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Abstract
Estimating the number of latent factors underlying a set of dichotomous items is a major challenge 
in social and behavioral research. Mokken scale analysis (MSA) and exploratory graph analysis 
(EGA) are approaches for partitioning measures consisting of dichotomous items. In this study we 
perform simulation-based comparisons of two EGA methods (EGA with graphical least absolute 
shrinkage and selector operator; EGAtmfg with triangulated maximally filtered graph algorithm), 
two MSA methods (AISP: automated item selection procedure; GA: genetic algorithm), and two 
widely used factor analytic techniques (parallel analysis with principal component analysis (PApc) 
and parallel analysis with principal axis factoring (PApaf)) for partitioning dichotomous items. 
Performance of the six methods differed significantly according to the data structure. AISP and 
PApc had highest accuracy and lowest bias for unidimensional structures. Moreover, AISP 
demonstrated the lowest rate of misclassification of items. Regarding multidimensional structures, 
EGA with GLASSO estimation and PApaf yielded highest accuracy and lowest bias, followed by 
EGAtmfg. In addition, both EGA techniques exhibited the lowest rate of misclassification of items 
to factors. In summary, EGA and EGAtmfg showed comparable performance to the highly accurate 
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traditional method, parallel analysis. These findings offer guidance on selecting methods for 
dimensionality analysis with dichotomous indicators to optimize accuracy in factor identification.

Keywords
exploratory graph analysis, Mokken scale analysis, latent factors, community detection, dichotomous data, 
dimensionality, network psychometrics, parallel analysis

Dimensionality analysis is an important step in scale or questionnaire development. 
The determination of the theoretically consistent number of latent factors to retain can 
be a major challenge for researchers (Lorenzo-Seva & Ferrando, 2023), especially with 
dichotomous indicators or items (Lubbe, 2019). Many standard estimation techniques in 
dimensionality assessment, such as normal theory maximum likelihood (ML), assume 
that variables are continuous and normally distributed (Rhemtulla et al., 2012), which 
is violated with dichotomous variables. Therefore, relying on standard or traditional 
methods such as parallel analysis (PA; Horn, 1965) for estimating the dimensionality of 
the latent structure with dichotomous indicators with accuracy has become a central 
issue in many simulation studies (Antino et al., 2018; Ayanwale et al., 2020; Finch, 2020; 
Lubbe, 2019), as well as software selection (e.g., Chen & Zhang, 2021; Lee & Cham, 2024; 
Svetina & Levy 2012) for such work. Standard factor analytic approaches applied to cate
gorial, and binary data tend to identify spurious factors in the presence of noncentered 
distributions. A main issue is that the magnitude of the correlation between the binary 
items depends on the: (a) magnitude of the true relationship, and (b) the response rate 
of alternative item responses. The difference in prevalence can produce subgroups of 
items that are spuriously related and lead to detection of spurious factors (Bernstein & 
Teng 1989). Even with adjustment techniques (e.g., DWLS, polychoric correlations) to 
avoid spurious factors, nonconvergence issues persist, especially with small sample sizes 
and asymmetrical item response distributions (e.g., Flora & Curran, 2004). The accuracy 
of techniques to identify the number of factors, such as parallel analysis, are also influ
enced by the distributional characteristics. Adjustments for these data conditions tend to 
improve accuracy, depending on data conditions (Lubbe, 2019), but are not perfect.

Several alternative methodologies for examining the latent structures of dichotomous 
item scales have been described. Among these, exploratory graph analysis (EGA) has 
been proposed as an accurate method for assessing the correct number of factors 
(Golino et al., 2020; Golino & Epskamp, 2017). EGA is a technique based on the net
work psychometrics approach (Epskamp et al., 2017) and first restricted to multivariate 
normal distributions. So, first estimates a network of variables (i.e., nodes) using the 
Gaussian graphical model (GGM; Lauritzen 1996) and applies the graphical least absolute 
shrinkage and selector operator (GLASSO; Friedman et al. 2008). Second, the walktrap 
algorithm (Pons & Latapy, 2006) is utilized to determine the communities or clusters 
of variables via the connections (i.e., edges/links) between the nodes (i.e., test items) 
of the estimated network. These edges represent partial correlation coefficients, where 
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the edges depict the strength of the connection between items (Epskamp et al., 2018). 
Notably, these communities are theoretically comparable to latent factors (Golino & 
Epskamp, 2017).

Golino et al. (2020) proposed an alternative network estimation method for EGA, the 
Triangulated Maximally Filtered Graph (TMFG) algorithm (Massara et al., 2016) as an 
alternative network estimation method for EGA. Specifically, they proposed substituting 
GGM with the TMFG algorithm in order to overcome drawbacks of using EGA with 
the former (Golino et al., 2020). The advantages of the TMFG algorithm include: (a) 
application with normal and non-normal data, (b) not constrained to partial correlation 
measures, and (c) stable performance across different sample sizes. Thus, EGA method 
with the TMFG algorithm is not restricted to multivariate normal distributions and parti
al correlation measures. Any association measure can be used, allowing its application 
with binary or polytomous variables.

Figure 1 depicts a visualization comparison of a simulated five-factor model with 
interfactor correlations of zero (e.g., orthogonal factors; Panel A) and .6 (multiple corre
lated factors; Panel B) and a sample size of 1000 using EGA with GLASSO estimation 
and TMFG. This figure shows a network of nodes connected by strong or weak edges 
based on their correlation strength. Nodes with higher correlations are closer together, 
while those with lower correlations are further apart. The figure is created using the 
EGA approach, which helps identify variable groupings by clustering variables with 
higher correlations. The nodes are color-coded to represent different factors. By using 
regularized partial correlations, we can obtain a clearer structure with five groups of var
iables in the high correlation structure. Additionally, the regularized partial correlations 
show stronger connections within clusters than between clusters for the high correlation 
structure (on the right), which helps depict the true simulated five-factor structure, even 
when the true correlation between factors is high.

Item response theory (IRT) has been used in educational and psychological measure
ment (Reise & Waller, 2009; Thomas, 2019). Mokken scale analysis (MSA; Mokken 1971) 
is IRT approach to constructing questionnaires and tests in various fields (Sijtsma et 
al., 2008; Wind & Wang, 2023). van der Ark et al., (2008) classified MSA into two basic 
steps. The first step evaluates a test with several ordered items using the monotone ho
mogeneity model in either a confirmatory or an exploratory approach. The confirmatory 
approach is applied in the case of items that are assumed to form a single scale, whereas 
the exploratory approach is used to determine whether a test contains one or more scales 
(van der Ark et al., 2008). The first step of MSA also involves an exploratory assessment 
to partition an item pool into different clusters. The second step of MSA is concerned 
with the investigation of the psychometric properties of the scales identified in the first 
part.

The overall objective of MSA is to select from a given pool of items, where clustered 
items range from weak to strong discrimination, as many sufficiently-discriminating 
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items as possible in each cluster (Mokken, 1971; Straat et al., 2013). Typically, the 
researchers define what they consider to be “sufficient” discrimination (Straat et al., 
2013:77), as sufficient discrimination may differ on the construct measured and purpose 
of scores (e.g., norm vs. criterion decisions). To this end, Mokken (1971) suggested an 
automated item selection procedure (AISP) to partition an item set into a unidimensional 
cluster or multiple clusters depending on the data, where each cluster assesses the same 
latent trait and satisfies particular scaling criteria (Mokken, 1971, pp. 189–190). Each 

Figure 1

A Visualization Comparison of a Simulated Five-Factor Model With Interfactor Correlations of Zero (Left) and .6 
(Right) and a Sample Size of 1000 Using EGA With Glasso Estimation and With TMFG

Note. Nodes correspond to variables, edges correspond to correlations, and the node colors correspond to the 
simulated factors. This figure is extracted from our simulation data.
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cluster is referred to as the Mokken scale that involves sufficiently-discriminating items. 
Straat et al. (2013) proposed the genetic algorithm as an alternative to the AISP for 
optimal item partitioning into Mokken scales. The aim of both Mokken's original AISP 
and the later GA method is to find the largest Mokken scale possible with sufficiently-
discriminating items, and to form from the remaining items a second largest Mokken 
scale possible with sufficiently-discriminating items. If the data allow, the process may 
continue to form the largest additional scales (i.e., the third, fourth,…etc.) and perhaps 
detect one or more unscalable items (Mokken, 1971; Straat et al., 2013).

Notably, although traditional factor-analysis methods are widely used, many of these 
methods have limitations with categorical data (Golino et al., 2020). For instance, Garrido 
et al. (2013) noted that parallel analysis is highly sensitive to various factors, including 
sample size, factor loadings, number of variables per factor, and factor correlations. 
Additionally, factor analytic techniques present challenges beyond dimension estimation, 
such as subjective interpretation of factor loadings and rotation of the loadings matrix 
(Sass & Schmitt, 2010).

Therefore, many authors have suggested using the exploratory MSA approach and 
network psychometrics approach to investigate the internal structure of dichotomous 
item scales (Abdelhamid et al., 2020; Mokken, 1971; Nuño et al., 2022). Furthermore, 
MSA techniques and EGA methods used to extract data dimensions have shown promise 
compared to traditional factor analysis (parallel analysis) methods, mainly in sample 
sizes of 500 or higher and in conditions with number of Factors 4 and 6 (Antino et al., 
2018; Golino et al., 2020; Haslbeck & van Bork, 2024; Straat et al., 2013; van Abswoude et 
al., 2004).

The Current Study
This investigation focused on methods that can verify the internal structure of scales 
containing dichotomous items. Importantly, these methods can be applied to a wide 
range of research contexts in psychology, and more broadly the social and behavioral sci
ences, where an alternative to factor analysis is warranted due to the data at hand. This 
study assessed the performance of EGA (EGA with GLASSO and EGAtmfg), MSA (AISP 
and GA) techniques and parallel analysis with principal component analysis (PApc) and 
parallel analysis with principal axis factoring (PApaf) with respect to the proportion of 
the number of factors underlying the latent structure, parameter bias, root mean squared 
deviation, and misclassification rate. To this end, we examined the effect of sample size, 
factor intercorrelation, and the number of indicators per factor on the accuracy of EGA 
with GLASSO, EGAtmfg, GA, AISP, PApaf and PApc using Monte Carlo simulation. 
Because our study is concerned with scales or tests, the indicators of the latent variable 
are called items.

The current study differs in several respects from earlier research into the perform
ance of EGA and MSA methods. Previous studies on the performance of EGA assessed 
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only the accuracy of the number of factors, regardless of whether items were correctly 
classified on their corresponding factor (Golino et al., 2020; Haslbeck & Van Bork, 
2024). Here, by contrast, we assess both the accuracy of the number of factors and the 
classification of items to the correct factor. The latter is of interest since it is possible that 
number of factors is retrieved correctly but factors may contain items that are not classi
fied correctly, which negatively affects the accuracy of these methods. Their accuracy 
must therefore be examined with respect to two criteria: correct item classification on 
the true factor and correct estimate of the number of factors. This corresponds to the 
main aim of the current study. Regarding the number of latent variables (e.g., factors), 
previous simulation studies concerned with Mokken methods (Straat et al., 2013) were 
limited to two factors. Furthermore, previous studies of EGA are limited to just one, two, 
three, or four factors.

The current study therefore seeks to evaluate the performance of these methods 
across structures that are widely used in psychological and sociological measures (e.g., 
one, two, four, and five factors). Finally, the number of replications per condition in 
previous studies was only 100 or 500 (Golino et al., 2020; Straat et al., 2013), whereas 
in the current study the number of replications is expanded to 1000 so as to achieve 
accuracy in the conclusions drawn.

Theoretical expectations regarding the performance of EGA methods versus MSA 
and parallel analysis methods depend on various assumptions and properties inherent 
to both methodologies. We anticipate that the EGA techniques will perform better in 
terms of accuracy of factor identification compared to Mokken techniques, especially 
in the condition of scales that contain highly correlated factors. This is because EGA 
methods are designed to identify sparse and low-rank substructures in high-dimensional 
data, which can be helpful for detecting highly correlated factors. EGA methods use 
regularization techniques (L1 or LASSO), its objective is not to reduce the variance of the 
individual estimates, but rather to improve interpretability and select a more parsimoni
ous model. Despite the high variance in highly correlated situations, L1 regularization 
helps to select a subset of relevant variables by forcing some coefficients to be exactly 
zero. This selection process can be useful in identifying the number of really important 
factors, even when the variables are highly correlated, as it tends to keep only one of the 
factors correlated, thus reducing the multicollinearity problem. On the other hand, MSA 
methods may struggle to identify these correlations since they tend to focus on finding 
groups of variables with similar distributions or patterns.

Additionally, we expect that the EGA techniques will perform better than MSA 
techniques in terms of misclassification rate. This is because EGA methods usually 
use regularization techniques like the least absolute shrinkage and selection operator 
(LASSO; Tibshirani, 1996) to estimate coefficients, which reduce parameter bias and 
improve model performance. Conversely, MSA methods may suffer from overfitting or 
underfitting since they focus on grouping variables based on their distribution or pattern 

Partitioning Items Using Mokken Analysis, EGA and PA 192

Methodology
2024, Vol. 20(3), 187–217
https://doi.org/10.5964/meth.12503

https://www.psychopen.eu/


rather than using regularization techniques. Furthermore, we anticipate accuracy and 
bias to degrade in conditions with smaller sample sizes, and larger number of factors and 
indicators. Finally, we expect that EGA methods will perform comparably to the highly 
accurate traditional method of parallel analysis (Golino et al., 2020; Golino & Epskamp, 
2017).

It is important to acknowledge that the expectations presented are based on certain 
assumptions and may not always be applicable in applied contexts. The effectiveness 
of these methods can be affected by several factors such as sample size, factor intercor
relation, and the number of indicators per factor. Therefore, it is crucial to assess the 
performance of each method through appropriate simulation studies before drawing 
conclusions about their respective advantages.

Method

Simulation Model
Dichotomous data were generated using a multidimensional two-parameter logistic IRT 
(M2PL) model (Reckase, 2009). The multidimensional 2PL formula is written as:

Pi θj = eD(aiθj′ + bi)

1 + eD(aiθj′ + bi) (1)

where aiθj′ + di = ai1θj2 + ai2θj2 + … + aimθjm + di=∑l = 1
m ailθjl + bi (2)

where θj'represents m latent factors (θj' = θj1, …, θjm) for Subject j, ai indicates item slopes 
(discrimination parameters: ai = a1, …, am) for item i, bi represents the item intercept term 
(difficulty) for Item i, and D indicates a scaling adjustment (usually 1.702).

Equation (1) can be written as:

Pi θj = 1
1 + e−D(aiθj′ + bi) (3)

Notably, Multidimensional Item Response Theory models are frequently employed to 
develop and investigate the psychometric properties of measures in educational and 
psychological assessments. These models are used for analyzing dichotomous data in 
questionnaires related to general health, education, and personality (Ackerman et al., 
2003; Ayanwale et al., 2024; Chernyshenko et al., 2001; Immekus et al., 2019; Li et al., 
2012).
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Procedures for Examining Dimensionality
GLASSO

The default EGA (using the GGM model) is based on the GLASSO estimation, which 
utilizes the LASSO technique (Tibshirani, 1996). This method aims to achieve a sparse 
network model that can be built at various levels, from a fully connected network to a 
totally disconnected network.

TMFG Algorithm

The TMFG algorithm is a filtering method, which has been proposed as a way of detect
ing communities/clusters in a network (Massara et al., 2016). This method constructs a 
triangulation that maximizes a score function (e.g., the sum of the edge weights) related 
to the quantity of information preserved by the network. This method filters a network 
to retain a total of 3n–6 edges (n indicates the number of nodes) from the estimated 
network through the planarity constraint (Christensen et al., 2018). This method first 
constructs a sub-network from the original network with three-node cliques (a triangle 
with connected nodes) based on zero-order correlations. Second, a node is added to 
this sub-network using a score function that maximizes the sum weights of the three 
connecting edges. This sub-network will be a four-node clique (called tetrahedron, with 
the highest overall total weights score), insofar as a node is added to the three-node 
cliques (Christensen et al., 2018).

Golino et al. (2020) proposed two EGA techniques: an extension of EGA by expanding 
the correlation matrix to have orthogonal correlations (“expand”) to deal correctly with 
unidimensional structures, and EGA using the TMFG algorithm (EGAtmfg). They utilized 
the EGA approach to “expand” the empirical correlation matrix by adding four variables 
that are highly correlated with each other (r = .50; roughly equivalent to factor loadings 
of .70) and completely uncorrelated (0.00) with all other empirical variables. They com
pared these methods with five traditional methods and found that EGA, EGAtmfg, and 
parallel analysis performed well. Furthermore, EGA with GLASSO estimation was more 
accurate in terms of percentage of correct numbers of factors recovery than the TMFG 
estimation, suggesting EGA with GLASSO may be the preferred method.

Furthermore, Christensen et al. (2024) adjusted the EGA approach by applying 
the Leading Eigenvalue (“LE”) community detection algorithm (Newman, 2006) to the 
correlation matrix, This adjustment proved particularly effective in enhancing EGA’s 
performance in handling unidimensional structures. The LE algorithm utilizes the first 
eigenvector of the modularity matrix to determine the number of communities. It accom
plishes this by iteratively dividing up the network into two communities until further 
modularity improvements are no longer attainable.
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The Automated Item Selection Procedure (AISP)

The automated item selection procedure (AISP), known as a bottom-up item selection 
method, forms a cluster of items in several steps (Sijtsma & Molenaar 2002; Wismeijer 
et al., 2008). First, the item pair with the greatest scalability coefficient value H jk1, which 
is much greater than 0 and surpasses the lower bound c, is chosen from any 1

2 J J − 1
item pairs. Let item pair (j, k1) be the starting pair for constructing a Mokken Scale 
1. A third item, k2, is then chosen for Mokken Scale 1 from the remaining items J-2, 
with the following conditions being fulfilled: (i) this third item correlates positively with 
the previously chosen items j and k1, (ii) it has a scalability value of H jk2 and Hk1k2
is considerably above 0 and surpasses the lower bound c, and (iii) the chosen items j, 
k1and   k2 provide the maximum scalability H  for Mokken Scale 1, compared with the 
remaining items. This process is then replicated with a fourth item, a fifth item, etc. The 
AISP will stop on a selected item for Mokken Scale 1 if there are no remaining items that 
achieve the conditions. If the data allow (i.e., they are multidimensional), the AISP forms 
Scale 2, Scale 3, Scale 4, and so on from the remaining items. Note that some items may 
be unscalable. More detailed information about the Mokken Scale Analysis (MSA) and 
scalability coefficients is available online in the supplementary materials by Abdelhamid 
et al. (2024a).

Genetic Algorithm Procedure

Straat et al. (2013) suggested the GA procedure based on a genetic algorithm for parti
tioning test items into Mokken scales. The GA attempts to select the best partitioning 
that meets Mokken’s objective among all simultaneously possible partitionings of the 
item pool. The GA method produces an initial population that involves random parti
tionings and then examines each partitioning according to Mokken’s goal. The initial 
population with random partitioning is then replaced by the second random population. 
The probability of choosing the same partitioning that best achieved Mokken’s goal in 
the first population increases in the next random population of partitioning. The GA 
then assesses all partitioning in the second population and generates a third population 
using the same procedures as for the second population. It identifies the best partitioning 
based on Mokken’s goal in each population of random partitioning up to the latest 
population. Finally, the GA reports the best partitioning, which is invariant across almost 
all populations (Straat et al. 2013). In recent years, the GA has been used to select 
Mokken scales (Abdelhamid et al., 2020; Ahmadi et al., 2016).

Parallel Analysis Comparison

We utilized two parallel analysis algorithms (PApaf and PApc). We chose these algo
rithms due to their wide-ranging evaluation in the literature (for example, Garrido et 
al., 2013) and their comparable performance with EGA in a previous simulation study 
(Golino et al., 2020). In simpler terms, parallel analysis involves creating a large number 

Abdelhamid, Hidalgo, French, & Gómez-Benito 195

Methodology
2024, Vol. 20(3), 187–217
https://doi.org/10.5964/meth.12503

https://www.psychopen.eu/


of replicate datasets by randomly selecting values from each variable in the original 
dataset (Horn, 1965). The suggested factor option is the number of factors (PApaf) 
or components (PApc) whose eigenvalues in the original dataset are greater than the 
mean of the resampled datasets. We conducted parallel analysis based on the tetrachoric 
correlation coefficient due to the nature of data, which is dichotomous.

Design Conditions
We included a wide range of conditions that frequently appear in empirical studies using 
scales or questionnaires, as follows:

1. Sample size (three levels). Sample size was set to 250, 1000 or 5000 for each data 
generation model, thus covering the minimum of several observations required for 
structure analysis (Comrey & Lee, 1992; Golino et al., 2020; Savalei & Rhemtulla, 
2013; Straat et al., 2014). Thus, sample sizes of 250 and 1000 can be considered as 
sample size medium and large while a sample of 5000 observations allows for the 
evaluation of the dimensionality methods in conditions that can approximate their 
population performance (Golino et al., 2020).

2. Number of factors (four levels). The number of factors considered was one, two, four, 
and five, which reflects the dimensionality of most measuring instruments (Garrido 
et al., 2016; Henson & Roberts, 2006).

3. Factor correlations (three effect size levels). The correlation between factors was .0, .30, 
or .60, representing multidimensional scales whose factors are orthogonal and 
multidimensional scales whose factors are moderately and highly correlated (Cohen, 
1988), respectively.

4. Number of items per latent factor (eight levels for unidimensional conditions, two levels 
for multidimensional conditions). The number of items for unidimensional conditions 
was set to 5, 8, 10, 16, 20, 25, 32, and 40 items, covering the range from short to long 
scales. For multidimensional conditions (i.e., two, four or five underlying factors), 
the number of items per factor was set to five or eight, above the required minimum 
of three items for identification of a latent factor (Velicer et al., 2000; Widaman, 
1993).

Two characteristics were fixed in the simulation design. First, the values of item discrimi
nation parameters ranged from .8 to 1.4, with the mean discrimination fixed at 1. Second, 
to ensure a simple structure, and considering two factors as an example, discrimination 
parameters of the first half of the items (first-factor) had a mean aj1 = 1 and aj2 = 0, 
whereas for the second half of the items (second-factor) the mean was aj1 = 0 and aj2 = 1. 
In addition, the d parameter was drawn from a uniform distribution on the interval [−2, 
2].
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Data Generation
The total number of unidimensional conditions for data generation was 24, correspond
ing to 3 sample sizes × 1 number of factors × 8 number of items per factor. The 
total number of multidimensional conditions for data generation was 54 conditions, 
corresponding to 3 sample sizes × 3 number of factors × 2 number of items per factor 
× 3 factor correlations. For each condition, 1000 independent random data sets were 
generated in R (R Core Team, 2021). A total of 78 conditions combinations were studied. 
For each of these 78 conditions combinations, 1000 replicates were simulated.

Data Analysis
All data sets were analyzed using R packages and four methods: (1) the package ‘EGAnet’ 
(Golino & Christensen, 2020) was used to conduct all analyses for EGA with GLASSO 
and EGAtmfg, (2) the package ‘Mokken’ (van der Ark, 2012) was used to analyze all 
simulated data sets when using the two MSA methods (AISP and GA) with the default 
lower bound (c = .3); the lower bound c indicates the minimum level of discrimination 
(Hj) that items must meet to be included in the Mokken scale. In other words, items 
with a discrimination value below this threshold will not be included in the scale, (3) 
the package “psych” (Revelle, 2024) was used to conduct the parallel analysis using 
the fa.parallel function. An example of R syntax for conducting EGA, MSA methods, 
and Parallel Analysis is available online in Abdelhamid et al. (2024c) to facilitate the 
implementation of these methods.

Four complementary criteria were applied to assess the performance of methods:

1. The proportion of correctly estimated numbers of factors (pc) across all simulation 
replications was calculated for each method by:

pc = 
∑T
N for T = 

1   if   F i =   FT rue
0   if   F i ≠   FT rue

(4)

where F i is the number of factors identified by each method for replication i, FT rue is 
true dimensionality, and N represents the number of sample data generated for each 
condition (1000). True dimensionality is the extent to which each technique retrieves 
the true number of factors in the simulated data sets. The pc criterion ranges from 0 
(representing complete inaccuracy) to 1 (representing perfect accuracy).

2. The mean bias error (MBE) was estimated by:

MBE = ∑i
N F i = 1 − FT rue

N
(5)

The MBE indicates the average deviation from the correct number of factors where a 
negative value is considered as under-factoring, positive values indicate over-
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factoring and 0 indicates a total lack of bias. Mean bias error, instead of a relative 
bias measure, is used as a measure of accuracy because it provides a direct estimate 
of the amount of error in the parameter estimates.

3. The root mean squared deviation (RMSD) of the number of factors is reported for 
each method. The RMSD is expressed by:

RMSD = ∑i
N F i = 1 − FT rue

2

N
(6)

The RMSD is an indicator of the average deviation from the true factor number, and 
it also provides information about the dispersion of procedure estimates. A large 
value of the RMSD indicates greater variance in the number of factors reported by a 
method and the value of 0 represents perfect estimation accuracy.

4. Misclassification rate (%), which refers to the percentage of incorrectly classified 
items on a factor. This can be estimated as:

Misclassification rate  MR; % = ∑F
Total items , 

  F = 0   correctly classified item
1   incorrectly classified item

(7)

The best method is the one that achieves the minimum rate of item misclassification 
and the value of 0 reflects perfect estimation accuracy.

Results
The performance of the six methods (EGA with GLASSO, EGAtmfg, AISP, GA, PApaf, 
and PApc) was evaluated separately for designs with: (i) unidimensional conditions, (ii) 
multiple orthogonal factors, and (iii) multiple correlated factors. The results were presen
ted both graphically and descriptively. For each design, the main results are summarized 
as follows: (1) the best-performing method generally was determined based on pc, MR, 
MBE, and RMSD, followed by (2) a discussion of which method achieves better results 
than others under different conditions.

Unidimensional Conditions
The EGAnet package offers two options to the unidimensional problem, including “ex
pand” and “leading eigenvalue” (LE). Therefore, the current study tested both options 
for the two methods of EGA (e.g., EGA with GLASSO under expand option [EGA_ex
pand], EGA with GLASSO under LE option [EGA_LE], EGAtmfg under expand option 
[EGAtmfg_expand], EGAtmfg under LE option [EGAtmfg_LE]). Figure 2 and Figure 3 
summarize the average performance of the EGA, Mokken and PA methods for unidimen
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sional models. More detailed information about the performance of the methods for 
each condition by sample size (250 vs. 1000) is available online in Abdelhamid et al. 
(2024b), Supplementary Table S1. Overall, the AISP, GA and PApc achieved high accuracy 
(pc  >.99), an absence of bias, and a low RMSD. In addition, both the AISP and GA 
presented a low rate of misclassification. On the other hand, EGA procedures obtained 
lower accuracy rates and higher misclassification rate and RMSD than AISP and GA. 
But, EGA with GLASSO and EGAtmfg with LE option performed better than EGA with 
GLASSO and EGAtmfg with the expand option.

Notably, EGA_expand with GLASSO showed better performance only on shorter 
scales (i.e., 5-item, 8-item, 10-item), and it performed poorly when the number of items 
was 16 or more, especially for the small sample size (250). EGAtmfg_expand only per
formed well with 5-item and 8-item factors, and it failed to identify unidimensional 
models when there were 10 items per factor or with 16 items or more, where pc = 
.00. The performance of both EGA with GLASSO and EGAtmfg with the LE option 
was better when the number of items was 20 or less, but performance degraded as 
the number of items increased, being poor when the number of items was 32 or more, 
especially for the small sample size (250).

In comparison with EGA with GLASSO and EGAtmfg, the performance of the AISP, 
GA and PApc was significantly less affected as the number of items per factor increased, 
where pc values were close to one and MR, MBE and RMSD being values close to zero.

Increasing the sample size from 250 to 1000 or 5000 improved the performance of the 
AISP, GA, EGA with GLASSO _expand, EGA_LE, and EGAtmfg_LE (see Abdelhamid et 
al., 2024b, Table S1 and Figure 2 and Figure 3. Regarding EGAtmfg_expand, its average 
performance did not improve by increasing the sample size from 250 to 1000 or 5000. 
Moreover, it is worth noting that the performance of PApaf decreased when the sample 
size was increased to 5000 in comparison to the performance achieved with sample sizes 
of 250 or 1000.
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Figure 2

Proportion Correct, Misclassification Rate, Bias Error and Root Mean Squared Deviation of the Four Methods for 
Unidimensional Factors by the Independent Variables (Items per Factor and Sample Size)
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Figure 3

Proportion Correct, Bias Error, MR, and RMSD of the Four Methods for Unidimensional Factor Models Across the 
Levels of the Independent Variables
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Multidimensional Factor Models
Figures 4, 5, 6, 7, and 8 summarize the performance of the four methods (EGA with 
GLASSO, EGAtmfg, AISP, GA, PApaf and PApc) in estimating the correct number of 
factors by sample size, number of factors, factor correlation, and number of items per 
latent factor. More detailed information about the performance of the four methods for 
each condition is available online in Abdelhamid et al. (2024b), Supplementary Tables 
S2–S4.

Overall, all methods were more accurate with orthogonal factor models (r = 0) than 
with correlated factor models. Regarding multidimensional factor models in general, the 
average accuracy for EGA with GLASSO,EGAtmfg, PApaf and PApc was higher than that 
for both the AISP and GA. In particular, EGA with GLASSO and EGAtmfg showed an 
improvement in their performance as the number of items per factor increased, and also 
as sample size increased. A similar pattern was found with the other three criteria: MR, 
MBE, and RMSD (see Figures 4, 5, 6, 7, and 8).

Notably, EGA with GLASSO and EGAtmfg exhibited the smallest overall MR, fol
lowed by the AISP and GA. In addition, EGA with GLASSO showed the least bias, 
followed by PApaf and EGAtmfg. The two Mokken procedures, AISP and GA, yielded a 
larger MBE with under-factoring. EGA with GLASSO, EGAtmfg and PApaf were also the 
best methods when considering the RMSD criterion, values of which were higher with 
the GA, AISP and PApc.

Multiple Orthogonal Factors

With respect to multiple orthogonal factor models, EGA with GLASSO, EGAtmfg, PApaf, 
PApc and the AISP all achieved high accuracy, with an average of more than .99, whereas 
the average accuracy for the GA was only .789 (i.e., moderate accuracy). Concretely, EGA 
with GLASSO performed best with estimation of the correct number of factors with a 
smaller sample size (n = 250).

As shown in Figure 5, the performance of EGA with GLASSO, EGAtmfg, PApaf, 
PApc, and the AISP were improved when sample size increased from 250 to 1000 or 
5000 across all conditions. Interestingly, the GA demonstrated worse results with an 
increasing number of factors, especially for conditions with more than four factors; its 
overall mean accuracy (pc) for the two-factor, four-factor, and five-factor models was 
.998, .908, and .459, respectively.
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Figure 4

Proportion Correct, Misclassification Rate, Bias Error and Root Mean Squared Deviation of the Four Methods for 
Multidimensional Factors by Four Independent Variables
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Figure 5

Mean Proportion Correct (PC) of the Four Methods for Multidimensional Factors Models

Figure 6 displays the mean classification error rate of the four methods for the multidi
mensional factor model.

Figure 6 (left; r =.00) summarizes the MR results. These data show that EGA with 
GLASSO, EGAtmfg, PApaf, PApc, and the AISP performed well across all conditions 
regardless of the number of factors and sample size. However, this was not the case for 
the GA. It can be seen in Abdelhamid et al. (2024b), Supplementary Tables S2–S4, and 
Figure 6 that although the MR for the GA was very low when the number of factors 
was two (MR = .0012), it increased, on average, to .038 and .151 for the four-factor and 
five-factor conditions, respectively. This indicates a high item misclassification rate in 
the case of five-factor models (around 15%).
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Figure 6

Mean Classification Error Rate of the Four Methods for Multidimensional Factors Models

Figure 7 depicts the bias results (MBE) for the six methods. EGAtmfg and PApc were 
unbiased across all conditions. Specifically, the bias associated with EGA with GLASSO, 
PApaf and the AISP decreased when sample size increased from 250 to 1000 or 5000. The 
GA yielded low bias across all conditions, except for the following: the five-factor model 
(under-factoring) and the four-factor model with 8 items per factor (under-factoring) (see 
also Tables S3 and S4, in Abdelhamid et al., 2024b).

With respect to the RMSD, and as shown in Figure 4 and Figure 8 (left; r = 0), 
EGAtmfg and PApc performed the best, followed by the PApaf, AISP, EGA with GLASSO, 
and the GA.
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Figure 7

Mean Bias Error of the Four Methods for Multidimensional Factors Models
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Figure 8

Mean Root Mean Squared Deviation of the Four Methods for Multidimensional Factors Models

Multiple Correlated Factors

Figures 4, 5, 6, 7, and 8 display the results for conditions with multiple correlated 
factors (r =.30 and .60). All methods were less accurate under these conditions than they 
were with multiple orthogonal factor models. Closer inspection of the data showed that 
the order of methods with multiple correlated factors was, from best to worst and on 
average: EGA with GLASSO, PApaf, EGAtmfg, PApc, AISP, and GA.

In conditions where the correlation between factors was r = .3 and with a small 
sample size (n = 250), EGA with GLASSO, EGAtmfg, PApaf, PApc and the AISP exhibited 
high accuracy (more than 90%) in retrieving the number of factors, regardless of the 
number of items per factor. In contrast, the GA showed low accuracy rates with a sample 
of 250. Further, pc rates decreased when the number of correlated factors increased. All 
methods showed under-factor identification in the conditions r = .3, n = 250, and 5 items 
per factor, with EGA with GLASSO being the least biased, followed by the PApaf, the 
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EGAtmfg, the PApc, the AISP, and the GA, respectively. When there were 8 items per 
factor, the correlation between factors was .3, and sample size was 250, PAefa, PApc and 
EGAtmfg showed the least bias, followed by EGA with GLASSO, the AISP, and the GA. 
Notably, when the sample size was large (n = 1000 or 5000), the performance of EGA 
with GLASSO, EGAtmfg, PApaf, PApc, and the AISP improved, whereas the performance 
of the GA remained poor.

Regarding the conditions with highly correlated factors r = .6 , EGA with GLASSO 
and PApaf displayed, on average, high accuracy, followed by EGAtmfg. The accuracy 
of the AISP and the GA was very low across all of these conditions. When the sample 
size was small (n = 250), accuracy was under .90 for EGA with GLASSO, EGAtmfg and 
PApaf, and very low for the AISP, the GA and PApc. Specifically, in conditions of four 
and five correlated factors with few items per factor (n = 5) and a small sample size 
(n = 250), all methods displayed low accuracy rates. For scales that included 8 items 
per factor and with a small sample size (n = 250), the accuracy of PApaf, PApc, EGA 
with GLASSO and EGAtmfg improved, whereas that of the AISP and the GA did not. 
Concretely, PApaf, EGA with GLASSO and EGAtmfg displayed high accuracy (above 
85%) with a sample size of 1000 or 5000, regardless of the number of items per factor, 
except for the five-factor model with 5 items per factor in the case of EGAtmfg and PApc. 
By contrast, the performance of the AISP and the GA did not improve when sample size 
increased to 1000 or 5000.

Discussion
The assessment of true dimensionality for dichotomous data is a significant challenge in 
social and behavioral science research. The present study assessed the performance (in 
terms of pc, mean bias, RMSD, and MR) of four methods when applied to dichotomous 
items under several data conditions that are commonly found in psychological, sociolog
ical, and educational research. These methods were: EGA (using the GGM model) with 
GLASSO estimation, EGA with the TMFG algorithm, Mokken's original AISP, the GA, 
the PApaf, and the PAFpc. Using Monte Carlo simulation, an extensive assessment of 
these six methods was conducted by varying sample size, number of factors, number of 
items per factor, and factor correlations.

The clearest finding to emerge from the Monte Carlo simulation is that the per
formance of the six methods differed significantly according to data structure (i.e., 
unidimensional, orthogonal factors, and correlated factors). EGA with GLASSO estima
tion and PApaf yielded the greatest accuracy, the lowest bias, and the lowest rate of 
misclassification of items to factors in multidimensional structures (orthogonal factors 
and correlated factors), followed by EGAtmfg and PApc. Although the accuracy rates of 
EGA with GLASSO and EGAtmfg were high only for short unidimensional scales when 
unidimensionality was detected under the expand option. These findings are consistent 

Partitioning Items Using Mokken Analysis, EGA and PA 208

Methodology
2024, Vol. 20(3), 187–217
https://doi.org/10.5964/meth.12503

https://www.psychopen.eu/


with the results reported by Golino et al. (2020) and Golino and Epskamp (2017). As 
for the performance of MSA methods, this was significantly affected by high correlation 
between factors. Mokken's original AISP performed well (high accuracy, low bias, and 
low rate of misclassification of items) when the scale structure was unidimensional 
or when correlations between factors were low in orthogonal factor and multiple corre
lated factor models. Unlike the other methods, the GA exhibited better performance 
only under limited conditions, namely unidimensional scales, bidimensional scales with 
orthogonal factors, and multidimensional short scales (5 items per factor) with four or 
fewer orthogonal factors. In accord with these findings is a consistent result with newer 
proposed methods that show slight advantages over similar methods used in this study, 
but the advantage of one method over another depends on the data conditions (e.g., 
Haslbeck & van Bork, 2024). That is, no method appears to be ideal for across all data 
conditions in simulation studies.

Regarding unidimensional scales, Golino et al. (2020) investigated the performance 
of the two EGA methods via expand with respect to a maximum of 12 dichotomous 
items per unidimensional scale, whereas the current simulation study examined a wide 
range of unidimensional scales, ranging from short (5 items) to long (40 items), via two 
methods (e.g., LE and expand). In general, the two methods of EGA with the LE option 
performed better than the expand option. We found that EGAtmfg with expand achieved 
high accuracy only for short scales consisting of five or eight items, and it yielded 
worse results for scales comprising 10 items or more regardless of sample size. This is 
in line with Golino et al. (2020), who found that EGAtmfg showed very low accuracy 
for 12-item conditions. As for EGA with GLASSO using the expand method, this method 
likewise only performed well with shorter scales, and lost accuracy when the number 
of items increased to 16 or more. These results would appear to be consistent with the 
findings of Golino et al. (2020), who reported that EGA with GLASSO using the expand 
showed high accuracy (M = 92.54%) with a maximum of 12 variables per factor. Given 
the sample size of 250, both EGA with GLASSO and EGAtmfg showed higher pc and less 
MBE and misclassification rate with the LE option when the number of items was 16 
or less. However, when the number of items was 25 or more, MBE and misclassification 
rate increased and pc decreased, such that these methods showed poor results. One 
interesting finding in the present study is that the performance of EGA was improved by 
increasing the sample size to 1000 or 5000, which endorses previous studies (e.g., Golino 
et al., 2020).

Regarding item selection in the context of MSA, Mokken's original AISP was better 
at retrieving correct factors than was the GA approach. This contrasts with the findings 
of Straat et al. (2013), who observed that the GA was a better method than the AISP. 
This discrepancy may be due to limitations in the design used by Straat and colleagues 
(i.e., the number of factors was limited to two, and only a large sample size of 1000 
was considered). We found no evidence to support the results of Straat et al. (2013) with 
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regard to these conditions of two factors with 1000 subjects, especially for correlated 
factor scales. Importantly, we also found that the two Mokken methods did not retrieve 
the correct number of factors underlying scales with highly correlated factors. This is 
consistent with the results of Antino et al. (2018), who found that MSA formed only one 
scale regardless of sample size when the correlation between two factors was more than 
or equal to r = .3 and, in particular, from r = .4 onwards. These results partly corroborate 
the conclusions of Smits et al. (2012), who argued that the AISP was only useful for 
forming Mokken scales, where a single Mokken scale may be divided into multidimen
sional factors, and a single factor may consist of two Mokken scales. Furthermore, van 
Abswoude et al. (2004) noted that for test construction, it is often desirable to consider 
two dimensions that correlate .80 as a single dimension.

The current findings have important implications for partitioning dichotomous items 
into factors when using the Mokken methods (GA and AISP) and EGA procedures. The 
GA, based on our simulated conditions, in an inaccurate technique for partitioning a pool 
of items into correlated factors, and Mokken's original AISP should be used with caution, 
especially in the case of scales that contain highly correlated factors. Measures with 
high correlations between factors tend to form only one Mokken scale when using the 
AISP and the GA. Our results also suggest that EGA with GLASSO and EGAtmfg may 
be the gold-standard methods for partitioning multidimensional measures into factors. 
EGA with GLASSO, EGAtmfg and PApaf were able to retrieve the true structure of 
multidimensional scales, with high accuracy, low bias, a low rate of item misclassification 
on a factor, and low RMSD, regardless of the correlation between factors, sample size, 
number of items per factor, or number of factors. These results are in line with those 
found in previous work by Golino and Epskamp (2017) which showed that EGA is bit 
better than other procedures such as PA or CFA mainly at sample sizes of 500 or higher 
and with highly correlated number of Factors 4 and 6.

In general, the empirical results obtained in this research provide a basis for the use 
of EGA (with GLASSO), PApaf and EGAtmfg. Conversely, when analyzing unidimension
al items or a multidimensional factor structure with low or zero correlations, AISP may 
be more suitable for recovering the latent structure. GA demonstrated good accuracy 
only under specific conditions, such as unidimensional scales, two-dimensional scales 
with orthogonal factors, and short multidimensional scales (5 items per factor) with four 
or fewer orthogonal factors. These findings are valuable for researchers and practitioners 
interested in assessing the dimensionality of a set of dichotomous items.

Despite all the technical and statistical aspects discussed in this paper, the researcher 
or practitioner cannot lose sight of the fact that the number of factors should not only 
be selected based on statistical considerations, but that the substantive theory, the nature 
of the construct being measured by the test, and the type of instrument being analyzed 
must be taken into account (Floyd & Widaman, 1995; Rosellini & Brown, 2021).
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Limitations
The simulation conditions considered in this study are typical of those employed in 
research on identifying the dimensionality or number of latent factors, both in applied 
and simulated studies. However, no simulation will be exhaustive, and this research’s 
simulation study is no exception. It is necessary to broaden the conditions to be exam
ined.

In terms of limitations, the present study exclusively focused on dichotomous re
sponse variables. Further research is needed to determine the relative performance of 
these six methods with ordinal or continuous response variables. In addition, it should be 
noted that our study deliberately omitted the consideration of three factor when varying 
the number of true factors. This decision was made to avoid redundancy and maintain a 
manageable number of conditions. While a range of true factors between 1 and 4 is more 
conventional, our selection of 1, 2, 4, and 5 allowed us to effectively assess the impact 
of varying the number of true factors on the performance of different factor analysis 
methods. However, the exclusion of the Number 3 may be considered a limitation of our 
study. Future research could explore a broader range of true factors to provide a more 
comprehensive analysis.

Additionally, it is important to note that the model used in the present study to 
generate the data is essentially an alternative parameterization of a nonlinear multidi
mensional-UVA FA model. Consequently, the results obtained when fitting a nonlinear 
model to assess dimensionality and structure are expected to be superior to those ob
tained using any alternative model. Therefore, considering the data simulation model, it 
is expected that using MSA entails essentially a loss of information and effectiveness for 
assessing dimensionality and structure.

However, Mokken Scale Analysis and Exploratory Graph Analysis offer a different 
approach that can provide valuable insights on the dimensionality and structure of 
binary data under specific conditions.

Conclusion
The current simulation study investigated the performance of various methods for iden
tifying the number of latent factors with dichotomous response items. The findings 
indicated that EGA (with GLASSO) and PApaf exhibited greater accuracy in general, 
followed by EGAtmfg. The AISP showed a high level of accuracy with unidimensional 
scales, orthogonal factor models, and multiple factor models with low correlations be
tween factors. The GA only achieved good accuracy under limited conditions, namely 
unidimensional scales, bidimensional scales with orthogonal factors, and multidimen
sional short scales (5 items per factor) with four or fewer orthogonal factors. The results 
of this simulation study may serve as a guide for researchers when using EGA and MSA 
methods to partition dichotomous items into scales.
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