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Abstract
Establishing measurement invariance (MI) is crucial for the validity and comparability of 
psychological measurements across different groups. If MI is violated, mean differences among 
groups could be due to the measurement rather than differences in the latent variable. Recent 
research has highlighted the prevalence of inaccurate MI models in studies, often influenced by the 
software used. Additionally, unequal group sample sizes, noninvariant referent indicators, and 
reliance on data-driven methods reduce the power of traditional SEM methods. Network 
psychometrics lacks methods comparing network structures conceptually similar to MI. We 
propose a more conceptually consistent method within the Exploratory Graph Analysis (EGA) 
framework using network loadings, analogous to factor loadings. Our simulation study 
demonstrates that this method offers comparable or improved power, especially in scenarios with 
smaller or unequal sample sizes and lower noninvariance effect sizes, compared to SEM MI testing.

Keywords
measurement invariance, permutation testing, metric invariance, network psychometrics, exploratory graph 
analysis

Measurement invariance assesses whether a latent variable is measured equivalently 
across groups. This equivalence indicates that a measure quantitatively has the same 
meaning to each group and is therefore measuring the same construct in the same 
way across groups. Demonstrating measurement invariance is vital for the generalizabil­
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ity of psychometric measurement. For any measure where validity and reliability are 
necessary, tests for measurement invariance prior to administration across qualitatively 
distinct groups or time points should be conducted (Vandenberg & Lance, 2000). Many 
researchers claim that comparisons between cultures, administration modes, language 
versions, or sociodemographic groups cannot be credibly interpreted unless a measure 
demonstrates invariance (Borsboom, 2006). If measurement invariance is violated, score 
differences between groups can be the result of measurement rather than the true latent 
variable (Chen, 2007).

Traditionally, measurement invariance is tested using either Item Response Theory 
(IRT) or Structural Equation Modeling (SEM; Stark et al., 2006). Because SEM is more 
prevalent across psychological domains (Putnick & Bornstein, 2016), we narrow our 
focus to this framework. Within SEM, four consecutive tests are used to establish meas­
urement invariance: configural (equivalence of factor structure), metric (equivalence of 
factor loadings), scalar (equivalence of item intercepts), and strict (equivalence of item 
residuals; Widaman & Reise, 1997). For a measure to be considered fully invariant, it 
must pass each of these tests.

The current paper presents a method to test metric invariance using network psycho­
metrics in the Exploratory Graph Analysis (EGA) framework (Golino et al., 2020; Golino 
& Epskamp, 2017). First, a brief overview of the limitations associated with testing for 
measurement invariance in traditional psychometrics, focusing on metric invariance, 
is provided. Afterward, EGA is introduced and the proposed method to test metric 
invariance is discussed.

Measurement Invariance in Traditional Psychometrics
Factorial Invariance

Testing for factorial (measurement) invariance is conducted by comparing a more con­
strained model to the previous stage’s less constrained model, from a weaker to stronger 
level of invariance (e.g., configural model to metric model), using a likelihood ratio test. 
The constrained model sets relevant parameters (e.g., loadings) to be equal across groups 
and model fit is compared to the unconstrained model where the same parameters are 
estimated freely. If the constrained model has a better fit, then invariance at that level is 
established. This process starts by testing configural invariance.

Configural invariance (factor structure equivalence) is established by assessing the fit 
of a Multi-Group Confirmatory Factor Analysis model. Following R. E. Millsap (2011), let 
the common factor model be defined as:

Xj = γjk + ∑
m = 1

M λjmkWm + Uj, (1)
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where γjk is the latent intercept for variable j in population k, λjmk is the factor pattern 
loadings for variable j corresponding to the M common factors (m = 1,…,M) in popula­
tion k, Wm represents the common factor scores for factor m, and Uj is the unique factor 
score for variable j. When W′ = (W1, W2, …,Wm) and U′ = (U1, U2, …, Up) it is assumed that 
Ek(U) = 0 and that it is uncorrelated with W.

The unconditional mean and covariance structure for the measured variables X can 
then be expressed as:

Covk(X) = ∑
Xk

= ΛkΦΛk′ + θk (2)

and

Ek(X) = μXk = τk + Λkκk, (3)

where Φk = Covk(W) and θk = Covk(U). Finally, the test for configural invariance can be 
defined as,

∑
Xk

= ΛkcΦkΛkc′ + Θk (4)

and

μXk = τk + Λkcκk, (5)

for k = 1,…, K  where Λkc denotes the pattern loadings matrices that have the factor 
structure with configural invariance.

This formula implies that each population has the same number of factors containing 
the same distribution of variables. If the model fits satisfactorily on all groups, then the 
organization of items into constructs is appropriate for all groups (Putnick & Bornstein, 
2016). In other words, configural invariance is established such that the pattern of zero 
and nonzero loadings (fixed and free loadings) exists in all groups (Widaman & Reise, 
1997). Configural invariance only demonstrates that similar, not equivalent, latent factors 
exist in all groups. Similar latent factors contain the same items across groups but do not 
necessarily imply that the groups have equivalent loadings, intercepts, or error terms. 
Testing for equivalent loadings is the next step.

Metric invariance (loading equivalence) can be defined as

∑
Xk

= ΛΦkΛ′ + Θk (6)

and
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μXk = τk + Λκk (7)

for k = 1, . . . , K . This model constrains loadings to be equivalent across groups and is 
then compared to the configural model (unconstrained model). If the metric invariance 
model has a better fit, then each item contributes to their respective latent factors (and 
the overall latent construct) similarly across all groups (Putnick & Bornstein, 2016). If 
metric invariance is not established, then comparisons of factor variances and covarian­
ces (and subsequently scaled correlations) across groups cannot be made (Widaman & 
Reise, 1997). Without metric invariance, testing for scalar and strict invariance should 
not be conducted; however, testing for partial invariance of loadings is often appropriate.

Partial Invariance

Partial invariance occurs when only a portion of a parameter set lacks invariance. For 
metric invariance, the goal is to determine how many loadings lack invariance in each 
latent factor. Opinions vary on what level or proportion of partial invariance is permissi­
ble (Putnick & Bornstein, 2016). Testing for partial invariance can be useful to provide 
a more fine-grained perspective on which specific item parameters are noninvariant. In 
the case of metric invariance, individual constraints can be selectively introduced to Λ 
(loadings) and tested. It’s possible that metric invariance is not found because only one 
item’s loading is noninvariant across groups.

If partial invariance is found, at any level, then the researcher must determine (based 
on substantive reasoning or empirical criteria) how to handle instances of noninvariance. 
Arguably, identifying specific instances of noninvariance provides more useful informa­
tion than an omnibus test for invariance, which only indicates that invariance exists 
across the parameters but not any one parameter specifically. Testing for partial invari­
ance provides the same level of information as an omnibus test (whether noninvariance 
is present) but also where, if any, noninvariance exists.

It’s possible that partial invariance testing could identify noninvariance not identified 
by an omnibus test. This problem is well documented for omnibus tests (Raykov et al., 
2013), and the potential effects of misidentifying items as invariant can be consequential. 
Prior research has indicated that conducting individual local tests can lead to a more 
accurate evaluation of noninvariance (Jung & Yoon, 2016; Raykov et al., 2020; Stark et 
al., 2006). Therefore, examining local tests rather than relying on overall global testing 
provides more detailed information and lowers the risk of Type II errors.

There are several methods available to test partial invariance. Some methods use 
referent indicators or assume a specific indicator is invariant a priori, which presents 
many issues. These issues and some potential solutions are discussed in the next section; 
however, due to the issues associated with the selection of a referent, our study focuses 
on methods that test partial invariance that do not require the selection of a single refer­
ent indicator. Instead, we consider the following methods: factor-ratio test (Rensvold & 
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Cheung, 1998), a data-driven, sequential application of the modification index proposed 
by Yoon and Millsap (2007), and a method using a multiple testing procedure proposed 
by Raykov et al. (2013).

The factor-ratio test assesses partial invariance by comparing a fully unconstrained 
model to versions of a constrained model. Multiple constrained models are defined 
using all possible combinations of referent variables and choosing one of the remaining 
variables to test for invariance. A simulation study conducted by French and Finch (2008) 
found that this method works well to control false positive rates across data conditions 
and can successfully identify invariant items even when noninvariant items are present 
in the same factor. This procedure is computationally greedy as it investigates all possi­
ble combinations of referent indicators.

Yoon and Millsap (2007) proposed a data-driven method that sequentially evaluates 
modification indices. Within a fully constrained metric model, the factor variance of only 
one group is fixed to one. The factor variance of the other group is estimated freely. 
For both groups, factor loadings are constrained. Modification indexes are evaluated 
to estimate the change in χ2 when the fixed parameters are freed. If an invariance 
constraint shows a significant modification index, then that parameter is relaxed. The 
process is continued until all modification indices are non-significant. Their simulation 
study found that this method controls false positive rates very well but primarily in 
“ideal” data conditions (large sample sizes, greater difference in loadings, low cross load­
ings). A limitation of this approach is that model misspecifications can lead to artificial 
inflation of Type I error rates (Kim & Yoon, 2011; Whittaker, 2012), especially as model 
modifications are made throughout the testing process (Yoon & Millsap, 2007).

Finally, Raykov et al. (2013) introduced a multiple comparison method which uses the 
Benjamini-Hochberg procedure (BH-procedure; Benjamini & Hochberg, 1995) to control 
the Type I error rate introduced by multiple comparisons. The method compares two 
models using χ2 testing. One model (the baseline model) is a fully constrained model; 
the other model frees one set of parameters (e.g., loadings) across groups. The two 
models are compared and this process is repeated for all parameters. The number of tests 
conducted is equal to the number of variables. Zhang and Yang (2022) found that this 
method maintains high rates of power to detect noninvariance across varying data condi­
tions (sample size, degree of noninvariance, proportion of noninvariance, and location of 
noninvariance). Although this method circumvents the choice of a referent indicator, the 
use of a fully constrained baseline model (i.e., including any model with constrained non­
invariant items) could negatively impact accuracy (Benjamini & Hochberg, 1995). Given 
the cumbersome nature of the factor-ratio test and model misspecification limitations 
with the data-driven approach proposed by Yoon and Millsap (2007), we choose to focus 
on the multiple comparison method of Raykov et al. (2013) in this study.
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Problems With Traditional Testing

χ2 goodness of fit statistics are commonly used across all four measurement invariance 
tests, including tests of partial invariance. Putnick and Bornstein (2016) tested model fit 
alternatives such as Root Mean Square Error of Approximation (RMSEA), Standardized 
Root Mean-square Residual (SRMR), Comparative Fit Index (CFI), and Tucker-Lewis In­
dex (TLI), finding that the choice of criterion could impact the discovery rate of invariant 
indicators. Importantly, model fit indices can further be impacted by disparate sample 
sizes across groups (Chen, 2007; Kaplan & George, 1995).

Another concern is that each stage requires certain decisions to be made about the 
model specification which, if incorrectly made, can have unanticipated consequences. 
A referent indicator used in partial metric invariance, for example, assumes that the 
chosen item is invariant which can adversely impact model interpretation (Johnson 
et al., 2009). Using these traditional methods, the assumption of noninvariance is not 
frequently tested, most likely due to the complicated nature of the methods available 
to test it (Finch & French, 2008). It is often unknown which items are invariant a 
priori. Procedures have been developed to identify which items are noninvariant prior to 
selecting a referent indicator (Cheung & Lau, 2012; Cheung & Rensvold, 1999; Rensvold 
& Cheung, 2001). These tests, however, can be quite complicated from both a conceptual 
and implementation standpoint with varying evidence of their statistical power (French 
& Finch, 2006; Jung & Yoon, 2016).

Lack of reporting or proper specification has been found in one out of four studies 
employing measurement invariance tests (Schroeders & Gnambs, 2020). After researchers 
analyzed the components of each study, they found that the most influential predictor 
of model misspecification was the software used, concluding a dearth in the statistical 
training of psychologists as the cause. R. Millsap and Olivera-Aguilar (2012) similarly 
pointed out that both the skill and experience levels of researchers have strong impacts 
on the effectiveness of testing measurement invariance.

In light of these findings, our study proposes a method that does not require inten­
sive model specifications and model comparisons, with all model parameters tested 
without the need to introduce further testing or adjustments. Additionally, this method is 
straightforward to implement in the popular R statistical software (R Core Team, 2020). 
The primary goal of the current work is to provide a method to test metric invariance in 
the EGA framework.

Exploratory Graph Analysis
Network psychometric methods are an alternative to latent variable modeling. Networks 
represent variables as nodes (circles) and their relationships (e.g., partial correlations) 
as edges (lines). Because the relationships between variables are not known a priori, 
they must be estimated. There are many methods to estimate a network with the graph­
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ical least absolute shrinkage and selection operator (GLASSO; Epskamp & Fried, 2018; 
Friedman et al., 2008) being one of the most common.

A key feature of network models is that each node is (usually) not connected to all 
other nodes (known as sparsity). Often, some nodes are more densely connected to each 
other relative to other nodes in the network. These sets of connected nodes are often 
referred to as communities, which are consistent with latent factors when data are gener­
ated from a factor model (Golino & Epskamp, 2017). Community detection algorithms are 
a common, data-driven way to identify communities in networks (Fortunato, 2010). The 
combination of the GLASSO with the Walktrap community detection algorithm (Pons & 
Latapy, 2006) has been labeled as Exploratory Graph Analysis (Golino et al., 2020; EGA; 
Golino & Epskamp, 2017) in the network psychometrics literature.

Across the broader field of network psychometrics, several methods have been devel­
oped to identify differences in network structure (Van Borkulo et al., 2022; Williams 
et al., 2020) and sub-groups (Danaher et al., 2014; Haslbeck & Bork, 2022; Jones et al., 
2020). Although these methods aim to identify differences between networks, they all 
tend to treat the networks as unidimensional—that is, these methods do not account for 
the community structure of the network. Therefore, unless the construct is assumed to be 
unidimensional, the detected differences are unlikely to parallel traditional measurement 
invariance procedures. Establishing community structure and a metric consistent with 
factor loadings is key for developing such a comparison method.

Recent work has demonstrated that a node’s strength or absolute sum of a node’s 
connections to other nodes is related to confirmatory factor analysis (CFA) loadings 
(Hallquist et al., 2021). Hallquist et al. (2021) found, however, that the strength of 
a node is comprised of both dominant and cross loadings. To circumvent this issue, 
Christensen and Golino (2021b) proposed a measure called network loadings that splits a 
node’s strength based on the dimensions identified by EGA. In their simulation, they 
found that this measure was consistent with factor loadings when data were generated 
by a factor model. The development of network loadings opened the door for broader 
measurement evaluation within network psychometrics such as item selection, weigh­
ted between-person scores, and hierarchical dimensionality assessment (Christensen & 
Golino, 2021b; Jiménez et al., 2023).

The goal of this study is to leverage these network loadings to establish a method 
within the network psychometric framework to test for measurement invariance. The 
extent of measurement invariance within the network psychometrics framework only 
includes configural and metric invariance because latent variables are not estimated 
using networks. Consequently, intercepts and residual variances are not feasible because 
there are no latent factors created. Therefore, measurement invariance using network 
psychometrics, like network loadings, is a heuristic for configural and metric invariance 
in latent factors rather than a direct equivalent.

Metric Invariance in Exploratory Graph Analysis 150

Methodology
2024, Vol. 20(2), 144–186
https://doi.org/10.5964/meth.12877

https://www.psychopen.eu/


Present Research
Configural Invariance

Before introducing the proposed method to test metric invariance, configural invariance 
must be established first. Configural invariance in the EGA framework exists when 
the same nodes have been partitioned into the same communities for all groups. This 
task can be initially tested in a cursory way by estimating EGA separately for each 
group and comparing their structures. Even if the initial structure as defined by EGA 
indicates configural invariance, further testing should be conducted to minimize any 
effects of sampling variability. In other words, additional testing should be conducted to 
test if items are consistently organized into the same communities or if the number of 
communities and their structure fluctuates.

Bootstrap EGA (bootEGA; Christensen & Golino, 2021a) produces a sampling distri­
bution of EGA results that can be used to evaluate the stability of the identified structure. 
One statistic called structural consistency assesses the proportion of bootstraps in which 
the same exact structure as the initial EGA was recovered. If the groups are pooled 
together into one sample, higher structural consistency indicates that it is more likely 
for this structure to be representative of the population structure for all groups. Lower 
structural consistency  indicates that configural noninvariance may be present. Additionally, 
if varying the number of samples drawn in bootEGA (or even which specific samples are 
drawn) shows structural variation, configural noninvariance may be present.

Structural consistency  can be further broken down to assess the stability of items 
(proportion of bootstraps in which an item was assigned to the same dimension as 
the original EGA). Items showing a stability of < .70 are considered to be unstable 
(Christensen & Golino, 2021a). If there are distinct groups in a sample, then it is expected 
that each resample will have a different proportion of cases from each group. Therefore, 
if each group has a different configuration of assignment of nodes to communities, this 
lack of configural invariance will appear as items showing instability in community 
assignment. To reach configural invariance, items displaying instability ( < .70) should 
be removed.

To test for configural invariance in the EGA framework, a straightforward approach 
is to conduct bootEGA on the entire sample and remove items with < .70 stability. With­
out these items, bootEGA can be re-applied to identify any further items contributing to 
instability. This process should be repeated until a consistent common structure (i.e., all 
item stabilities > 0.70) can be identified across all groups within a sample. Importantly, 
this approach does not allow for partial configural invariance.

Metric Invariance in the EGA Framework

Once configural invariance is established, metric invariance can be tested. The proposed 
method tests the equivalence of network loadings across groups via permutation testing. 
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Permutation testing has many advantages over traditional hypothesis testing approaches. 
Permutation tests make no parametric assumptions about populations, making them 
more flexible and robust to parametric deviations (Chihara & Hesterberg, 2022). Further, 
permutation tests can be applied to any test statistic, providing flexibility to adapt the 
model to any hypothesis or statistic (Chihara & Hesterberg, 2022; Ludbrook & Dudley, 
1998). To elaborate on our procedure, we first must define network loadings.

Let W represent a symmetric v × v network made up of edge weights (e.g., partial 
correlations) where v is the number of variables. Node strength is then defined as

Si = ∑
j = 1

n |w ij | , (8)

where |w ij| is the absolute weight between node i and j and Si is node i’s strength or the 
sum of the absolute weights between node i and all n other nodes. Node strength can 
then be split between the communities identified by EGA:

ℓic = ∑
j ∈ c

C |w ij | , (9)

where ℓic is the sum of the edge weights in community c that are connected to node i (i.e., 
node i’s loading for community c), and C is the number of estimated communities.

This formulation computes the absolute sum of a node’s connections to each com­
munity resulting in within (assigned) and between (non-assigned) community strengths. 
In other words, a node’s strength is divided into its connections to each community in 
the network. Equation (9) can be standardized using the following formula:

ℵic =
ℓic
∑ℓc

, (10)

where ∑ℓc is equal to the square root of the sum of all the weights for the nodes in 
community c.

Standardized loadings, ℵ, are absolute weights and, as is done in factor analysis, the 
signs are added after the loadings are computed (Comrey & Lee, 2013). However, unlike 
factor analysis, the number of communities is extracted from the network’s structure 
before computing network loadings. Additionally, variables have already been assigned 
to a community rather than being assigned to the community where to which they have 
the highest loading (as is done in factor analysis). Due to a network’s sparsity (i.e., lack 
of edges between some nodes), it is possible for a node to have a network loading of 
zero to some communities because it does not have any connections to nodes in those 
communities.
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To test the equivalence of network loadings across groups, we propose applying a 
permutation test which works as follows. The original o × k data, D (where o is sample 
size and k is number of variables), is split by grouping variable G into two groups, G1 and 
G2, to form two new datasets, D1 and D2, respectively. EGA is performed separately on 
D1 and D2. In order for further testing to occur, the community structure as identified by 
EGA must be identical for both D1 and D2 (i.e., configural invariance). Once established, 
corresponding k × c network loading matrices ℵ1 and ℵ2 are computed where c is the 
number of communities. The difference between the two matrices is then computed,

T = ℵ1 − ℵ2, (11)

to form an k × c matrix T  which contains the difference for each network loading. 
Only the differences between assigned community loadings are retained, representing 
a vector of assigned loadings, τ. To form a null distribution for each loading difference 
to be compared to, the grouping variable G is permutated and becomes GR and the 
original data D is split by GR to form two new datasets, DR1 and DR2, thereby removing 
the original relationship between item responses and group membership. This process is 
done repeatedly a P number of times, p = 1,…, P , creating P new datasets, DR1P and DR2P.

EGA is performed on each permuted dataset DR1p and DR2p, network loadings are 
computed, and the difference between the assigned network loadings for each item 
is calculated to create a vector τRp representing the null distribution for each item as 
follows:

T Rp = ℵR1p − ℵR2p, (12)

where T Rp represents a v × c matrix of differences between loading matrices, ℵR1p and 
ℵR2p. From T Rp, only the assigned community loadings are retained, forming τRp. Within 
each variable, v, these differences are put in ascending order, τR1k ≤ … ≤ τRpk, forming a 
null distribution of the difference in network loadings if there was a random relationship 
between group assignment and network loading. The final step is to compare each test 
statistic to their respective null distributions at α = .05. p-values for item invariance we 
calculated as follows:

pvalue = 1
P ∑

p = 1

P sp,  where sp =
1, if |τRp | ≥ τ
0, otherwise . (13)

This formulation of pvalue is a vector whose elements are a two-sided p-value for each 
respective variable. If any p-value is less than .05, then metric invariance was violated. If 
not all p-values are less than .05, then partial metric invariance has been found; however, 
as previously mentioned, there is no agreement in the literature, to our knowledge, as to 
what constitutes an acceptable level of partial invariance.

Jamison, Christensen, & Golino 153

Methodology
2024, Vol. 20(2), 144–186
https://doi.org/10.5964/meth.12877

https://www.psychopen.eu/


The method described above is specifically outlined for the comparison of two 
groups. Conveniently, this model can be easily extended to three or more groups without 
sacrificing computational efficiency. Similar to logic used when conducting multiple 
comparisons after an omnibus test (Maxwell et al., 2018), it stands to reason that if 
noninvariance were to be found using this method, then it would be found between the 
groups with the largest difference in loadings. Therefore, for each variable we need only 
identify the groups with the minimum and maximum network loadings. If these two 
groups are significantly different from one another, then invariance cannot be supported. 
In this way, this method runs the same number of tests regardless of how many groups 
are being assessed. If noninvariance is found for an item, should the researcher wish, 
follow up tests can continue to be conducted to identify which groups specifically are 
different from one another. For each variable, the minimum loading would be compared 
to the second highest loading. If noninvariance is again found, the minimum loading 
would be then compared to the third highest loading, so on and so forth, until no 
significant differences are found.

Method
The following section outlines the methods used for each portion of the simulation study. 
As a benchmark for our proposed method, we compare it to the procedure presented by 
Raykov et al. (2013), which is outlined first. After, we discuss the multiple comparison 
procedure (aforementioned BH-procedure) and how it is applied in the current study. 
The data generation, conditions, and evaluation metrics are also described.

SEM Procedure
To test metric and partial metric invariance using SEM, we estimated two models: a con­
figural, unconstrained model, see Equation (4), and a model with loadings constrained 
to equality across k populations, constrained metric model, see Equation (6). In order 
to directly compare to our proposed method, we tested for partial metric invariance. 
Testing for partial metric invariance was conducted using three methods: Free, Fixed, or 
Wald. The Free method follows the method proposed by Raykov et al. (2013). Using the 
{semTools} package (Version 0.5-6; Jorgensen et al., 2022), the Fixed and Wald methods 
are run simultaneously with Free. Since it is a common software method for researchers 
to use in practice, we evaluated the results of all three approaches. In all methods, an 
original model was chosen to be either the constrained or unconstrained model. After, 
the loadings were either fixed or freed iteratively to create a new model which was then 
compared to the original model. Using these methods circumvented a common problem 
in many approaches to invariance testing: we did not exclude the testing of any variables 
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by fixing the loading of one variable per factor to 1. In this way, we could make direct 
comparisons between the SEM and proposed methods.

The Free method uses the constrained model as the original model. Iteratively, each 
variable j is freed in the matrix Λ to create J models. Each model is then compared to the 
original model using a likelihood ratio test and an assessment of CFI for a total of J tests. 
The Fixed method uses the unconstrained model as the original model. Iteratively, each 
variable j is constrained to be equal across populations k to create J models. Each model 
is then compared to the original model using a likelihood ratio test and an assessment 
of CFI for a total of J tests. The Wald method is similar to Free. It uses the constrained 
model as the original model, but rather than iteratively freeing each variable j and 
conducting likelihood ratio tests, it uses a multivariate Wald test. Nonetheless, multiple 
hypotheses are being tested. These methods do not adjust for Type I error rate and so it 
is often necessary to apply a multiple comparison test (Raykov et al., 2013).

Multiple Comparison Problem
Within both partial invariance frameworks (EGA and SEM), multiple hypotheses are 
tested which can artificially inflate the Type I error rate. To adjust for this inflation, 
a multiple comparison procedure (MCP) can be applied (Raykov et al., 2013; Steinberg, 
2001). To select which MCP to apply, it’s important to consider consequences in the trade 
off of identifying (non)invariant items. Most MCPs focus on controlling the Family Wise 
Error Rate (FWER). FWER attempts to avoid making any Type I error and is inclined 
toward the notion that a Type I error is a serious issue.

In the context of partial invariance, a Type I error would suggest that a variable is 
noninvariant when it is truly invariant. In most research contexts, the cost of falsely 
identifying an item as invariant is greater than falsely identifying an item as noninvar­
iant, particularly if the construct will be used to compare across groups (Shi et al., 2019). 
Therefore, FWER may suggest that more variables are invariant than there truly are, 
potentially leading to more costly consequences than using an uncorrected p-value. An 
alternative and less conservative MCP is the Benjamini-Hochberg procedure (BH-proce­
dure; Benjamini & Hochberg, 1995) which controls the False Discovery Rate (FDR). 
FDR takes a more balanced approach to the multiple comparison problem by using the 
expected number of falsely rejected null hypotheses if any null hypotheses are rejected 
to determine its correction. Formally, FDR works to control ϕ:

ϕ = V
V + S (14)

where V is the number of falsely rejected null hypotheses and S is the number of correct­
ly rejected null hypotheses out of the set of all hypotheses tested. The BH-procedure 
provides adequate control over false positives while showing marked improvements in 
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power above and beyond traditional MCP methods (e.g., Tukey, Bonferroni, Scheffe; 
Benjamini & Hochberg, 1995).

The BH-procedure works by sorting individual p-values in ascending order and 
assigning them a rank. The adjusted p-value is computed using:

padjustedi = min(1,minj ≥ i
mrj
j ), (15)

where mr represents the total number of p-values and r represents to rank for the 
corresponding p-value j.

Raykov et al. (2013) first proposed the use of the BH-procedure to test partial invari­
ance due to its more liberal approach of lowering the risk of false positive noninvariant 
variables relative to FWER’s focus on lowering the risk of false positive noninvariant 
variables entirely. Given that the consequences are usually more dire when not correctly 
detecting noninvariant variables, the BH-procedure was preferred over FWER as our 
MCP. All p-values calculated using the BH-procedure, hereafter, are referred to as correc­
ted p-values.

Data Generation
Data was generated following a common factor model, as was done by Golino et al. 
(2020). We begin by computing a population correlation matrix for each group, RRG, with 
communalities in the diagonal,

RRG = ΛGΦΛG′, (16)

where RRG is the reproduced population correlation matrix for each group G, ΛG is a 
k × m factor loading matrix for k variables and m factors for each group G, and Phi 
(Φ) is the structure matrix of the latent variables (i.e., a m × m matrix of correlations 
among factors). The population does not contain any correlated residuals and therefore 
no minor factors.

Then, by inserting unities in the diagonal of RRG it becomes a full rank matrix and 
is now population correlation matrix RPG. Each group in G is assigned a RPG matrix. A 
Cholesky decomposition is performed on each RPG:

RPG = U′U . (17)

If any RPG is not semi-positive definite or an item’s communality is greater than 0.90, 
then a new RPG matrix is constructed. From this, the sample data matrix (continuous 
variables) can be computed as:

Metric Invariance in Exploratory Graph Analysis 156

Methodology
2024, Vol. 20(2), 144–186
https://doi.org/10.5964/meth.12877

https://www.psychopen.eu/


XG = ZGUG, (18)

where ZG is a matrix of random standard normal deviates with rows equal to the sample 
size and columns equal to the number of variables.

Design
The overall design of the simulation study followed closely that of Kim and Yoon (2011) 
with a few modifications. A two-factor model was simulated, each factor containing 
six variables, similar to Kim and Yoon (2011) and Yoon and Millsap (2007). Typically, sim­
ulation studies investigating invariance methods use unidimensional models; however, 
we decided to simulate two factors. This approach allowed us to manipulate interfactor 
correlation and investigate whether it impacted the power of the proposed method. Only 
one variable in one factor was simulated to have unequal dominant loadings across 
group. Since our main goal was to assess each method’s ability to identify noninvariant 
items correctly, having only one noninvariant item allows for a direct estimate of the 
true positive rate. Additionally, it allows us to compare the ability of each method to 
detect invariant items within factors both with and without noninvariant items.

For simplicity, we only simulated two groups. Factor loadings were set to be the same 
across factors for each respective variable (0.80, 0.70, 0.60, 0.80, 0.70, 0.60). Keeping high, 
static factor loadings allowed us to make sure configural invariance was not negatively 
impacted, particularly for data conditions with a high difference in loadings and/or 
a high interfactor correlation. Similar to Golino and Epskamp (2017), the correlation 
between factors was set to be low (0.30), medium (0.50), or high (0.70).

The loading of Variable 5 in Factor 1 (0.70) was decreased in G1 by either 0.20 (small 
difference) or 0.40 (large difference) as was done in Kim and Yoon (2011). Static factor 
loadings ensured that the magnitude of loading differences will have the same interpreta­
tion across data conditions (Yoon & Millsap, 2007). Per group, there was either the same 
sample size per group (500 or 1000 in both G1 and G2) or different sample sizes per group 
(500 in G1 and 1000 in G2). This design allowed us to compare the new method’s ability 
to detect noninvariant items in conditions that traditional methods currently usually 
struggle (i.e., disparate and/or small sample). This resulted in 18 separate conditions. For 
each condition, 500 datasets were simulated.

Measurement invariance was tested on each simulated dataset using both EGA in the 
{EGAnet} package (Version 1.1.1; Golino & Christensen, 2022) and SEM using the {lavaan} 
(Version 0.6.17; Rosseel, 2012) and {semTools} in R. All analyses were conducted in R and 
full code can be found in Jamison, Golino, and Christensen (2024).

Data Analysis
To assess the accuracy of each model’s (non)invariance detection, we used confusion 
matrix metrics. Because loadings were only changed for one variable (Variable 5 in 
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Factor 1) and all other variables had equivalent loadings in the population, noninvariance 
should only be detected for Variable 5. Therefore, a true positive (TP) occurs when the 
model identifies noninvariance in Variable 5, and a false positive (FP) occurs when any 
other variable is identified as noninvariant. A false negative (FN) occurs when the model 
identifies Variable 5 as invariant and a true negative (TN) occurs when any other variable 
is identified as invariant. An item is considered noninvariant if its significance is p < 0.05
and invariant if it’s significance is p ≥ 0.05.

The following confusion matrix metrics were used to identify more specific measures 
of accuracy: Hit Rate, Sensitivity, Specificity, and F1. The {caret} package (version 6.0.94; 
Kuhn, 2022) in R was used to calculate Sensitivity, Specificity, and F1. All metrics were 
calculated separately using both uncorrected and corrected (using the BH-procedure) 
p-values.

Hit Rate, or TP + TN
TP + FP + TN + FN , provides a straightforward, overall assessment of method 

accuracy of correctly identifying invariance or noninvariance. Sensitivity or TP
TP + FN  rep­

resents the proportion of true positives correctly identified by the method out of all 
the truly noninvariant items. Specificity, or TN

TN + FP , represents the proportion of true 
negatives correctly identified by the method out of all true null hypotheses. F1, or 

2TP
2TP + FP + FN , provides a similar metric to Sensitivity but places greater emphasis on identi­
fying Variable 5 as noninvariant relative to identifying the other variables as invariant.

It’s important to contextualize these measures in our current simulation. Because 
there is only one possible TP or FN (i.e., Variable 5), Sensitivity breaks down to TP. 
Hit Rate either breaks down to TN

FP + TN + FN  if Variable 5 is identified as invariant or 
TP + TN

TP + FP + TN  when Variable 5 is identified as noninvariant. Similarly, F1 either breaks down 
to zero if Variable 5 is identified as invariant or 2TP

2TP + FP  when Variable 5 is identified 
as noninvariant. Therefore, F1 is weighted toward identifying the noninvariant variable 
while lowering the (relative) cost of a FP. Finally, Specificity is a pure measure of the 
extent to which all invariant variables are correctly identified as invariant. Within the 
context of our study, greater weight should be given to detecting noninvariance over 
invariance. Therefore, Sensitivity and F1 should be given greater weight over Specificity 
and Hit Rate.

Results
We assessed method accuracy overall as well as across simulation conditions. When 
indicating simulation conditions, we will use the following labels: “Correlation Between 
Factors” indicates variation in the correlation between factors (0.3, 0.5, 0.7), “Diff” in­
dicates the level of noninvariance (0.2 or 0.4), “N” indicates sample size (500, 1000, 
Different), and “p-Value” indicates the significance level where “corrected” indicates the 
BH-procedure adjusted p-values and “uncorrected” indicates the standard, unadjusted 
p-values.
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Effect of MCP on p-Values
Configural invariance was recovered in 99.73% of the simulated datasets using EGA and 
100% using SEM. To provide a direct, full comparison between both methods (rather than 
removing items showing configural noninvariance), only those datasets where configural 
invariance was found for EGA were retained and the others were discarded. All datasets 
were retained for analysis using SEM methods. Within each method, the accuracy of 
metric invariance methods were assessed. Figures 1 and 2 show the mean and 95% 
confidence interval across all datasets of the p-values split by method, sample size, 
correlation between factors, and loading difference. A dashed line intercepts the y-axis at 
.05 representing the α level. The mean p-value is represented for each variable.

Figure 1

Mean Uncorrected p-Value by Variable
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Figure 2

Mean Corrected p-Value by Variable

In both Figures 1 and 2, Variable 5 is the only variable which should be significant or 
should show a mean p-value consistently below .05. Across both uncorrected (Figure 1) 
and corrected (Figure 2) p-values for all four methods, regardless of condition, the lowest 
mean p-value across variables is indeed Variable 5. This is in line with the manipulation 
used, changing the loading between groups by either 0.2 or 0.4 for only Variable 5. When 
the p-value is not corrected, as in Figure 1, the Free method has a lower mean p-value 
for all variables in Factor 1 (where noninvariance was simulated to exist), but not in 
Factor 2 where no noninvariance was simulated. This pattern is not present for the other 
methods. When the p-value is corrected (see Figure 2), the average p-value is higher 
than when it is uncorrected regardless of whether an item is invariant or not. All 3 SEM 
methods have a more noticeable increase in average p-value for Variable 5 when the 
difference in loadings for Variable 5 is set to 0.2 and sample size is either different or 
500. Under these same conditions, this same trend in EGA is only noticeable when the 
correlation between factors increases to 0.7.

Metric Invariance in Exploratory Graph Analysis 160

Methodology
2024, Vol. 20(2), 144–186
https://doi.org/10.5964/meth.12877

https://www.psychopen.eu/


Hit Rate
In almost all cases, corrected p-values produce a higher mean Hit Rate than uncorrected 
p-Values (Figure 3). When the difference in loadings is 0.4, EGA, Fixed, and Wald all have 
almost perfect Hit Rate across all variables. In this condition, the same trend arises in 
Free as was seen in Figures 1 and 2: mean Hit Rate is lower in general for items in Factor 
1, however its level of mean Hit Rate for Factor 2 when noninvariance is not present, is 
more similar to that of the other three methods.

Figure 3

Hit Rate by Condition

When the difference in loading is set to 0.2, for Variable 5, all four methods experience 
lower mean Hit Rate when the p-value is corrected as compared to the uncorrected p-val­
ue. This trend is most notable for Fixed, Free, and Wald when sample size is “Different” 
or 500, but does not appear when sample size is 1000. EGA only shows this trend when 
sample size is 500 and gradually becomes more disparate as the correlation between 
factors increases from 0.3 to 0.7. The magnitude of this effect is the same for Fixed, 
Free, and Wald regardless of the correlation between factors. This indicates that EGA’s 
ability to correctly identify noninvariant variables is not as heavily influenced by data 
structures as Fixed, Free, and Wald. The Free method is better able to accurately identify 
invariant variables when noninvariant items are not present in the same factor.
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Overall Metrics
Looking at the accuracy methods overall (not split by simulation condition), when a 
correction is applied, an interesting pattern appears (Table 1). Both F1 and Specificity 
increase for all four methods, but Sensitivity decreases. Using uncorrected p-values, 
Sensitivity is nearly 1 for all four methods, EGA being the highest at 0.99 and Fixed 
the lowest at 0.96. Once the BH-procedure is applied, Sensitivity decreases for all four 
methods, most dramatically for Fixed and Wald, falling below 0.90. When using corrected 
p-values, EGA has the highest values for F1 (0.91) and is tied for the highest Specificity 
with Fixed and Wald at 0.99. Free has the lowest values (using corrected p-values) of all 
of four methods for both F1 (0.83) and Sensitivity (0.97). For all four methods, Sensitivity 
increased slightly by applying the BH-procedure, while F1 values dramatically increase 
by applying the BH-procedure, going up on average by 0.14.

Table 1

Overall Metrics by Method

Sensitivity F1 Specificity

Type Uncorrected Corrected Uncorrected Corrected Uncorrected Corrected

EGA 0.99 0.93 0.76 0.91 0.94 0.99

Fixed 0.96 0.88 0.76 0.88 0.95 0.99

Free 0.98 0.93 0.65 0.83 0.90 0.97

Wald 0.97 0.89 0.77 0.89 0.95 0.99

Sensitivity
When the difference in loadings is 0.4, all methods in all conditions have perfect Sensitiv­
ity regardless of whether or not the p-value is corrected (Figure 4). When the difference 
in loadings is 0.2, uncorrected p-values lead to a higher level of Sensitivity. In this condi­
tion, almost perfect Sensitivity is achieved using corrected p-values when sample size size 
is 1000 for all methods. When the difference in loadings is set to 0.2, corrected p-values 
are used, and sample size is either “Different” or 500, EGA and Free are performing 
better than Fixed and Wald. However, EGA is more heavily influenced by the increase 
in correlation between factors; when the correlation between factors reaches 0.7, EGA’s 
performance falls below Free’s to the same level as Fixed and Wald. Though when the 
correlation between factors is 0.3 or 0.5, EGA outperforms Free. All in all, setting the 
difference in loadings to 0.4 does not affect the ability of any of the methods to identify 
TP’s (noninvariant variables). However, when the difference is lower, correcting p-values 
lowers the Sensitivity for all the methods. EGA is, again, less affected by this difference 
and sample size in its ability to detect TP’s except when the correlation between factors 
is high.
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Figure 4

Sensitivity by Condition

F1
In all conditions and across all four methods, corrected p-values produce higher F1 values 
than uncorrected p-values (Figure 5). When the difference between loadings is set to 
0.4, EGA, Fixed, and Wald have similar (and nearly perfect) F1 values. Free, however, 
has lower F1 values in this condition than the other three methods, particularly when 
the sample size is increased to 1000. When the difference between loadings is set to 0.2 
and F1 is calculated using corrected p-values, a similar pattern arises that was seen in 
Sensitivity. EGA outperforms the other three methods when sample size is “Different” or 
500. However, EGA is more heavily influenced by the increase in correlation between 
factors; when the correlation between factors reached 0.7, EGA’s performance falls below 
Free’s to the same level as Fixed and Wald. When the correlation between factors is 0.3 or 
0.5, EGA outperforms Free.
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Figure 5

F1 by Condition

Specificity
Across all these conditions, Specificity calculated using corrected p-values is higher than 
uncorrected p-values (Figure 6). All methods have consistently high and comparable 
levels of Specificity, except for the same trend that has been appearing for Free. When 
the difference in loadings increases from 0.2 to 0.4, the Specificity for the Free method 
decreases. Altogether, this indicates that each method is able to comparably recover TN’s 
or invariant items (except for the Free method in one condition).
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Figure 6

Specificity by Condition

Applying the Test for Metric Invariance to the BAPQ
To demonstrate a substantive application of this approach, we apply our proposed test 
for metric invariance to the Broad Autism Phenotype Questionnaire (BAPQ; Hurley et 
al., 2007). Appendix B contains the results from the application of the traditional partial 
invariance SEM method as implemented by the partialInvariance() function in 
{semTools}. Data was obtained from the Simons Foundation Powering Autism Research 
for Knowledge (SPARK) of the Simons Foundation Autism Research Initiative (SFARI), 
a large research initiative which has collected data from over 50,000 individuals with 
autism and their families (Feliciano et al., 2018). The BAPQ is a 36-item questionnaire 
designed to assess autism-related traits in adults. Participants are asked to rate the how 
often a statement applies to them on a 6-point Likert scale ranging from (1) Very Rarely 
to (6) Very Often. Items were intended to relate to one of three domains: aloofness, rigid 
personality, or pragmatic language.

This questionnaire was given to the parents (either mother or father) of an autistic 
child to assess their phenotypic level of autistic traits. We begin assessing measurement 
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invariance between mothers and fathers by establishing configural invariance. To do so 
we apply EGA separately to the data on mothers and the data on fathers and compare 
their community structures. For this example, we are using the {EGAnet} package (Ver­
sion 2.0.6; Golino & Christensen, 2024).

# Load EGAnet Package
library(EGAnet)

# Load in the Data
load("../2. Data/bapq.all.RData")

# Set mother indices
mother <- bapq.all$Parent == "Mother"

# Extract items only
items <- bapq.all[,4:39]

## Mother
ega.mother <- EGA (data = items[mother,])

## Father
ega.father <- EGA(data = items[!mother,])

Visually we can see that the two graphs contain nonequivalent community structures 
(Figure 7). We can apply the invariance() function to the data, which will first 
identify a common structure that exists using bootEGA(), removing item stabilities less 
than 0.70, to establish configural invariance. After, establishing configural invariance, the 
procedure will continue to test metric invariance.1

# Perform invariance
bapq_invariance <- invariance(
  data = items, group = bapq.all$Parent, 
  ncores = 8, seed = 1, loading.method = "experimental"
)

1) In this example, we are demonstrating the use of a recently developed revised form of network loadings. See 
Christensen et al. (2024) for more details. We demonstrate that the results of the simulation do not differ for these 
revised network loadings (see Supplemental Materials).
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Figure 7

Comparison of the EGA Networks for the Mothers (Left) and Fathers (Right) With Color Denoting the Community 
for Each Node

The function will print out how many items were identified for configural invariance, 
for example: Configural invariance was found with 32 variables. To 
view which items were removed from the the original 36, the following object can be 
accessed:

    [1] "q12" "q23" "q25" "q28"

In Figure 8, the before and after item stability are plotted with the latter be­
ing accessed in the results using plot(bapq_invariance$configural.re-
sults$item_stability).
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Figure 8

Comparison of the BAPQ Item Stability Before (Left) and After (Right) Configural Invariance

Evaluating each group separately, we can see that the both groups have equivalent 
structures (Figure 9):

## Father
ega.father <- EGA(data = items[!mother, stable_names])

## Mother
ega.mother <- EGA(data = items[mother, stable_names])
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Figure 9

Comparison of the EGA Networks for the Fathers (Left) and Mothers (Right) With Color Denoting the Community 
for Each Node

Finally, we can print the results of invariance to see a table that breaks down the metric 
invariance for each item:

# Print summary
summary(bapq_invariance)

      Membership   Difference     p       p_BH   sig  Direction
q01       1          -0.006     0.662    0.850
q05       1           0.028     0.038    0.174    *   Father > Mother
q09       1           0.022     0.208    0.428
q16       1           0.027     0.054    0.192    .
q18       1          -0.001     0.948    0.979
q27       1           0.030     0.076    0.243    .
q31       1           0.033     0.030    0.174    *   Father > Mother
q36       1          -0.018     0.354    0.539
q02       2           0.017     0.296    0.515
q04       2           0.003     0.870    0.960
q07       2          -0.021     0.214    0.428
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q10       2          -0.017     0.332    0.531
q11       2           0.038     0.038    0.174    *   Father > Mother
q14       2          -0.004     0.810    0.926
q17       2          -0.016     0.306    0.515
q20       2          -0.059     0.004    0.064   **   Father < Mother
q21       2          -0.043     0.004    0.064   **   Father < Mother
q29       2           0.044     0.006    0.064   **   Father > Mother
q32       2           0.019     0.214    0.428
q34       2           0.024     0.152    0.428
q03       3          -0.032     0.044    0.176    *   Father < Mother
q06       3           0.001     0.922    0.979
q08       3          -0.004     0.798    0.926
q13       3           0.010     0.564    0.785
q15       3          -0.017     0.264    0.497
q19       3          -0.007     0.664    0.850
q22       3           0.039     0.030    0.174    *   Father > Mother 
q24       3           0.022     0.182    0.428
q26       3          -0.019     0.186    0.428
q30       3           0.000     0.984    0.984
q33       3           0.005     0.708    0.871
q35       3          -0.011     0.422    0.614
----
Signif. code: 0 ’***’  0.001 ’**’  0.01 ’*’  0.05 ’.’  0.1 ’n.s.’ 1

The item text for the 6 items showing metric noninvariance using uncorrected p-values 
are displayed in Table 2. Using the corrected p-values, there were no items that were 
detected as noninvariant. The noninvariant items detected with the uncorrected p-values 
spanned each dimension of the BAPQ. All differences between mothers and fathers cor­
responded with deficits in fathers relative to mothers—that is, there was larger loadings 
for items related to deficits or behaviors contrary to norms in the general population or 
smaller loadings for items related to norms in the general population.

Table 2

Metric Invariance Significant Results

Item Label Item Description p pBH Direction

q11 I feel disconnected or ’out of sync’ in conversations with others .048 .256 Father > Mother

q20 I speak too loudly or softly .002 .064 Father < Mother

q21 I can tell when someone is not interested in what I’m saying .004 .064 Father < Mother

q29 I leave long pauses in conversation .010 .107 Father > Mother

q03 I am comfortable with unexpected changes in plans .040 .256 Father < Mother

q22 I have a hard time dealing with changes in my routine .026 .208 Father > Mother

These results can further be visualized by using the plot() function on the output of 
invariance (Figure 10).
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Figure 10

Comparison of the EGA Networks for the Fathers (Left) and Mothers (Right) With Color Denoting the Community 
for Each Node and Transparency Denoting (Non)invariance

Discussion
Establishing measurement invariance is crucial for the use of any measurement across 
groups in any clinical or research setting. Traditionally, SEM approaches are the most 
common methods for testing measurement invariance. Previous research within network 
psychometrics has established a handful of methods for comparing networks, but noth­
ing comparable to SEM that accounts for multidimensionality. With the introduction of 
network loadings by Christensen and Golino (2021b), the space for further methodological 
development in network psychometrics has opened including the configural and metric 
invariance methods proposed in this study.

The simulation compared the proposed metric invariance method to existing SEM 
methods, manipulating sample size, loadings difference, and correlation between factors. 
Three methods in the SEM framework were used to test partial metric invariance: Fixed, 
Free, and Wald. In all four methods, we first tested for configural invariance, then tested 
for metric, and then partial metric invariance. A key addition to our comparisons was 
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the inclusion of a multiple comparison procedure. Most MCPs control Family Wise Error 
Rate (FWER) which is concerned with controlling the number of Type I errors made in 
general. Raykov et al. (2013) propose using the Benjamin-Hochberg procedure (BH-pro­
cedure) introduced by Benjamini and Hochberg (1995) to control the False Discovery 
Rate (FDR) when testing partial invariance. Since there is not a high level of risk in 
falsely identifying noninvariant items and there should be more emphasis on correctly 
identifying noninvariant items rather than invariant items.

The results of our simulation indicate that applying the BH-procedure provided a 
gain in the corrected identification of invariant items but not noninvariant items. This 
is in line with literature indicating that independent tests do not benefit from the 
application of an MCP (Rubin, 2024). Identifying noninvariant items was particularly 
challenging for the BH-procedure when the difference between loadings was small. 
Because smaller differences between groups will have larger p-values, there is a greater 
chance that detected differences will result in values at or near 0.05 which often end 
up with non-significant values after correction. For the corrected p-values in conditions 
with smaller differences, this poorer detection of noninvariant items was reflected in the 
Hit Rate.

When the difference in loadings was higher, all methods correctly identified the 
noninvariant item, regardless of p-value correction. But when the difference in loadings 
was lower, sample size and interfactor correlation differentially impacted the accuracy 
for the noninvariant item and the uncorrected p-value was more accurate in these 
particular cases. The EGA approach was less influenced by these cases than the three 
SEM methods. With a smaller sample size or different sample sizes, the EGA approach’s 
accurate detection of noninvariant items was also better than the SEM methods. As the 
correlation between factors increased, however, the accuracy decreased when sample size 
was either “Different” or 500.

These results were further corroborated by Sensitivity or the ability to detect non­
invariant items. All methods were better at identifying noninvariant items when the 
difference in loadings was larger. The EGA approach performed better than the SEM 
methods when sample size was “Different” or 500 but was negatively impacted by the 
increase in correlation between factors. Finally, the SEM Free method’s detection of 
invariant items was different across the two factors: Hit Rate was lower for invariant 
items Factor 1, where noninvariance was present, and higher for the invariant items 
in Factor 2. Specificity indicated that all methods performed comparably at identifying 
invariant variables. Of the three SEM methods, the Free method showed the lowest 
accuracy across all metrics, except for Sensitivity where it showed a similar ability to 
correctly identify noninvariant variables.

Turning to the p-value correction, the results indicate that including a p-value correc­
tion provides a gain in the ability of each method to correctly identify invariant items, 
but in some instances may hinder their ability to correctly identify noninvariant items, 
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particularly for SEM. We believe that this latter consequence is problematic. The goal is 
often to detect whether noninvariance exists. In most cases, applied researchers would 
prefer to err on the side of caution when determining whether groups are equivalent. 
When p-values are corrected, there is a bias toward suggesting items are invariant.

This finding raises the question of whether correcting p-values is useful to apply in 
the context of metric invariance or if it hinders the ability of these methods to properly 
identify noninvariant items. The Hit Rate results by variable in particular indicate that 
uncorrected p-values are more accurate when the difference in loadings is lower and 
equally as accurate when the difference in loadings is higher. These results are paralleled 
by Specificity where there is little to no concerning effect of falsely identifying an item as 
noninvariant.

Our results, however, do not discount the utility of p-value correction in testing 
metric invariance. Instead, we recommend in practice that noninvariant variables identi­
fied both uncorrected and corrected p-values should be evaluated. Based on the results 
of both p-values, the researcher can determine the consequences associated with each 
result, leveraging their knowledge of the literature, research context, and research ques­
tions. Another alternative is to change the α level when applying the MCP. In Appendix 
A we have included the all results with an additional condition where the corrected 
p-values are assessed for significance at the α = 0.10 level. The results indicate that this 
method slightly improves the accuracy of identifying noninvariant items for the EGA 
approach but makes no impact for the SEM methods.

The use of any latent variable measure across qualitatively distinct groups should 
necessitate the testing of measurement invariance. Current methodology for testing 
measurement invariance is problematic from a conceptual and software implementation 
standpoint. The proposed method is easier to implement in software than the existing 
methods. It also shows a stronger ability to correctly identify noninvariant items in 
several data conditions, namely differing sample sizes across groups or lower sample 
sizes within groups, especially when the correlation between factors is not very high.

Additionally, given that the communities estimated by EGA represent latent dimen­
sions when the data generation mechanism is a latent variable model, EGA can still be 
applied even when this is not the case (Golino et al., 2022; Kjellström & Golino, 2019). 
Therefore, it is both important and intriguing to note that unlike existing measurement 
invariance methods using SEM, the proposed method does not necessitate a latent varia­
ble model as the data generation mechanism and could be used in other applications such 
as topic modeling.

Conclusion
Ensuring the equivalence of a measure across assessment groups is vital to the efficacy 
of group comparison. Although many methods have been proposed to improve measure­
ment invariance in the SEM framework, many unresolved problems still remain. The 
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EGA approach proposed in this study performed comparably to existing SEM methods 
and, in several conditions, outperformed them with the aim of detecting noninvariant 
items. The method was then applied to a substantive dataset to demonstrate its assess­
ment of metric invariance in a real-world dataset, finding important differences in the 
BAPQ inventory that exist between mothers and fathers of children with ASD.

Appendices

Appendix A
Overall Metrics
Table 3

Overall Metrics by Method

Sensitivity F1 Specificity

Type
Uncorrected 

a = .05
Corrected 

a = .05
Corrected 

a = .10
Uncorrected 

a = .05
Corrected 

a = .05
Corrected 

a = .10
Uncorrected 

a = .05
Corrected 

a = .05
Corrected 

a = .10

EGA 0.99 0.93 0.96 0.76 0.91 0.87 0.94 0.99 0.98
Fixed 0.96 0.88 0.91 0.76 0.88 0.84 0.95 0.99 0.98
Free 0.98 0.93 0.95 0.65 0.83 0.76 0.90 0.97 0.95
Wald 0.97 0.89 0.91 0.77 0.89 0.85 0.95 0.99 0.98

Hit Rate
Figure 11

Mean Hit Rate by Condition
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Sensitivity
Figure 12

Sensitivity by Condition
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F1
Figure 13

F1 by Condition
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Specificity
Figure 14

Specificity by Condition

Appendix B
SEM Partial Invariance With the BAPQ

We applied a traditional SEM approach to test for partial metric invariance on the BAPQ 
dataset using the {lavaan} and {semTools} packages in R. First, we start with a three factor 
CFA model with the structure as outlined by Hurley et al. (2007) and Broderick et al. 
(2015). Table 4 shows the model fit statistics from this CFA model.

#Loading libraries
library (semTools)
library (lavaan)

# Confirmatory Three Factor Model
cfa.model <- "
aloof =~ q01 + q05 + q09 + q12 + q16 + q18 + q23 + q25 + q27 + q28 + q31 + q36
pragmatic =~ q02 + q04 + q07 + q10 + q11 + q14 + q17 + q20 + q21 + q29 + q32 + q34
rigid =~ q03 + q06 + q08 + q13 + q15 + q19 + q22 + q24 + q26 + q30 + q33 + q35"

cfa_fit <- cfa(cfa.model, data = bapq.all)
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Table 4

Model Fit Metrics for CFA Model

Metric Value

CFI 0.80

TLI 0.79

RMSEA 0.07

These model fit statistics do not meet the guidelines set up by Hu and Bentler (1999). To 
see if we can find a model that fits these data well, we next run an EFA, investigating 
the fit of models containing one, two, three, and four factors. Table 5 shows the model fit 
statistics from these EFA models.

# Obtaining item names
items <- bapq.all[,4:39]
var.names <- names(items)

# Assessing EFA from 1 to 4 factors
fit <- efa(data = bapq.all[,var.names], nfactors = 1:4)

Table 5

EFA Model Fit Statistics

Number of Factors AIC BIC χ2 df p-value CFI RMSEA

1 592574.3 593051.3 27448.65 594 0 0.64 0.09

2 582739.1 583448.0 17543.47 559 0 0.77 0.07

3 575437.4 576371.4 10173.73 525 0 0.87 0.06

4 572586.0 573738.6 7256.29 492 0 0.91 0.05

These results indicate that a four factor model is the best for these data. Using this 
model, we assessed configural invariance. Table 6 shows the model fit statistics from this 
test.

# Four-Factor configural invariance model
conf <- "
f1 =~ q02 + q04 + q14 + q17 + q20 + q29 + q32
f2 =~ q03 + q06 + q08 + q13 + q15 + q19 + q22 + q24 + q26 + q30 + q33 + q35
f3 =~ q01 + q05 + q09 + q10 + q11 + q12 + q16 + q18 + q23 + q25 + q27 + q28 + q31 + q36
f4 =~ q07 + q21 + q34"

configural <- cfa(conf, data = bapq.all, std.lv = TRUE, group = "Parent")

Metric Invariance in Exploratory Graph Analysis 178

Methodology
2024, Vol. 20(2), 144–186
https://doi.org/10.5964/meth.12877

https://www.psychopen.eu/


Table 6

Model Fit Statistics From the Four-Factor Configural Invariance Model

Metric Value

CFI 0.80

TLI 0.79

RMSEA 0.07

These model fit statistics also do not meet the guidelines set up by Hu and Bentler (1999). 
From this model, we iteratively pruned items with the lowest factor loadings, each time 
reassessing configural invariance. The best fitting model that increased the values of CFI 
and TLI while not drastically increasing RMSEA is a two-factor model. Table 7 shows the 
model fit statistics from this configural invariance model.

# Two-Factor configural invariance model
conf <- "
f2 =~ q03 + q08 + q13 + q19 + q22 + q24
f3 =~ q01 + q09 + q16 + q23 + q25 + q36"

configural  <- cfa (conf,  data =  bapq.all, std.lv = TRUE, group = "Parent")

Table 7

Model Fit Statistics from the Two-Factor Configural Invariance Model

Metric Value

CFI 0.92

TLI 0.91

RMSEA 0.09

Note that, ideally, we would see CFI and TLI values above 0.95 and RMSEA below 0.05. 
However, we could not attain that fit using this modeling approach on these data. This is 
the best fitting configural model, therefore for demonstration purposes, we will continue 
with this factor structure to test for partial metric invariance.

Using this pruned two-factor model, we assessed partial metric invariance using the 
partialInvariance() function. We do this with both corrected (Benjamini-Hoch­
berg) p-values and uncorrected p-values.
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# Metric invariance model
weak <- "
f2 =~ q03 + q08 + q13 + q19 + q22 + q24
f3 =~ q01 + q09 + q16 + q23 + q25 + q36
f2 ~~ c(1, NA)*f2
f3 ~~ c(1, NA)*f3"
weak <- cfa(weak, data = bapq.all, group="Parent", group.equal="loadings"
models <- list(fit.configural = configural, fit.loadings = weak)

# Partial invariance models
pi_model <- partialInvariance(models, "metric")
pi_model.h <- partialInvariance(models, "metric", p.adjust = "hochberg")

Table 8 shows the p-values for each item split by the p-values were uncorrected or 
corrected and which method (Free, Fixed, or Wald) was used. The cells highlighted gray 
indicate an item that was identified as noninvariant. Note that there is not a great deal of 
difference between corrected and uncorrected p-values except for those calculated using 
the Wald method. In this table, within each testing method, at least half of the items are 
identified as metric noninvariant. However, these results should not be considered for 
any substantive interpretation because configural invariance was not reliably established.

Table 8

BAPQ Partial Metric Invariance p-Value by Item, Method, and p-Value Correction

Item Uncorrected Corrected

Label Description Free Fixed Wald Free Fixed Wald

q03 I am comfortable with unexpected changes in 
plans.

0.12 0.02 0.12 0.12 0.02 0.35

q08 I have to warm myself up to the idea of 
visiting an unfamiliar place.

0.06 0.02 0.12 0.06 0.02 0.35

q13 I feel a strong need for sameness from day to 
day.

0.03 0.07 0.00 0.03 0.07 0.00

q19 I look forward to trying new things. 0.06 0.02 0.10 0.06 0.02 0.35
q22 I have a hard time dealing with changes in 

my routine.
0.02 0.07 0.00 0.02 0.07 0.00

q24 I act very set in my ways. 0.01 0.00 0.43 0.01 0.00 0.43
q01 I like being around other people. 0.11 0.09 0.00 0.11 0.09 0.00
q09 I enjoy being in social situations. 0.00 0.08 0.00 0.00 0.08 0.00
q16 I look forward to situations where I can meet 

new people.
0.07 0.03 0.08 0.07 0.03 0.35

q23 I am good at making small talk. 0.00 0.04 0.01 0.00 0.04 0.09
q25 I feel like I am really connecting with other 

people.
0.05 0.01 0.28 0.05 0.01 0.43

q36 I enjoy chatting with people. 0.00 0.09 0.00 0.00 0.09 0.00
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