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Abstract
Replication is a core principle for research, and the recent recognition of the importance of 
constructing prediction intervals for precise replications highlights the need for robust sample-size 
planning methodologies. However, methodological and technical complexities often hinder 
researchers from efficiently achieving this task. This study addresses this challenge by developing 
five R Shiny apps specifically tailored to determine sample sizes concerning prediction intervals for 
the mean of the normal distribution. Two measures of precision, absolute and relative widths, are 
considered. Additionally, the apps consider unequal sampling unit costs and sample size allocations 
to achieve optimal results by exhaustive search. Simulation results validate the proposed 
methodology, demonstrating favorable coverage rates. Two illustrative examples of one-sample 
and two-sample problems showcase these apps’ versatility and user-friendly nature, providing 
researchers with a valid and straightforward approach for systematically planning sample sizes.
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In the past, replications were seldom conducted due to a lack of incentives and were 
rarely published as they were not considered novel (Nosek & Lakens, 2014). However, 
the replication crisis has recently made replication a core principle for the future of 
psychology and social sciences (Anderson & Maxwell, 2016; Cumming, 2008; Higgins et 
al., 2009; Verhagen, 2022). A critical issue is ensuring that the outcomes of replication 
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studies are consistent with those of the original studies, thereby evaluating the replicabil
ity of the original findings (Patil et al., 2016; Spence & Stanley, 2024). When original 
study results are imprecise, they lead to wide prediction intervals (PIs). PIs, based on the 
results of an original (past or current) sample, predict the results of a replication (future) 
sample drawn repeatedly from the same population with a specified probability 1 − α
(Patel, 1989; Proschan, 1953). They are crucial in estimating the likelihood of treatment 
effects from sample to sample, making them invaluable in quality control, meta-analysis, 
and power calculations for planning replication studies (IntHout et al., 2016; Spence & 
Stanley, 2016). However, they are often neglected in introductory textbooks, except in the 
context of regression (Hartnack & Roos, 2021; Preston, 2000). Take one-sample problems 
as an example; a general form of a PI can be a point estimate±SDtn − 1; 1 − α/2 1/n + 1/m, 
where n and m represent the original and replication sample sizes, respectively. The 
computation of PIs, by considering sampling errors, can indicate whether the results of 
replication studies align with those of the original studies. In other words, PIs capture the 
uncertainty and heterogeneity associated with the estimation of the replication sample, 
providing a range of expected results before the replication study is conducted. (Calin-
Jageman & Cumming, 2019; Chiolero et al., 2012; IntHout et al., 2016; Meeker et al., 2017; 
Roth, 2009). Note that, for constructing PI, the anticipated replication sample size should 
be decided beforehand (See Figure 1). That becomes a chicken-and-egg conundrum. 
There has been little discussion regarding this issue, although the essence of planning 
ahead is fundamental to experimental designs.

Figure 1

A Holistic Framework of Sample Size Planning
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Sample size determination is a crucial yet enigmatic aspect of research design and 
replication studies. It involves probability theory, sampling distribution, sampling error, 
and uncertainties that form the core of statistical thinking. Despite its mandatory nature, 
mastering sampling size determination remains challenging, particularly in experimental 
fields (Anderson & Kelley, 2024; Marszalek et al., 2011; Mellis, 2018). The statistical 
reform has shifted the focus of sample size calculation from power to precision (i.e., 
the width of confidence intervals) (Calin-Jageman & Cumming, 2019; Lai & Kelley, 2012; 
Luh, 2022). However, this shift has primarily applied to original studies, not replication 
studies. In the prediction context, required sample sizes are based on precision, similar 
to the construction of confidence intervals. Precision can be expressed in two ways: 
absolute width or relative width, as Meeker and Hahn (1982) described. The absolute 
width is the difference between the upper and lower bounds of the prediction interval, 
which measures the uncertainty associated with the prediction in the same units as the 
data. On the other hand, the relative width is defined as the ratio of the absolute width 
to the limiting PI width, providing a measure of the uncertainty relative to the magnitude 
of the data for comparison across different scales or units. However, these approaches in 
terms of sample size calculation have not been extensively detailed since then.

In the context of estimating the mean for a one-sample problem, while Hahn (1970a, 
1970b) and Meeker and Hahn (1982) discussed the original sample size needed based 
on relative width for PIs on the mean, little attention has been given to the absolute 
width. A holistic approach to sample size planning has seen little advancement in this 
context. For two-sample problems, Hahn (1977) and Niwitpong and Niwitpong (2008) 
have focused on constructing PIs for the difference between two means of normal 
distributions. Hahn’s approach allows unequal variances to construct an approximate PI, 
while Niwitpong and Niwitpong use a known ratio of variances. However, the issue of 
cost-effectiveness remains unaddressed in sample size planning. Existing literature has 
suggested unbalanced designs for cost-effectiveness, but their application in determining 
sample size is limited (Hsu, 1994; Liu, 2003; Peckham et al., 2015). In summary, optimal 
sample size allocation is a crucial yet understudied issue for two-group problems.

One reason that sample size determination has received insufficient attention is the 
complexity of the calculation involved. Recent advancements in computing have sparked 
renewed interest in web applications (Doi et al., 2016). Shiny, developed by R Studio, 
stands out for its interactive, user-friendly, and publicly accessible features. It is an ideal 
tool for sample size planning for practitioners and applied researchers with minimal 
coding experience (Chang et al., 2023). To address the research gap, the present study 
aims to develop several R Shiny apps for sample size planning regarding PIs. Given the 
complexity of iteration and calculation, these apps are invaluable for practitioners and 
applied researchers. For the one-sample problem, the present study aims to develop an 
R Shiny app to determine the original sample size, given the pre-specified replication 
sample size. For the two-sample problem, considering the unequal unit cost for groups, 
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two apps were created for Hahn’s and Niwitpong’s methods, respectively, and the opti
mal allocation is proposed to utilize an exhaustive search method (Luh, 2022) to find 
the needed original sample sizes for achieving cost-effectiveness. Finally, another two 
apps were developed for a scenario when one group size (experimental or control) is 
fixed to determine another group’s sample size (Luh & Guo, 2009; 2016). These scenarios 
represent a significant advancement compared to existing commercial packages.

The subsequent sections of this study are structured as follows. Section 2 delves into 
determining sample sizes for the one-group problem using two precision measures. Sec
tion 3 presents sample size determination using Hahn’s and Niwitpong’s methods. This 
is followed by two illustrative examples of one- and two-group problems showcasing the 
proposed R Shiny apps. Simulation results and tables are also provided. Finally, the last 
section offers conclusions from the study’s findings and discusses their implications.

The One-Sample Problem
In estimating the mean in the one-sample problem, let Xi be independent and normal
ly distributed with mean μ and variance σ2, i = 1, ..., n (the original sample size). Let 
X n = ∑Xi/n and S2 = ∑(Xi − X n)2/(n − 1) be the original sample’s mean and variance, 
respectively. For a replication study, the replication sample is independent of the original 
sample, and the mean of a replication sample is denoted as Xm for a given replication 
sample size m from the same distribution as the original sample. The discrepancy be
tween the original and the replication samples on the estimation of the mean can be 
shown by the statistic

T1 =
X n − Xm

S 1/n + 1/m ,

which is distributed as a t distribution with n − 1 degrees of freedom and S is the 
standard deviation of the original sample. The (1 – α)100% two-sided PI for Xm is 
denoted as [X n ± Stn − 1; 1 − α/2 1/n + 1/m]. The absolute width of the PI, denoted as WPI , 
is 2Stn − 1; 1 − α/2 1/n + 1/m which is a random variable and related to the size of m and n. 
As Meeker and Hahn (1980) noted, if the replication sample size (m) increases to infinity, 
the prediction interval is the same as the confidence interval (CI). Generally, the width 
of a prediction interval (PI) is greater than that of the corresponding confidence interval 
(CI). The precision of PI can be expressed as absolute width (AW) and relative width 
(RW), and the corresponding sample sizes are demonstrated as follows.

The Absolute Width
To determine the sample size, the absolute width (WPI) should be no larger than a given 
reasonable value of width (w) from the researcher with a designated probability (1 − γ)

Planning Sample Sizes 286

Methodology
2024, Vol. 20(4), 283–303
https://doi.org/10.5964/meth.13549

https://www.psychopen.eu/


(say, 0.8 or 0.9), i.e., P(WPI ≤ w) ≥ 1 − γ. Then, we can find the original sample size to 
satisfy

P(WPI ≤ w) = P(2Stn − 1; 1 − α/2 1/n + 1/m ≤ w)

   = P( (n − 1)S2
σ2 ≤ (n − 1)w2

4σ2tn − 1; 1 − α/2
2 (1/n + 1/m) ) ≥ 1 − γ, (1)

where the distribution of (n − 1)S2/σ2 is a central chi-squared χn − 12  with n − 1 degrees of 
freedom. To ease the calculation, the present study developed App (I) (Luh & Guo, 2024a) 
for researchers and practitioners. Given an anticipated replication sample size m, using 
Panel 1, we can find the minimal original sample size n to meet the following condition:

n ≥ 1/( (n − 1)w2

4σ2tn − 1; 1 − α/2
2 χn − 1; 1 − γ2 − 1

m ).

The Relative Width
Another measure of precision is relative width. Calculating the relative width involves 
the ratio (r) of the absolute width and the limiting interval of a PI. For example, if r = 1.2, 
meaning that the width of the PI is no more than twenty percent larger than the width of 
the limiting interval. According to Meeker and Hahn (1982), when n goes to infinity and 
m is fixed, the limiting interval of a PI regards as the population (1 – α)100% two-sided PI 
for the replication sample mean Xm, and it becomes [μ ± σz1 − α/2 1/m] with a width of 
2σz1 − α/2 1/m, denoted as WLPI , which is a decreasing function of m. That is, the larger 
the m, the smaller the WLPI . When m is fixed, WLPI  is then fixed, and it can be used as a 
baseline to form a relative width (RW), a random variable, by dividing the absolute width 
of a PI by its limiting interval width as

RW = WPI
WLPI

=
Stn − 1; 1 − α/2 1/n + 1/m

σz1 − α/2 1/m =
Stn − 1; 1 − α/2 m/n + 1

σz1 − α/2
.

Note that RW is an increasing function of m, but a decreasing function of n. If n goes to 
infinity, the value of RW approaches 1. To determine the required original sample sizes, 
researchers can set the value of RW not less than an acceptable ratio of r (>1) with a 
desired probability of (1 − γ). Thus, for the designated value r and probability 1 − γ, we 
can obtain the required original sample size to satisfyP(RW ≤ r) ≥ 1 − γ; i.e.,

P
Stn − 1; 1 − α/2 m/n + 1

σz1 − α/2
≤ r   ≥ 1 − γ.
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Because S2/σ2 is distributed as a χn − 12 /(n − 1) distribution with n − 1 degrees of freedom, 
then we have

χn − 1; 1 − γ2

n − 1
tn − 1; 1 − α/2 m/n + 1

z1 − α/2
≤ r .

Thus, given m, we can find a minimal n by using App (I) (Panel 2) to satisfy

n ≥ m/[(
rz1 − α/2

tn − 1; 1 − α/2
)
2 n − 1
χn − 1; 1 − γ2 − 1].

The Two-Sample Problem
In estimating the difference between two means in the two-sample problem, let X ij be 
independent and normally distributed with mean μj and variance σj2, i = 1, ..., nj (original 
sample sizes), j = 1, 2. Let X nj = ∑i = 1

nj X ij/nj and Sj2 = ∑i = 1
nj (X ij − X nj)

2/(nj − 1) be the 
original sample means and variances for the j th group. The replication samples are 
independent of the original samples for a replication study. Moreover, the replication 
and original samples in Group 1 are from the same distribution. This condition also 
holds for Group 2. The two replication sample means are denoted as (Xm1,Xm2) with 
the given replication sample sizes (m1,m2). The present study then adopted the methods 
from Hahn (1977) and Niwitpong and Niwitpong (2008), respectively, and employed two 
precisions, i.e., the absolute and relative widths, to calculate the original sample size 
needed. In the following, we further consider cost constraints and use optimal sample 
allocations to demonstrate the features of the proposed approaches. A constraint of total 
cost for the original sample is Cn = c1n1 + c2n2with the sampling unit costs (c1, c2), then, 
n1 = Cn/(c1 + kc2) and n2 = n1k can be obtained. The allocation ratio for the original sam
ple is k = n2/n1. Note, if the total cost is constrained, the optimal allocation ratio is set 
as (σ2/σ1) c1/c2 (Luh, 2022; Pentico, 1981) for Hahn’s statistic and ηc1/c2 Niwitpong’s 
statistic, where η is the ratio of σ22/σ12.

Hahn’s Method
The test statistic in Hahn (1977) is

T2 =
X n1 − X n2 − (Xm1 − Xm2)

S12
n1 +

S22
n2 +

S12
m1 +

S22
m2

=
X n1 − X n2 − (Xm1 − Xm2)

a1S12 + a2S22
,

where a1 = 1/n1 + 1/m1,a2 = 1/n2 + 1/m2, S12 and S22 are the original sample variances of 
Groups 1 and 2, respectively. The random variable
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(a1S12 + a2S22)/(a1σ12 + a2σ22) (2)

is distributed approximately as a chi-squared χv22 /v2, and then T2 is distributed approxi
mately as a t distribution with v2 degrees of freedom as

v2 =
(a1S12 + a2S22)2

(a1S12)2/(n1 − 1) + (a2S22)2/(n2 − 1)
(3)

(Satterthwaite, 1946; Welch, 1938). The (1 − α)100% Hahn’s PI of Xm1 − Xm2 is de
noted as [X n1 − X n2 ± tv2; 1 − α/2 a1S12 + a2S22] and the absolute width of this PI is 
2tv2; 1 − α/2 a1S12 + a2S22, denoted as WPI . We discussed two precisions as follows:

Absolute Width

To consider the absolute width of the (1 − α)100% Hahn’s PI of Xm1 − Xm2, we need to set 
a designated width w and a desired probability (1 − γ). Then, we can find the original 
sample sizes to satisfy

P(WPI ≤ w) = P(2tv2; 1 − α/2 a1S12 + a2S22 ≤ w)

   = P(χ2 ≤ v2w2

4(a1σ12 + a2σ22)tv2; 1 − α/2
2 ) ≥ 1 − γ,

or

v2w2

4(a1σ12 + a2σ22)tv2; 1 − α/2
2 ≥ χv2; 1 − γ2 , (4)

where χ2= v2(a1S12 + a2S22)/(a1σ12 + a2σ22) is distributed approximately as a chi-squared χv22
variable with degrees of freedom v2 in Equation (3). We developed App (II) (Luh & Guo, 
2024b) to ease the calculation. Given an anticipated replication sample sizes (m1,m2), we 
can find the minimal n1 using Panel 1 to meet

n1 ≥ (σ12 + σ22/k)/[
v2w2

4χv2; 1 − γ2 tv2; 1 − α/2
2 − ( σ12

m1
+ σ22

m2
)] and then n2 = n1k,

where k = n2/n1.

Relative Width

It is known that if the original sample sizes increase to infinity, the limiting Hahn’s PI is 
[μ1 − μ2 ± z1 − α/2 σ12/m1 + σ22/m2] with the width of 2z1 − α/2 σ12/m1 + σ22/m2, denoted as 
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WLPI , which is a decreasing function of (m1,m2). Then, the relative width (RWH) of the PI 
width to its limiting interval width is defined as

RWH =
tv2; 1 − α/2 a1S12 + a2S22

z1 − α/2 σ12/m1 + σ22/m2
.

The value of RWH should be less than an acceptable ratio r with a desired probability 
(1 − γ). We can obtain the required original sample sizes to satisfyP(RWH ≤ r) ≥ 1 − γ; 
that is,

P
tv2; 1 − α/2 a1S12 + a2S22

z1 − α/2 σ12/m1 + σ22/m2
≤ r

  = P a1S12 + a2S22
a1σ12 + a2σ22

≤
r2z1 − α/22 (σ12/m1 + σ22/m2)
tv2; 1 − α/2
2 (a1σ12 + a2σ22)

≥ 1 − γ .
(5)

Based on Equations (2) and (5), we have

χv2; 1 − γ2

v2
tv2; 1 − α/2 a1σ12 + a2σ22

z1 − α/2 σ12/m1 + σ22/m2
≤ r . (6)

For easy application, App (II) can be used. Given (m1,m2), we can find the minimal n1 by 
using Panel 2 to meet

n1 ≥
σ12 + σ22/k

σ12/m1 + σ22/m2
/[ r2v2

χv2; 1 − γ2 (
z1 − α/2
tv2; 1 − α/2

)
2
− 1] and then n2 = n1k.

Determining Another Group Size When One Group Size is Fixed

In another scenario, when the original sample size for one group is fixed n1, the task 
is to determine the sample size n2 for another group. We employed Hahn’s method and 
developed R Shiny App (III) (Luh & Guo, 2024c). By giving (m1,m2), we can find the 
required size n2. Panel 1 is for the precision of absolute width to satisfy Equation (4), and 
Panel 2 is for the relative width to satisfy Equation (6).

Niwitpong’s Method
In the following, we consider another method based on Niwitpong and Niwitpong (2008), 
which involves a known ratio value of two variances. The test statistic is defined as
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T3 =
X 1 − X 2 − (Xm1 − Xm2)

Sp b1 + b2
,

where b1 = 1/n1 + η/n2, b2 = 1/m1 + η/m2 with a known ratio of two variances 
σ22/σ12 = η, and Sp2 = (n1 − 1)S12 + (n2 − 1)S22/η

n1 + n2 − 2 , an unbiased estimator of σ12. Note that Sp2/σ12

follows a distribution as χv32 /v3 and T3 follows a t distribution with v3 = n1 + n2 − 2
degrees of freedom. The (1 − α)100% Niwitpong’s PI of Xm1 − Xm2 is denoted as 
[X n1 − X n2 ± tv3; 1 − α/2Sp b1 + b2] with the absolute width 2tv3; 1 − α/2Sp b1 + b2, denoted as 
WPI . Then, we discussed two precisions as follows:

Absolute Width

For the absolute width of the (1 − α)100% Niwitpong’s PI of Xm1 − Xm2 with a specified 
desired probability (1 − γ) and a designated value of w for WPI , we can calculate the 
original sample sizes needed to satisfy

P(WPI ≤ w) = P(2tv3; 1 − α/2Sp b1 + b2 ≤ w)

   = P(χ2 ≤ v3w2

4σ12tv3; 1 − α/2
2 (b1 + b2)

) ≥ 1 − γ

or

v3w2

4σ12tv3; 1 − α/2
2 (b1 + b2)

≥ χv3; 1 − γ2 , (7)

where χ2 = v3Sp2/σ12 is a distribution of χv32  with degrees of freedom v3 = n1 + n2 − 2. We 
developed App (IV) (Luh & Guo, 2024d) to obtain the minimal n1, given (m1,m2), using 
Panel 1 to meet

n1 ≥ (1 + η/k)/( v3w2

4σ12χv3; 1 − γ2 tv3; 1 − α/2
2 − b2) and then n2 = n1k,

where k = n2/n1.

Relative Width

If the original sample sizes go to infinity, the limiting PI is [μ1 − μ2 ± z1 − α/2σ1 b2] with 
the limiting width 2z1 − α/2σ1 b2, denoted as WLPI . The relative width is defined as

RWN =
tv3; 1 − α/2Sp b1/b2 + 1

z1 − α/2σ1
.

For a designated ratio r and a probability 1 − γ, to obtain the required original sample 
sizes to satisfyP(RWN ≤ r) ≥ 1 − γ, we can have
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P(RWN ≤ r) = P(
tv3; 1 − α/2Sp b1/b2 + 1

z1 − α/2σ1
≤ r)  ≥ 1 − γ,

and Sp2/σ12 follows a distribution as χv32 /v3. Hence, we have

χv3; 1 − γ2

v3
tv3; 1 − α/2 b1/b2 + 1

z1 − α/2
≤ r . (8)

Thus, given (m1,m2), we can find the minimal n1 using App (IV) Panel 2 to meet

n1 ≥ (1 + η/k)/[b2(
v3r2z1 − α/22

χv3; 1 − γ2 tv3; 1 − α/2
2 − 1)] and then n2 = n1k.

Determining Another Group Size When One Group Size is Fixed

We employed Niwitpong’s methods and developed R Shiny App (V) (Luh & Guo, 2024e) 
to find the required size n2 when n1 is fixed, by providing (m1,m2). Panel 1 is for the 
precision of absolute width to satisfy Equation (7), and Panel 2 is for relative width to 
satisfy Equation (8).

Illustrative Examples and Simulation

Illustrative Examples
To enhance the application of the proposed approaches, two examples of determining the 
original sample size are illustrated, and the proposed apps are demonstrated as follows.

The One-Sample Problem

We used the example of Spence and Stanley (2024) regarding the estimation of 
hours of sleep for college students to determine the needed sample size in uni
versities. From their study, the original sample size is n = 50 with a mean = 
7.21 and S = 2.2, and a hypothetical replication sample size m = 70 and a 
95% prediction interval can be constructed as 95%PI = Moriginal ± t0.975, (n − 1)S 1/n + 1/m
= 7.21 ± 2.01 × 2.2 1/50 + 1/70 = 7.21 ± 0.8186 with a PI width of 1.6372 = (2 × 0.8186). 
Then, we can use this information to plan an original sample size. Suppose the precision 
of absolute width is considered; we aim for the random variable WPI  to be less than 
or equal to w = 1.6372 with a probability of 0.8. Then, we can use App (I) (Panel 1) to 
determine the appropriate original sample size n for a given m = 70. After plugging in 
a significance level of α = .05, a desired probability 1 − γ = .8, a planning value of σ2 =
2.22 = 4.84, and the designated value of width w = 1.6372 (see Figure 2), the output shows 
that the minimum original sample size n is 63, achieving the probability of 80.39% in 
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our simulation results (refer to Table 1). Thus, Spence and Stanley’s anticipated original 
sample size (= 50) is insufficient to achieve the desired probability; they achieve the des
ignated probability of .80, only 52.73% of the time for the absolute width (WPI ≤ 1.6372).

Suppose researchers want to use the precision of relative width instead of absolute 
width; we set the limiting width as 1.031 (= 2σz1 − α/2 1/m = 2 × 2.2 × 1.96/ 70) and set 
that the random variable RW is less than 1.588 (= 1.6372/1.031), with a probability of 
0.8, then how large should the original size (n) be? For a given m = 70, we can use 
App (I) (panel 2) to calculate that the most diminutive original size n should be 63 to 
satisfy Equation (1) and to achieve the probability of 80.32% in our simulation results 
(refer to Table 1). Our simulation shows that while Spence and Stanley’s coverage rate is 
95.36%, they achieve the designated probability of .80 only 52.62% for the relative width 
(RW ≤ 1.588) for m = 70 and n = 50.

Figure 2

A Screenshot of R Shiny App (I) for the One-Sample Problem
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The Two-Sample Problem

In the following, we applied the study by Losordo et al. (2011) and utilized the proposed 
App (II) for Hahn’s method to illustrate sample size planning in a two-sample problem. 
Their study involved two groups, each comprising 56 patients. Group 1 received a single 
dose of mobilized autologous CD34+ cells, while Group 2, serving as the control, received 
an equal volume of diluent over six months. Their findings revealed a significant im
provement in exercise tolerance among patients in the treatment group compared to 
those in the control group patients (139 ± 151 versus 69 ± 122). Without loss of general
ity, we assumed c1 = $9 for CD34+ and c2 = $1 for diluent. Because the information is 
limited and the prediction interval is not provided, we used the precision of relative 
width by setting r = 1.5 to estimate the original sample sizes (n1, n2) by anticipating the 
replication sample size (m1,m2) = (54,54). Based on Hahn’s method, using App (II) (Panel 
2), we set the significance level α = .05, a desired probability 1 − γ = .8, and planning 
values of variances (1512 = 22801 and 1222 = 14884). As for the allocation ratio, setting 
optimal allocation (k = 0) can obtain (n1, n2) = (45, 99) (refer to Figure 3). Group 2 has 
a larger sample size than Group 1 because it is less expensive. Additionally, for k = 
1, the resulting (n1, n2) = (56, 56). Finally, if the relative width is set by r = 1.2, other 
conditions hold, and the resulting original sample sizes become (160, 160), indicating that 
the smaller the ratio, the larger the sample size.

Figure 3

A Screenshot of R Shiny App (II) for the Two-Sample Problem
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Tables and Simulations
To assess the effectiveness of the proposed apps, this section presents sample size tables 
and simulation results using R codes (R Core Team, 2023). To produce sample size tables, 
we specified α = .05, 1 − γ = 0.8 to find the needed original sample sizes. The simulation 
procedure, taking the one-sample problem as an example, is as follows:

1. For each simulation, first, given the needed sample sizes (m, n) obtained from the 
apps and a planning population variance (σ2), generate an original sample with size 
n from a normal distribution. Then, obtain the original sample mean and variance, 
and construct a 100(1 − α)% prediction interval.

2. Independently generate a replication sample with size m from the same distribution 
and obtain the replication sample mean.

3. Check if the prediction interval covers the replication sample mean over 10,000 
simulations to cumulate the coverage rate.

4. For the absolute width, calculate WPI  and check if the value is less than or equal to 
the designated value w. For the relative width, calculate RW and check if the value is 
less than or equal to the designated value r.

5. Finally, over 10,000 simulations, the percentages of WPI ≤ w  and RW ≤ r are 
recorded, respectively.

For the one-sample problem, Table 1 demonstrates the required minimal original sample 
size (n) for absolute width and relative width, respectively. The results reveal that the 
required original sample size is negatively related to the replication sample size in the 
case of absolute width but positively related in the case of relative width. Finally, the 
simulation results show that, given the sizes (m, n), the proposed approach can achieve a 
95% coverage rate as α = .05, signifying that approximately 95% of the random prediction 
intervals will encompass their corresponding replication sample means (not the popula
tion mean) in the long run. Also, the percentages of WPI ≤ w  and RW ≤ r all meet the 
desired probability of .80.

For the two-sample problem with unit costs (c1, c2) = ($9, $1), Tables 2 and 3 present 
pairs of (n1, n2) for a given (m1,m2) and various allocation ratios for the absolute width 
and the relative width, respectively. Several notable findings emerge: Firstly, in optimal 
cases (setting k = 0) under the same (m1,m2), the resulting total costs are minimized as 
expected. Secondly, compared to Hahn's method, Niwitpong's method typically requires 
a slightly smaller sample size and incurs lower total costs. The reason is that Niwitpong’s 
method only requires a proportion of variances, not their actual values. Thirdly, if 
we compare Tables 2 and 3, when (m1,m2) = (54, 54), it is found that the resulting 
original sample sizes are the same. This is because, in the case of absolute width, the 
given width w = r ×WLPI = r × 2 × z1 − α/2 × 1512/54 + 1222/54 =155.33 is based on r = 
1.5, generating the same condition. Finally, simulation results indicate that, given the 
required sample sizes, the proposed approach can achieve 95% coverage and reach the 
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target (i.e., WPI ≤ w  for absolute width or RW ≤ r for relative width) about 80% of the 
time.

Table 2

For the Two-Sample Problem, the Required Original Sample Sizes, Resulting Total Costs, and Simulation Results for 
Absolute Width (WPI)

Computational Results Simulation Results

Replication Sample Sizes, 
(m1,m2) Allocation Ratio, k

Original Sample Sizes
(n1, n2) Cn Coverage (%) WPI ≤ w  (%)

Hahn’s method
(54, 54) 0 (45, 99) 504a 95.64 80.43

0.5 (77, 39) 732 95.28 79.63

1 (56, 56) 560 95.44 80.95

2 (46, 92) 506 95.15 80.13

(35, 70) 0 (60, 118) 658a 95.06 79.34

0.5 (97, 49) 922 95.08 80.14

1 (72, 72) 720 94.93 80.45

2 (60, 120) 660 94.99 80.24

Niwitpong’s method
(54, 54) 0 (39, 116) 467a 94.94 80.28

0.5 (77, 39) 732 95.28 80.94

1 (56, 56) 560 95.45 81.65

2 (44, 88) 484 95.30 81.77

(35, 70) 0 (49, 148) 589a 95.20 80.28

0.5 (97, 49) 922 95.08 80.33

1 (70, 70) 700 95.11 80.17

2 (55, 110) 605 95.05 80.56

Note. Set Planning value of σ12 = 22801, σ22 = 14884 for Hahn’s method in App (II) Panel 1, and σ12 = 22801, η = 
0.65278 for Niwitpong’s method in App (IV) Panel 1.
a the optimal case.
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Table 3

For the Two-Sample Problem, the Required Original Sample Sizes, Resulting Total Costs, and Simulation Results for 
Relative Width (RW)

Replication Sample Sizes, (m1,m2) Allocation Ratio, k Original Sample Sizes(n1, n2) Cn Coverage (%) RW ≤ r (%)

Hahn’s method
(54, 54) 0 (45, 99) 504a 95.64 80.43

0.5 (77, 39) 732 95.28 79.63
1 (56, 56) 560 95.44 80.95
2 (46, 92) 506 95.15 79.81

(35, 70) 0 (39, 82) 433a 94.96 79.54

0.5 (64, 32) 608 94.92 80.02
1 (47, 47) 470 95.17 79.96
2 (40, 80) 440 95.19 81.00

Niwitpong’s method
(54, 54) 0 (39, 116) 467a 94.94 80.27

0.5 (77, 39) 732 95.28 80.94
1 (56, 56) 560 95.45 81.65
2 (44, 88) 484 95.30 81.77

(35, 70) 0 (32, 98) 386a 95.02 80.04

0.55 (64, 32) 608 94.93 80.55
1 (46, 46) 460 95.34 80.10
2 (36, 72) 396 95.17 80.07

Note. Set Planning value of σ12 = 22801, σ22 = 14884 for Hahn’s method in App (II) Panel 2, and η = 0.65278 for 
Niwitpong’s method in App (IV) Panel 2.
a the optimal case.

Conclusions and Discussion
Replication research has attracted attention over the last decade, leading to the advance
ment of constructing prediction intervals, often neglected in introductory textbooks 
except in the context of regression. This study emphasizes the pivotal role of sample 
size determination and the often-overlooked intricacies tied to prediction intervals in 
research design and statistical planning in the context of replication. The existing gap 
in the literature on the precision of the PI and the cost-effectiveness considerations 
underscores the need for dedicated design and innovation. To meet this challenge, the 
present study introduces a pioneer contribution by developing R Shiny apps explicitly 
designed for calculating sample sizes for prediction intervals related to the normal distri
bution mean, bridging from the original sample to the replication sample. These tools 
tackle issues concerning designated probability associated with interval widths and opti
mizing allocation ratios. Notably, they advance methodological rigor while enhancing the 
practicality and efficiency of replication research endeavors. The proposed approaches 
empower researchers with unprecedented capabilities to navigate the complexities of 
sample size determination. Being able to prefigure original sample sizes within a holistic 
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framework is more coherent and systematic, enhancing the credibility of the research 
results.

As regards the two measures of precision, the relative width (WPI/WLPI) is rather hard 
to comprehend but easy to use to prefigure as a ratio. Because the value of relative 
width should be less than a designated value r with a desired probability (1 − γ), we can 
regard the absolute width of the PI as less than r times the width of the limiting interval. 
Hence, we suggest choosing a designated value r within a reasonable interval between 
1 and 2, with a smaller value requiring a larger sample size when other conditions hold 
constant. On the other hand, the absolute width (WPI) is intuitive but not easy to apply 
as expected because information regarding the PI might not be available. Researchers 
must anticipate the replication sample size to calculate the PI width before conducting 
a replication study. Furthermore, choosing a designated value (w) is challenging due 
to various studies across disciplines. Thus, we recommend selecting a reasonable value 
of w within a broader range as max(WLPI)/100 < w < max(WLPI), where max(WLPI) = 
2σz1 − α/2 by setting a planning value of σ. Additionally, in the absolute width case, 
WPI=2Stn − 1; 1 − α/2 1/n + 1/m, which shows that the sample sizes m and n are reciprocal
ly related like a 2-way tug, restraining to achieve WPI ≤ w . However, for the case of 
relative width, if the replication sample size holding constant, the original sample size is 
negatively related to the ratio (r).

Several reminders regarding the use of the proposed apps: First, to avoid encoun
tering errors in running apps, caution statements appear if the plugged-in values of 
parameters (w for absolute width or r for relative width) are too small or too large. 
Second, to achieve optimization in the two-sample problem, the apps use exhaustive 
algorithms and require researchers to set two parameters, i.e., 0 < a < 1 < b. Using a = 0.7 
and b = 1.3 is recommended to define a narrow search space. If a warning like 'a is too 
large' or 'b is too small' arises, these values must be adjusted to expand the search space. 
Third, the selection of replication sample sizes hinges on the budget allocated for the 
study. Researchers can determine the total cost of the replication study in advance, which 
then dictates the acquisition of (m1,m2). Finally, if the cost is not the issue, researchers 
can set it, c1 = c2 = 1 and apps still can be used to calculate the sample size.

The proposed framework includes both an original and a replication study, presented 
in an abridged edition. We acknowledge that a single replication is insufficient. In an 
applied setting, we recommend conducting multiple replications. This involves merging 
the original and the first replication studies into a new “original study” and planning 
for the sequent replications to ensure the process continues indefinitely for robust and 
reliable findings. Final reminders: the sample sizes provided by the proposed apps are 
based on an ideal condition, but there are always nuanced variations that researchers 
have to deal with in the applied settings. It should also be pointed out, echoing Parker 
and Berman (2003), that the “right” sample size is not a singular number, after specifying 
the goal of precision or statistical power. Instead, it serves as a factor crucial for assessing 
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a study’s utility, necessitating justification for the assumptions involved and for the 
condition constrained. The problems researchers encounter in science are not merely 
statistical. The scenarios and the corresponding sample sizes presented in this study can 
be considered best-case scenarios. Employing considerations of “how much” and “how 
uncertain” fosters cautious scientific judgments, promoting consistency and reliability.
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