae from 
Vuong (1989; https://doi.org/10.2307/1912557), Mplus replaces the standard parameter variance-
covariance matrix by its robust version. Our small simulation study showed why such a seemingly 
small difference may sometimes yield rather different results. The main finding is that the Mplus 
approximation of the distribution of the likelihood-ratio statistic is much more data dependent 
than the LatentGOLD one. This data dependency is stronger when the true model serves as the 
null hypothesis (H0) with K classes than when it serves as the alternative hypothesis (H1) with K + 
1 classes, and it is also stronger for low class separation than for high class separation. Another 
important finding is that neither of the two implementations yield uniformly distributed p-values 
under the correct null hypothesis, indicating this test is not the best model selection tool in 
mixture modeling.
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Since Version 2.12, the Mplus program contains an option to output the Vuong-Lo-Men
dell-Rubin (VLMR) test for the comparison of mixture models with K and K + 1 classes 
(Muthén & Muthén, 2002). This test is based on the work by Vuong (1989), who proposed 
a generalized likelihood-ratio (LR) test for comparing two models in situations in which 
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the standard LR test is not valid. Lo, Mendell, and Rubin (2001) proposed applying 
Vuong’s LR test in the context of mixture models. More specifically, they showed how 
it can be used for comparing a K-class and a K + 1-class mixture model of univariate 
normal distributions. Because Mplus implements the VLMR test for any type of mixture 
model, it is commonly used by Mplus users as an alternative to the computationally more 
demanding bootstrap likelihood-ratio test (BLRT) in the context of latent class analysis 
(LCA), latent profile analysis (LPA), and mixture growth modeling. A non-significant 
result indicates the model with K + 1 classes does not fit better than the model with K 
classes, implying the K-class model can be retained.

The tutorial on the UCLA Statistical Consulting (2021) webpage illustrates both the 
VLMR test and the BLRT provided by Mplus using a LCA with 9 dichotomous indicators. 
When testing the 2-class model against the 3-class model, the authors obtained a LR 
value of 39.025, for which the VLMR test and the BLRT yielded p-values of .15 and 
.00, respectively. These results did not only contradict one another, the non-significant 
p-value of the VLMR test for the rather large LR value of 39.025 with only 10 parameters 
difference was also somewhat counterintuitive. The tutorial authors also expressed some 
doubts about the VLMR test result, and therefore proposed using the 3-class model as the 
final model (thus following the BLRT result).

On popular request, the VLMR test was implemented in LatentGOLD Version 6.0 
(Vermunt & Magidson, 2021). However, when comparing LatentGOLD’s results with 
those reported by Mplus for the data set on the UCLA website, we noticed that our own 
calculations yielded a highly significant p-value (p < .001), differing substantially from 
the Mplus result (p = .15). Mplus also reports the mean and standard deviation of the esti
mated VLMR distribution, which for the application concerned yielded a mean of 20.26 
and a standard deviation of 22.22, while LatentGOLD reports values of 11.80 and 7.49, 
respectively. This shows that the two programs are using rather different distributions to 
obtain the p-value corresponding to the observed VLMR value. Fortunately, we were able 
to exactly reproduce the Mplus results with an alternative implementation of the Vuong 
test; that is, by replacing the negative inverse Hessian (the non-robust estimator of the 
variance-covariance matrix of the model parameters) by its robust or sandwich estimator. 
Note that Mplus requires using the MLR (maximum likelihood robust) estimator when 
requesting the VLMR test with the TECH11 option, which hinted us in this direction. 
Though the Mplus developers may have had good reasons for using this modification of 
the Vuong test, we have not been able to find a theoretical justification for this choice in 
the literature.

Let us look in more detail into the Vuong test of interest, which he referred to as 
the LR test for nested or overlapping models (note that he proposed another test for 
non-nested or non-overlapping models). According to Vuong (1989), in such situations 
(under some regularity conditions) the asymptotic distribution of the LR statistic is a 
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weighted sum of χ12 random variables, where the (possibly negative) weights are the 
eigenvalues of a matrix WVuong. This matrix is defined as follows:

WVuong =
−BH1AH1

−1 −BH1H0AH1
−1

BH1H0′ AH0
−1 BH0AH0

−1 ,

where AH1 and AH0 are matrices of second derivatives of the log-likelihood of the model 
serving as alternative hypothesis (H1) and as null hypothesis (H0) (in mixture model
ing, the K + 1 and K-class model), respectively, and BH1, BH0, and BH1H0 are matrices 
containing sums across observations of the cross-products of the first derivatives of the 
individual log-likelihood contributions of the H1 model (BH1), of the H0 model (BH0), and 
of the H0 by H1 model (BH1H0).This is the formulation used by LatentGOLD 6.0 (Vermunt 
& Magidson, 2021). The Mplus implementation in the following:

WMplus =
BH1VH1

−1 BH1H0VH1
−1

−BH1H0′ VH0
−1 −BH0VH0

−1 ,

where VH1
−1 = AH1

−1BH1AH1
−1 and VH0

−1 = AH0
−1BH0AH0

−1. That is, Mplus replaces minus the in
verse Hessian −AH1

−1 and −AH0
−1 by the robust variance estimators VH1

−1 and VH0
−1.

The sum of the eigenvalues of WVuong (or of WMplus   in Mplus)  yields the mean of the 
(estimated) distribution of the VLMR statistic, whereas the square root of twice the sum 
of the squared eigenvalues yields its standard deviation. The p-value for the observed LR 
value is obtained using the method proposed by Imhof (1961).

Note that applications of the general Vuong test described above, as well as of var
iants for non-nested and non-overlapping models, have also been proposed in structural 
equation modeling (Merkle et al., 2016) and item response theory modeling (Schneider 
et al., 2020). Since the Vuong tests implemented in LatentGOLD are also applicable to 
structural equation and item response theory models, we were able to confirm that 
the LatentGOLD results match those obtained with the R package nonnest2 (Merkle & 
You, 2018). It should be noted that the Vuong test may also be applied to optimization 
functions beyond maximum likelihood (Golden, 2003).

A small simulation study was performed with the aim to explore the consequences 
of the different implementation of the VLMR test in Mplus and LatentGOLD. Our simula
tion was not meant to show that one method is better than the other, but to gain some 
understanding on why the two methods may give different results; that is, on why they 
may give different p-values.
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Method
For our small simulation study, we used the LCA and LPA conditions of the well-known 
simulation study by Nylund et al. (2007) as a starting point. More specifically, from their 
Table 2, we took the LCA and LPA populations with 8 items, 4 classes, and equal class 
sizes. The entropy R-squared values were .79 and .88 for the LCA and LPA population, 
respectively, showing classes are well separated in both conditions. We also consider 
using their LCA and LPA populations with 15 items, but these had very large entropy 
R-squared values (.98 and 1.00, respectively), which we thought would be less interesting 
settings for a mixture model simulation. Because we also wanted to compare the two 
versions of the VLMR test in a condition with less well separated classes, we took the 
3-class maximum likelihood solution obtained with the data set from the UCLA website 
as our third condition. This 9-item population model has unequal class sizes and an 
entropy R-squared value of .44. The sample size was set to 1000 in all three conditions, 
and we run 1000 replications per condition.

While Nylund et al. (2007) focused on the Type I error rate and the power for the 
VLMR test for a given alpha level, we investigated:

1) The sampling distribution of the mean and the standard deviation 
of the estimated distribution of the VLMR statistic. As explained 
above, these are simple functions of the eigenvalues of WVuong (or 
WMplus). Ideally these should not vary too much across replication 
samples.

2) The full sampling distribution of the p-values. Ideally, this distri
bution should be close to uniform when testing the true model (i.e., 
when H0 is true).

The simulation study was performed using the Syntax version of LatentGOLD 6.0, which 
also allows obtaining the Mplus version of the VLMR test by requesting robust standard 
errors and adding the keyword “mplus” to the list of output options. When running a 
LCA or LPA for a range of classes at once, VLMR statistics are obtained automatically as 
part of the output. The Appendix shows the syntax used to generate a data set, as well as 
the syntax used to run the models for a simulated data set.

Results
Table 1 presents the results we obtained when testing the true model with K classes 
(as H0) against the alternative model with K + 1 classes (as H1). This table provides 
information on the sampling distribution of the estimated mean and estimated standard 
deviation of the VLMR distribution used to obtain the p-values (“Mean of VLMR distribu
tion” and “StdDev of VLMR distribution”), as well as on the sampling distribution of the 
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p-values themselves. For these quantities, we report a series of percentiles, the mean, and 
the standard deviation across 1000 simulation replications.

As can be seen, “Mean of VLMR distribution” and “StdDev of VLMR distribution” 
vary considerably across replications (see, for example, the difference between the 5th 
and 95th percentile and the value reported in the “StdDev” column). This variation is 
largest for the LCA with low class separation (“LCA-3”) followed by the LPA (“LPA-4”) 
and the LCA with high separation (“LCA-4”). But more importantly, the variation is 
much larger for Mplus than for LatentGOLD. For example, for the “LCA-3” condition, 
the 5th and 95th percentile of “Mean of VLMR distribution” equal 2.83 and 14.81 for 
LatentGOLD, whereas these equal -14.34 and 57.14 for Mplus. A similar pattern can be 
observed for “StdDev of VLMR distribution”. What can also be seen is that the mean 
of these quantities across replications (i.e., in the “Mean” column) is much larger for 
Mplus than for LatentGOLD, which shows that (on average) the two programs use 
rather different distributions for obtaining the VLMR p-values. Moreover, the fact that 
percentiles and “VLMR p-values” do not match with one another shows the p-values are 
clearly not uniformly distributed in the three investigated conditions. This applies both 
to Mplus and LatentGOLD, though the Mplus p-values are closer to uniform than those 
of LatentGOLD.

Table 2 presents the same measures as Table 1, but now for the VLMR test of the 
model with K-1 classes (as H0) against the true model with K classes (as H1). As can 
be seen, compared to what we saw in Table 1, the sampling variation of “Mean of 
VLMR distribution” and “StdDev of VLMR distribution” is rather small with LatentGOLD, 
though still somewhat larger in the low separation condition (“LCA-3”). Again, Mplus 
shows larger sampling variation than LatentGOLD, and this difference is largest in the 
low separation condition. The means of “Mean of VLMR distribution” and “StdDev of 
VLMR distribution” are again (much) larger for Mplus than for LatentGOLD, which 
shows that also for this test the two VLMR versions use rather different distributions 
for obtaining the p-values. The p-value is always 0 in the conditions with a high-class 
separation, which corresponds to a power of 1.0 as was also reported by Nylund et al. 
(2007). In the low separation condition, we see that the p-value is smaller than .05 up to 
95th percentile for LatentGOLD but already larger than .05 from the 75th percentile for 
Mplus.
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Discussion and Conclusion
In this paper, we explained how the Mplus and LatentGOLD implementions of the VLMR 
test differ from one another. While LatentGOLD uses the formulae from Vuong (1989) 
and Lo et al. (2001), Mplus uses slightly modified formulae where the standard non-ro
bust variance-covariance matrix of the parameters is replaced by its robust version.

We performed a small simulation study to explore the consequences of this seemingly 
minor difference. Our simulation was not meant to show that one method is better than 
the other, but to gain some understanding on why the two methods may give different 
results and to raise awareness regarding these differences among potential users.

In the simulation study we saw much larger variation of characteristics of the estima
ted sampling distribution (its mean and its standard deviation) across simulated data set 
with Mplus than with LatentGOLD. Our main finding is therefore that in the Mplus 
implementation, the approximation of the distribution of the LR statistic is much more 
data dependent than in the LatentGOLD implementation. This effect is stronger (and, 
thus, the differences between Mplus and LatentGOLD are larger) when the true model is 
the H0 model than when the true model is the H1 model, and it is also stronger for low 
class separation than for high class separation. We also found large differences between 
Mplus and LatentGOLD in the average of the mean and the standard deviation of the 
estimated distribution of the LR statistic, showing the two implementations derive the 
p-value of the observed VLMR value from rather different estimated distributions.

Another important finding is that neither of the two implementation yield uniformly 
distributed p-values under the null hypothesis. The Mplus p-values are closer to uniform 
than those from LatentGOLD. But, overall, it seems the VLMR statistic is not the best 
measure for model selection in mixture models. This aligns with criticism on the VLMR 
test claiming that the regularity conditions mentioned by Vuong do not hold for mixture 
models (Jeffries, 2003; Wilson, 2015). It therefore seems better to use the BIC or the BLRT 
instead. In contrast to the VLMR test, the BLRT does not rely on asymptotic results, 
but instead constructs the distribution of the likelihood-ratio test statistic of interest by 
Monte Carlo simulation. Simulation studies by Feng and McCulloch (1996), McLachlan 
and Peel (1997), and Nylund et al. (2007) showed this approach to work well.

We took the simulation setup from Nylund et al. (2007) as our starting point since 
this is the key reference for the comparison of class enumeration measures in LCA 
and LPA. We selected two somewhat favorable conditions, that is, LCA and LPA with 
a relatively large sample size, well-separated classes, and equal class proportions. Given 
the well-separated classes, it was not surprising that the encountered power to reject 
the model with K-1 classes was 1.00 for these two conditions. In the third condition 
with bad-separated classes, the Mplus approach showed much larger acceptance rates of 
the (incorrect) null than the LatentGOLD approach. This is in agreement with what we 
observed when analyzing the example data set from the UCLA website.

Vermunt 79

Methodology
2024, Vol. 20(1), 72–83
https://doi.org/10.5964/meth.12467

https://www.psychopen.eu/


Lo et al. (2001) proposed a slightly modified version of the VLMR test, referred 
to as the adjusted Lo-Mendell-Rubin (aLMR) test. It involves dividing the value of the 
test statistic (the LR value) by a constant which depends on the sample size and the 
number of additional parameters when increasing the number of classes by one. For 
our three simulation conditions, this constant equals 1.016 (LCA-4), 1.016 (LCA-4), and 
1.014 (LCA-3). Since the aLMR test uses the same sampling distribution as the VLMR 
test and since the constant is very close to 1, our results on the Mplus and LatentGOLD 
comparison also apply to the aLMR test.

As our simulation settings were somewhat limited, future research may involve a 
more extended comparison between the Mplus and LatentGOLD approach, and may aim 
to yield a conclusion regarding which method is the one to be preferred. It may also be 
possible to derive (more extreme) adjustments of the VLMR test yielding more uniformly 
distributed p-values for a broad range of condition (such as model types, class-separation 
levels, and sample sizes), in which case the comparative performance of the Mplus and 
LatentGOLD implementations should be re-evaluated.

Finally, when estimating LCA models, one often obtains boundary solutions. In such 
cases, Mplus treats the threshold parameters concerned as fixed parameters taking on 
a large positive or negative value (typically 15 or -15). It is, however, unclear whether 
this is a valid approach when using the VLMR test. By default, LatentGOLD prevents the 
occurrence of boundary solutions by using posterior mode estimation; that is, by using 
Dirichlet priors for the model probabilities. In our simulation, we did not use this option 
since it is unclear whether the VLMR test can be used with posterior mode instead of 
maximum likelihood estimates of the H0 and H1 models. This is also a topic for future 
research.
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the reported simulation study. To generate a data set one needs to define the population model 
of interest, use the “outfile” option “simulation”, provide a case/frequency weight indicating the 
sample size, and specify the population parameters as starting values between “{}” at the end of the 
equations. For the LPA with 4 classes, the Syntax file “simulate.lgs” contain this the model setup:
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    options
       output parameters standarderrors profile;
       outfile 'sim.txt' simulation;
    variables
       caseweight freq1000;
       dependent (y1-y8) continuous;
       latent Cluster nominal 4;
    equations
       Cluster <- 1;
       y1 - y8 <- 1 | Cluster;
       y1 - y8;
       {0 0 0
       2 0 0 0
       2 0 0 0
       0 2 0 0
       0 2 0 0
       0 0 2 0
       0 0 2 0
       0 0 0 2
       0 0 0 2
       1 1 1 1 1 1 1 1}

The Syntax used to run models from 3 to 5 classes using the generated data file “sim.txt” is as 
follows:

    options
       maxthreads all; 
       startvalues seed=0 sets=32 iterations=250;
       output parameters standarderrors profile append='LG.csv';
    variables
       dependent (y1-y8) continuous;
       latent Cluster nominal 3:5;
    equations
       Cluster <- 1;
       y1 - y8 <- 1 | Cluster;
       y1 - y8;

Note that by requesting models from 3 to 5 classes, one obtains VLMR tests comparing models 
with 3 and 4 classes and models with 4 and 5 classes. With “append='LG.csv'”, we indicate that the 
compact version of the output (which includes the VLMR information) should be appended to an 
output file in csv format. The Mplus version of the VLMR tests are obtained by using “standarder
rors=robust” and adding the keyword “mplus” to the output options. The 1000 replications can be 
performed by running LatentGOLD in batch mode as follows:

    lg60.exe simulate.lgs estimate.lgs /b /r 1000

The Vuong-Lo-Mendell-Rubin Test in Mplus and LatentGOLD 82

Methodology
2024, Vol. 20(1), 72–83
https://doi.org/10.5964/meth.12467

https://www.psychopen.eu/


Here the /b switch indicates the program should run in batch model and the /r switch indicates the 
models in the specified lgs files should be run multiple times (here 1000 times).
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