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Abstract
In education testing, the items that examinees receive may be selected for a variety of reasons, 
resulting in missing data for items that were not selected. Item selection is internal when based on 
prior performance on the test, such as in adaptive testing designs or for branching items. Item 
selection is external when based on an auxiliary variable collected independently to performance 
on the test, such as education level in a targeting testing design or geographical location in a 
nonequivalent anchor test equating design. This paper describes the implications of this distinction 
for Item Response Theory (IRT) estimation, drawing upon missing-data theory (e.g., Mislevy & 
Sheehan, 1989, https://doi.org/10.1007/BF02296402; Rubin, 1976, https://doi.org/10.1093/biomet/
63.3.581), and selection theory (Meredith, 1993, https://doi.org/10.1007/BF02294825). Through 
mathematical analyses and simulations, we demonstrate that this internal versus external item 
selection framework provides a general guide in applying missing-data and selection theory to 
choose a valid analysis model for datasets with missing data.
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Many problems in education testing involve item selection or routing of examinees to 
alternate test forms. For example, adaptive testing designs select items based on informa
tion internal to the test, such as an interim estimate of proficiency based on performance 
on earlier stages of the test (Wainer & Dorans, 2000). Another example of internal 
item selection is the branching technology-enhanced item type where examinees are 
routed to items based on responses to prior items (Wainer & Kiely, 1987). Like adaptive 
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designs, targeted testing designs also select items to better match the difficulty of the 
test to the proficiency of the examinee, but use auxiliary information external to the 
test, such as education level (e.g., Yamamoto et al., 2018). Another example of external 
item selection is assigning different test forms to examinees at different geographical 
locations or at different times, such as with a nonequivalent anchor test (NEAT; Holland, 
2007) design. Notably, missing data occurs in all of these designs as not all items are 
administered to all examinees. We introduce the internal versus external distinction and 
show how classifying designs with respect to this distinction provides an intuitive and 
general framework to assist researchers in applying statistical research (e.g., Glas, 1988; 
Meredith, 1993; Mislevy & Sheehan, 1989; Mislevy & Wu, 1996) to choose valid methods 
for datasets with missing data.

Our focus is on item parameter estimation using likelihood inference (Rubin, 1976). 
In this context, two suitable methods are conditional maximum likelihood (CML) and 
marginal maximum likelihood (MML) estimation. Zwitser and Maris (2015) demonstrated 
that CML can be used for estimating item parameters of the Rasch model for multistage 
testing, a type of adaptive testing design, with some adjustment of the conditional likeli
hood based on the routing decisions. For targeted testing designs, regular CML works 
well (Eggen & Verhelst, 2011). We focus on MML estimation, because MML estimation 
can deal with a wider range of item response theory (IRT) models, including multidimen
sional models. Our conclusions also apply to Bayesian inference (Rubin, 1976).

Previous research found biased or implausible item parameter estimates when using 
certain methods for real and simulated data generated by adaptive testing, targeted 
testing, or a mix of both (e.g., Lu et al., 2017, 2018; Wu & Lu, 2017; Wu & Xi, 2017; 
Yamamoto, Shin, & Khorramdel, 2018, Yamamoto, Khorramdel, & Shin, 2018). While vari
ous other explanations were provided, this bias may be explained in terms of statistical 
theory as resulting from violated model estimation assumptions (e.g., Eggen & Verhelst, 
2011; Glas, 1988; Meredith, 1993; Mislevy & Sheehan, 1989; Mislevy & Wu, 1996). Conse
quently, a general framework to classify missing data may be useful in selecting a valid 
method in accordance with statistical theory to obtain valid item parameter estimates in 
datasets with missingness.

In this paper, we first describe the item response theory model to define our notation. 
The concept of internal versus external item selection is introduced and formally defined 
in relation to conditional (in)dependence assumptions. In the Appendix, we show that 
this distinction allows for simple proofs of valid and invalid item parameter estimation 
under MML. In the Missing-at-Random Assumption and Equality Assumption sections 
in the main text, we show how the distinction can be used to apply missing data and 
selection theories from the literature. In the Analysis model section, we summarize the 
principles derived from the literature in choosing a valid estimation model for datasets 
with missing data. Finally, we illustrate the principles with a simulation and end in a 
discussion.
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Item Response Theory
Let yj be a possible value of the response Yj to item j. Let θ denote an unobserved 
or latent continuous variable that represents examinee proficiency. According to IRT 
models, the probability of a response is a function of θ and the item parameters βj that 
characterize this relationship. That is,

p(Yj = yj | θ, βj) ≡ p(yj | θ, βj) .

The functional form of this relationship depends on the specific IRT model for each 
item. For example, the two-parameter logistic model (2PLM) for an item j with possible 
responses Yj = 1 (correct) or Yj = 0 (incorrect) has the form,

p(yj | θ, βj) =
exp(yjaj(θ − bj))
1 + exp(aj(θ − bj)) ,

where βj = {aj, bj} for the discrimination parameter aj and difficulty parameter bj.
IRT models assume local independence, a type of conditional independence between 

the item responses. Specifically,

p(y | θ, β) = ∏
j = 1

J
p(yj | θ, βj),

where J is the number of items, y = {y1, . . . , yJ} is a vector of item responses for all J 
items, and β represents the item parameters for all items.

Internal Versus External Item Selection
Both internal and external item selection involves routing students to alternate test 
forms, resulting in missing data for some items. Let the variable G denote the routing 
decision for the test taker. For example, in a simple multistage or targeted testing design, 
G may have values g that denote routing to easier items, denote routing to items of 
intermediate difficulty, or denote routing to hard items. In an item-level computerized 
adaptive test design, G may take a large number of values as there are a large number 
of possible test forms an examinee may receive. In a typical equating problem where 
different test forms are provided to examinees in different locations or at different times, 
G may take a small number of values, and the different test forms may or may not be 
equivalent in terms of difficulty.

Because internal item selection is based directly on the item responses or a function 
of the item responses such as an interim proficiency estimate, internal item selection is 
characterized by the conditional independence,
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pint(g | θ, y) = pint(g |y), (1)

and by the conditional dependence,

pint(g | θ, y) ≠ pint(g | θ) . (2)

In contrast, because external item selection is based on some external variable related to 
θ but collected independently to the assessment, external item selection is characterized 
by the conditional dependence,

pext(g | θ, y) ≠ pext(g |y), (3)

and because of local independence in IRT models, by the conditional independence,

pext(g | θ, y) = pext(g | θ) . (4)

In internal item selection, the routing decision is characterized by being independent of 
latent proficiency conditional on the item responses (Equation 1), but not independent 
of the item responses conditional on latent proficiency (Equation 2). Conversely, in 
external item selection, the routing decision is characterized by the routing decision 
being independent of the item responses conditional on latent proficiency (Equation 4), 
but not independent of latent proficiency conditional on the item responses (Equation 3).

As described below, classification of item selection as either internal or external can 
be used to apply missing data and selection theories to model datasets with missing data. 
A formal treatment is provided in the Appendix.

Missing-at-Random Assumption
Internal and external item selection data is incomplete, because examinees do not receive 
all of the items. The present paper focuses on two of the most common methods to 
estimate IRT models, marginal maximum likelihood (MML; Bock & Aitkin, 1981), and 
Bayesian inference. These methods are valid for incomplete data when the missing data 
satisfies Rubin’s (1976) ignorability principle.

The ignorability principle is conveniently discussed with respect to the missing-at-
random (MAR) assumption and the assumption that the parameters that characterize 
the missing-data mechanism (ϕ) and the parameters of the model (e.g., β) are distinct 
(D). When both assumptions are satisfied, the missing data is ignorable with MML 
and Bayesian inference (Rubin, 1976). In education testing, the D assumption is usually 
clearly satisfied and will not be discussed in detail, but the MAR assumption requires 
more consideration. The MAR assumption is,

p(M = m |Yobs = yobs,Ymis = ymis) ≡ p(m |yobs, ymis) = p(m |yobs),
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where M is a vector variable with associated values m, comprising a missing-data indica
tor for every item. Every missing-data indicator, or element of m, is 1 if the item response 
for that corresponding item is missing, and 0 if the item response is observed. Yobs is 
a vector variable with associated values yobs, comprising all of the responses that were 
observed. Ymis is a vector variable with associated values ymis, comprising the responses 
that were not observed. In the context of internal and external item selection, ymis are the 
responses that would have been observed for the items the examinee was not presented 
with.

Mislevy and Sheehan (1989) indicated that if information used to select items is also 
related to examinee characteristics, as with internal and external item selection, then 
that information must be used when estimating the item parameters to ensure that the 
missing data is ignorable. In other words, when information is used in the selection of 
items, that information can be said to be related to m. When that information is also 
related to the missing responses, ymis, a relationship between m and ymis is implied. To 
ensure that MAR is satisfied, such information involved in the selection of items must be 
used when estimating the item parameters.

In internal item selection designs, the information used to select items is independ
ent of examinee characteristics (i.e., θ) conditional on the information included in the 
estimation (see Equation 1). For this reason, MAR is automatically satisfied with internal 
item selection data, provided that all of the routing item responses are included in 
the estimation. For example, Glas (1988) and Mislevy and Wu (1996) showed that for 
unidimensional adaptive tests, a type of internal item selection design, the missing data 
resulting from item selection satisfies Rubin (1976) ignorability principle when IRT is 
used. Jewsbury and van Rijn (2020) showed that when item selection is based on an 
interim proficiency estimate calculated from responses to items from multiple domains, 
another example of internal item selection, the resulting missing data satisfies the igno
rability principle when multidimensional IRT is used.

In external item selection designs, the information used to select items is dependent 
on examinee characteristics (i.e., θ) conditional on the information included in the esti
mation (see Equation 3). Information related to θ is used in item selection and is not 
already included within yobs, so MAR is not automatically satisfied in the context of IRT. 
An appropriate approach must be taken to ensure that the external information is taken 
into account in the item parameter estimation. For example, as discussed in the next 
section, a grouping variable may be used together with the latent variable (Mislevy & 
Wu, 1996).

Equality Assumption
In the multigroup IRT model, model identification is often achieved by assuming some of 
the items presented to all of the groups functions in the same way for each of the groups 
(Bock & Moustaki, 2007). Specifically,
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p(Yobs = yobs | θ,Z = z) ≡ p(yobs | θ, z) = p(yobs | θ),

where Z is the grouping variable with values z. This is the equality assumption. Note 
that Z is the grouping variable that defines the groups in the multigroup IRT model 
(a property of the model) whereas G is the grouping variable that defines the routing 
groups (a property of the data). Therefore, Z = G is only true if the routing groups are 
used as the grouping variable in the model.

Violation of the equality assumptions is an example of differential item functioning or 
measurement non-invariance. If the equality constraints are violated for an item, the item 
can be said to not operate the same way for all z.

The use of routing-group membership, g, as a grouping variable with θ is motiva
ted to ensure that the missing mechanism is appropriately accounted for (Mislevy & 
Sheehan, 1989). Selection theory (Meredith, 1964, 1993) provides a useful framework to 
understand the equality assumptions with respect to internal and external item selection 
designs when g is used as a grouping variable.

Selection theory states that the equality assumption is violated when examinees are 
assigned values of z (g), if the selection is related to the item responses conditional on 
θ. Essentially, selection must be independent to the item response conditional on θ to 
ensure that the effects of selection are expressed through θ and not through differential 
relationships between the item responses and θ (Meredith & Tersei, 2006). When the 
effects of selection are expressed through differential relationships between the item 
responses and θ, measurement non-invariance is present. Selection theory can be under
stood as an extension of the classic Pearson-Lawley selection formula (Lawley, 1943).

Selection is related to the item responses conditional on θ when the item responses 
have measurement non-invariance in the usual sense, but also when selection is sim
ply directly based on the item responses. For example, Muthén (1989) described how 
selecting a grouping variable directly based on the item responses violate the equality 
assumptions in the context of factor analysis, and the same general principles apply to 
IRT.

In internal item selection designs, selection is based directly on the item responses 
(see Equation 3). Selection theory means that the use of g as a grouping variable with 
internal item selection data produces a model with equality assumptions that are not 
satisfied. As g is selected directly on the item responses, using g as a grouping variable 
will violate the equality assumptions. For example, examinees routed to harder items are 
more likely to have a correct response on any given routing item than examinees routed 
to easier items, even when matched on θ, as routing is a direct function of the routing 
item responses.

In external item selection designs, selection is only indirectly related to the item 
responses, through θ (see Equation 4). Selection theory means that the use of g as a 
grouping variable with external item selection data results in equality assumptions that 
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are satisfied. Although g is related to the item responses, local independence means that 
g is independent to the item responses conditional on θ. The exception to this rule is 
when items already have measurement non-invariance with respect to g.

Analysis Model
Consideration of the missing at random and equality assumptions shows that distinct 
analysis models are required for internal and external item selection data. With internal 
item selection, the missing at random assumption is automatically satisfied. The miss
ing data and by extension routing group membership, g, can be ignored. Furthermore, 
because routing group membership is directly based on item responses, attempting to 
account for this information by using g as a grouping variable in a multigroup IRT will 
introduce erroneous assumptions. Therefore, routing-group membership can and should 
be ignored with internal item selection, and a single-group IRT model can be fit to 
internal item selection data.

In contrast, the missing at random assumption is not automatically satisfied with 
external item selection. The missing data, and by extension, routing group membership, 
cannot be ignored. Unlike internal item selection, routing group membership is not 
directly based on item responses, so using g as a grouping variable in a multigroup 
IRT will not necessarily introduce erroneous assumptions unless in the presence of 
measurement non-invariance. Therefore, routing group membership should be accounted 
for in external item selection designs, such as with a multigroup IRT model (Bock & 
Zimowski, 1997).

Aside from multigroup IRT models, a range of methods under the umbrella of test 
equating with anchor items could be used with external item selection (e.g., Kolen & 
Brennan, 2014; von Davier & von Davier, 2007). While evaluating the assumptions for all 
of these methods is beyond the scope of this paper, careful consideration should be taken 
before applying these methods to an internal item selection design, due to the critical 
differences between internal and external item selection as described in this paper.

The theoretical differences between internal and external item selection data are 
summarized in Table 1. To illustrate the importance of fitting the appropriate model 
for internal versus external item selection and to show that item parameter estimation 
is unbiased when the appropriate model is fit, a simulation study was conducted and 
described in the following section.
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Table 1

Summary of Internal Versus External Item Selection

Internal item selection External item selection

Characteristic conditional independency Characteristic conditional dependency

pint(g | θ, y) = pint(g |y) pext(g | θ, y) ≠ pext(g |y)
MAR assumption satisfied MAR assumption violated

pint(m |yobs, ymis) = pint(m |yobs) pext(m |yobs, ymis) ≠ pext(m |yobs)
Characteristic conditional dependency Characteristic conditional independency

pint(g | θ, y) ≠ pint(g | θ) pext(g | θ, y) = pext(g | θ)
Equality assumption violated Equality assumption satisfied

pint(y | θ, g) ≠ pint(y | θ) pext(y | θ, g) = pext(y | θ)
Valid MML analysis model Valid MML analysis model

One group IRT model, ignoring g Multigroup IRT model, using g
Note. MAR = missing at random, int = internal item selection, ext = external item selection.

Simulations
The simulation illustrates the principles of internal item selection with a multistage 
testing (MST) design, a special type of adaptive design where items are selected in sets 
or modules. The simulation also contextualizes the principles of external item selection 
with a targeted test (TT) design. MST and TT designs are useful for illustration as 
these designs can appear to produce equivalent missing data structures, despite requiring 
distinct analysis methods. In both MST and TT designs, a proportion of items may be 
administered to all examinees, while subsets of items that differ in terms of difficulty 
are only administered to corresponding subsets of the sample that differ in proficiency. 
The simulation illustrates that the nature of how the examinees are routed to items, 
either based on information internal or external to the test, has important implications 
for unbiased item parameter estimation.

Data was generated with either an MST or a TT design, as described below. For 
both designs, the data generation was replicated 100 times. For each generated data set, 
two modeling approaches were taken. First, an IRT model was fit to the data where 
no grouping variables were specified. Second, an IRT model was fit to the data where 
routing group membership, g, was used as a grouping variable. Both models were fit 
with marginal maximum likelihood using the expectation-maximization algorithm (Bock 
& Aitkin, 1981).

The quality of the item parameter estimation was evaluated in terms of bias and Root 
Mean Square Error (RMSE). Bias was calculated as,
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bias = 1
100 ∑

i = k

100 t̂ k − t (5)

RMSE = 1
100 ∑

i = k

100 (t̂ k − t)2 (6)

where t̂ k is the estimated item parameter in the kth replication of the simulation, and t is 
the corresponding data generating value of the item parameter.

Multistage Testing Design
Data was generated based on a large-scale MST trial study. The study was a two-stage 
MST, and at both stages examinees (simulees) received a module of items. The first 
module was always a routing module. Based on performance on the routing module, 
examinees received an easy, medium, or hard module. There were multiple modules of 
each type. Within each module type (routing, easy, medium, or hard), the module was 
selected completely at random and at equal probability. In total there were three routing 
modules, two easy modules, four medium modules, and one hard module. Each module 
had 16 to 18 items, including both multiple-choice and constructed-responses items.

While the simulation was based on a large-scale MST trial study, the items in the 
MST trial study had also been used for a non-adaptive assessment. Item parameters 
estimated from the non-adaptive and non-targeted assessment were used as the popu
lation item parameters when generating the data. The three-parameter logistic model 
(3PLM) was used for multiple-choice items, the 2PLM was used for dichotomously-scored 
constructed-response items, and the generalized-partial-credit model (GPCM) was used 
for constructed-response items with three or more score categories.

A total of 60,000 test takers were simulated with θ ∼ N (0, 1). Examinees were routed 
to the targeted modules based on expected a priori (EAP) scores estimated from the 
responses to multiple-choice routing items. Constructed-response items in the routing 
module were not used in the routing to simulate a realistic design, as such items were 
humanly scored after test completion in the original MST trial study.

The routing was based on EAP scores relative to two predefined thresholds, both 
of which were used in the original MST trial study. As a consequence, about 7,000 
examinees were routed to easy modules, about 29,000 examinees were routed to medium 
modules, and about 24,000 examinees were routed to hard modules. Note that the exact 
method (EAP, thresholds) to calculate the routing decision is not relevant to the mathe
matical results in the present paper. The important feature is simply that the routing 
decision is based only on performance on the routing items.
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Targeted Testing Design
Data was generated with the same item pool and item modules as in the MST simulation 
above, but with the TT design. Examinees received one of three targeted assessments, 
including either 1) a routing module and an easy module, 2) a routing module and a 
medium module, or 3) a routing module and a hard module. Examinees were selected 
into one of the three targeted assessments based on having low (G = low), medium 
(G = medium), or high proficiency (G = ℎigℎ), characterized by external information.

As with the MST simulation, there were multiple modules of each type that were 
selected at random with equal probability. Specifically, the same three routing modules, 
two easy modules, four medium modules, and one hard module, from the MST simula
tion were used. Note that routing module terminology is used only because the modules 
were also used in the MST design. The routing modules were not used for routing in the 
TT design.

The population item parameters were obtained from estimates from a previous, 
non-adaptive and non-targeted assessment (see MST simulation section, above). To 
represent the use of external information in the item selection, θ was independent
ly generated from three non-equivalent distributions depending on g. Specifically, 
θ |G = low ∼ N ( − 1, .6), θ |G = medium ∼ N (0, .6), and θ |G = ℎigℎ ∼ N (1, .6). Data for 
20,000 simulees were generated for each of three targeted groups. Overall, these spec
ifications imply the total population has a mean of zero and a standard deviation of 1.

Results
Figures 1 and 2 show the mean estimated item parameters versus the generating values 
for the discrimination and location parameter of every item, respectively. The top left 
and bottom right panels of each figure show the results when the model is appropriate 
for the data: one group IRT for MST data and multigroup IRT for TT data, respectively. 
In contrast, the top right and bottom left panels of each figure show the results when 
the model is inappropriate for the data: one group IRT for TT data and multigroup IRT 
for MST data, respectively. As expected, when the model is appropriate for the data, no 
item parameter estimation bias was observed, but when the model is inappropriate, clear 
patterns of item-parameter estimation bias was observed.
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Figure 1

Discrimination Parameter Estimates Versus Generating Values

Note. Numbers on the Y-axis are the estimates, numbers on the X-axis are the generating values. Left panels are 
estimates with one group IRT, right panels are estimated with multigroup IRT. Top panels are based on MST 
data, bottom panels are based on TT data. Blue diamond = routing items, orange square = easy items, green 
triange = medium items, black diamond = hard items.
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Figure 2

Difficulty Parameter Estimates Versus Generating Values

Note. Numbers on the Y-axis are the estimates, numbers on the X-axis are the generating values. Left panels are 
estimates with one group IRT, right panels are estimated with multigroup IRT. Top panels are based on MST 
data, bottom panels are based on TT data. Blue diamond = routing items, orange square = easy items, green 
triange = medium items, black diamond = hard items.

The mean bias and RMSE for the discrimination and location parameters are provided 
in Table 2. Because items from different module types (routing, easy, medium, and hard) 
show different patterns of bias, the bias and RMSE were averaged across all items within 
a given module type. Consistent with the figures, Table 2 shows no evidence of bias and 
smaller RMSEs when the appropriate model was used.
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Table 2

Simulation Results for Multistage Testing and Targeted Testing Data

Multistage Testing Targeted Testing

One group IRT Multigroup IRT One group IRT Multigroup IRT

bias RMSE bias RMSE bias RMSE bias RMSE

ar 0.00 0.03 0.04 0.09 0.02 0.06 0.01 0.04

ae 0.02 0.09 0.72 0.74 −0.15 0.16 0.02 0.05

am 0.02 0.07 0.81 0.82 −0.16 0.17 0.03 0.07

ah −0.01 0.04 0.67 0.67 −0.20 0.21 0.00 0.06

br 0.03 0.06 0.00 0.09 0.08 0.11 0.04 0.07

be 0.03 0.13 −0.33 0.45 0.10 0.28 0.05 0.12

bm 0.04 0.09 −0.10 0.32 0.00 0.21 0.05 0.10

bh 0.02 0.04 0.05 0.18 −0.10 0.17 0.00 0.04

Note. MST = Multistage Testing (an example of internal item selection), TT = Targeted Testing (an example of 
external item selection), RMSE = Root Mean Square Error. a = discrimination parameter, b = location parameter. 
r, e, m, and h subscripts = routing, easy, medium, and hard, respectively. The numbers in the table are the mean 
bias and mean RMSE across all item parameters of the specified type.

Discussion
With internal item selection, the information used to select items is already accounted 
for in the estimation through the item responses, and the missing data is ignorable 
(Eggen & Verhelst, 2011; Glas, 1988; Jewsbury & van Rijn, 2020; Mislevy & Wu, 1996). 
Therefore, routing group membership does not need to be used as a grouping variable in 
MML estimation. Furthermore, because g was directly selected based on the item respon
ses, including routing group membership as a grouping variable will erroneously make 
the equality assumption, so routing group membership must not be used as a grouping 
variable with internal item selection to ensure that the item parameter estimates are 
valid with MML.

With external selection, the information used to select items is not already accounted 
for the estimation of the item responses, so the missing data is non-ignorable. Including 
routing group membership as a grouping variable in the estimation is one way to 
appropriately account for the missing data (Mislevy & Sheehan, 1989). Unlike in internal 
item selection, routing group membership is not directly assigned based on the item 
responses in external item selection, so including routing group membership as a group
ing variable does not necessarily introduce erroneous equality assumptions. For these 
reasons, routing group membership should be used as a grouping variable with external 
item selection data to ensure that the item parameter estimates are valid with MML.
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There were clear directional patterns of bias in the simulation study when the inap
propriate method was used for MST (an example of an internal item selection design) 
and TT (an example of an external item selection design). Notably, the biases were in 
opposite directions in the MST and TT simulations. Effectively, in the MST design when 
routing group membership was used as a grouping variable, the relative performance of 
the groups on the routing item responses was used twice, exaggerating the differences 
between the groups. In the TT design when routing group membership was not used 
as a grouping variable, some information determining differences between the groups 
was ignored in the estimation, causing the group differences to be under-represented. 
As data on targeted item responses is only observed for one routing group in MST and 
TT designs, these over- or understated differences are reflected in the item parameter 
estimates as bias.

While the present results for MML item parameter estimation in datasets generated 
by either adaptive or targeted testing designs are consistent with previous results in the 
literature (e.g., Eggen & Verhelst, 2011; Glas, 1988; Mislevy & Wu, 1996), the internal 
versus external routing distinction introduced in the present paper provides an intuitive 
and more general framework for applying MML and Bayesian inference. Furthermore, 
the framework also covers mixtures of internal and external item selection designs. 
Indeed, many MST designs involve some degree of external item selection and may be 
modeled inappropriately following usual guidelines for MSTs. For example, the MST 
design for the Programme for International Assessment of Adult Competencies (PIAAC) 
uses external information to select items in two ways (Chen et al., 2014; Yamamoto, 
Khorramdel, & Shin, 2018), in addition to internal information. First, examinees who 
report no familiarity with computers receive a non-adaptive test, while others receive 
an adaptive test. Second, the item selection in the MST is a function of not only perform
ance on prior parts of the test, but also on the education level and native speaker status 
of the examinee. The results in this paper suggest that to ensure valid item parameter 
estimation, external information (computer familiarity, education level, and native speak
er status) should to be accounted for in MML estimation while internal information 
(adaptive routing paths) should be ignored.

The internal versus external item selection framework also clarifies where assessment 
design principles may or may not generalize across different types of designs. Following 
standard practice in equating (von Davier, 2011), it has been suggested that a sufficient 
number of items must be common across test forms in adaptive designs to facilitate item 
parameter estimation to equate the test forms (e.g., Yamamoto, Shin, & Khorramdel, 2018, 
Yamamoto, Khorramdel, & Shin, 2018). However, while the need for a sufficient number 
of common items has been demonstrated in many equating problems (von Davier, 2011), 
these equating problems are examples of external item selection. With internal item 
selection, any differences between the examinees receiving different items can be fully 
explained by differences in item responses that are available for the model estimation. 
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Consequently, the design principle on the need for a sufficient number of common items 
does not apply to internal item selection designs.

In summary, internal and external item selection are defined by distinctive condition
al (in)dependences between routing group membership, item responses, and θ (Equation 
1, Equation 2, Equation 3, and Equation 4). Classification of item selection as either 
internal or external provides a simple, intuitive and general framework to inform item 
response theory analysis of datasets with missing data due to item selection.

Funding: This study was funded by ETS.

Competing Interests: The authors have declared that no competing interests exist.

References

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood estimation of item parameters: 
Application of an EM algorithm. Psychometrika, 46, 443–459. 
https://doi.org/10.1007/BF02293801

Bock, R. D., & Moustaki, I. (2007). Item response theory in a general framework. In C. R. Rao & S. 
Sinharay (Eds.), Psychometrics: Vol. 26. Handbook of statistics (pp. 469–514). Elsevier

Bock, R. D., & Zimowski, M. F. (1997). Multiple group IRT. In W. J. van der Linden & R. K. 
Hambleton (Eds.), Handbook of modern item response theory (pp. 433–448). Springer. 
https://doi.org/10.1007/978-1-4757-2691-6_25

Chen, H., Yamamoto, K., & von Davier, M. (2014). Controlling MST exposure rates in international 
large-scale assessments. In D. Yan, A. A. von Davier, & C. Lewis (Eds.), Computerized multistage 
testing: Theory and applications (pp. 391–409). Chapman and Hall/CRC.

Eggen, T. J. H. M., & Verhelst, N. D. (2011). Item calibration in incomplete testing designs. 
Psicológica, 32, 107–132. 

Glas, C. A. W. (1988). The Rasch model and multistage testing. Journal of Educational Statistics, 13, 
45–52. https://doi.org/10.3102/10769986013001045

Holland, P. W. (2007). A framework and history for score linking. In N. J. Dorans, M. Pommerich, & 
P. W. Holland (Eds.), Linking and aligning scores and scales (pp. 5–30. Springer

Jewsbury, P. A., & van Rijn, P. W. (2020). IRT and MIRT Models for Item Parameter Estimation with 
Multidimensional Multistage Tests. Journal of Educational and Behavioral Statistics, 45(4), 383–
402. 

Kolen, M. J., & Brennan, R. L. (2014). Test Equating, Scaling, and Linking: Methods and Practices (3rd 
ed.). Springer-Verlag.

Lawley, D. N. (1943). A note on Karl Pearson’s selection formulae. Proceedings of the Royal Society 
Edinburgh, Section A, 62, 28–30. https://doi.org/10.1017/S0080454100006385

A General Framework for Modeling Missing Data 232

Methodology
2024, Vol. 20(3), 218–237
https://doi.org/10.5964/meth.14823

https://doi.org/10.1007/BF02293801
https://doi.org/10.1007/978-1-4757-2691-6_25
https://doi.org/10.3102/10769986013001045
https://doi.org/10.1017/S0080454100006385
https://www.psychopen.eu/


Lu, R., Jia, Y., & Wu, M. (2017, April 7). Population definition and identification, priors, and non-
random samples [Conference presentation]. National Council of Measurement in Education 
Annual Meeting, San Antonio, TX, USA.

Lu, R., Jia, Y., & Wu, M. (2018, April 12). Using design information in item parameter estimation with 
multistage testing [Conference presentation]. National Council of Measurement in Education 
Annual Meeting, New York City, NY, USA.

Meredith, W. (1964). Notes on factorial invariance. Psychometrika, 29, 177–185. 
https://doi.org/10.1007/BF02289699

Meredith, W. (1993). Measurement invariance, factor analysis and factorial invariance. 
Psychometrika, 58, 525–543. https://doi.org/10.1007/BF02294825

Meredith, W., & Teresi, J. A. (2006). An essay on measurement and factorial invariance. Medical 
Care, 44, S69–S77. https://doi.org/10.1097/01.mlr.0000245438.73837.89

Mislevy, R. J., & Sheehan, K. M. (1989). The role of collateral information about examinees in item 
parameter estimation. Psychometrika, 54, 661–679. https://doi.org/10.1007/BF02296402

Mislevy, R. J., & Wu, P. K. (1996). Missing responses and IRT ability estimation: Omits, choice, time 
limits, and adaptive testing. (ETS Research Report RR-96-30-ONR). Educational Testing Service.

Muthén, B. O. (1989). Factor structure in groups on observed scores. British Journal of Mathematical 
and Statistical Psychology, 42, 81–90. https://doi.org/10.1111/j.2044-8317.1989.tb01116.x

Rubin, D. B. (1976). Inference and missing data. Biometrika, 63, 581–592. 
https://doi.org/10.1093/biomet/63.3.581

von Davier, A. A. (2011). Statistical models for test equating, scaling, and linking. Springer.
von Davier, M., & von Davier, A. A. (2007). A unified approach to IRT scale linking and scale 

transformations. Methodology, 3, 115–124. https://doi.org/10.1027/1614-2241.3.3.115
Wainer, H., & Dorans, N. J. (2000). Computerized adaptive testing: A primer (2nd ed.). Lawrence 

Erlbaum Associates. https://doi.org/10.4324/9781410605931
Wainer, H., & Kiely, G. L. (1987). Item clusters and computerized adaptive testing: A case for 

testlets. Journal of Educational Measurement, 24(3), 185–201. 
https://doi.org/10.1111/j.1745-3984.1987.tb00274.x

Wu, M., & Lu, R. (2017). Multi-stage testing simulation studies. Paper presented at the National 
Council of Measurement in Education annual meetingSan Antonio, TX.

Wu, M., & Xi, N. (2017 April 7). Multi-stage testing in the 2015 NAEP mathematics DBA field trial 
[Conference presentation]. National Council of Measurement in Education Annual Meeting, 
San Antonio, TX, USA.

Yamamoto, K., Shin, H., & Khorramdel, L. (2018). Multistage adaptive testing design in international 
large-scale assessments. Educational Measurement: Issues and Practice., 37(4), 16–27. 
https://doi.org/10.1111/emip.12226

Yamamoto, K., Khorramdel, L., & Shin, H. (2018). Introducing multistage adaptive testing into 
international large-scale assessments designs using the example of PIAAC. Psychological Test 
and Assessment Modeling, 60, 347–368. 

Jewsbury, Lu, & van Rijn 233

Methodology
2024, Vol. 20(3), 218–237
https://doi.org/10.5964/meth.14823

https://doi.org/10.1007/BF02289699
https://doi.org/10.1007/BF02294825
https://doi.org/10.1097/01.mlr.0000245438.73837.89
https://doi.org/10.1007/BF02296402
https://doi.org/10.1111/j.2044-8317.1989.tb01116.x
https://doi.org/10.1093/biomet/63.3.581
https://doi.org/10.1027/1614-2241.3.3.115
https://doi.org/10.4324/9781410605931
https://doi.org/10.1111/j.1745-3984.1987.tb00274.x
https://doi.org/10.1111/emip.12226
https://www.psychopen.eu/


Zwitser, R. J., & Maris, G. (2015). Conditional statistical inference with multistage testing designs. 
Psychometrika, 80, 65–84. https://doi.org/10.1007/s11336-013-9369-6

Appendix
Theorem 1. Under internal item selection, item parameter estimation with marginal maximum 
likelihood without routing-group membership g as a grouping variable in the model is valid.

Proof. Under internal item selection, the marginal likelihood that is generally used by default, 
which ignores the missing data, is proportional to the actual marginal likelihood.

The marginal likelihood used when ignoring the missing responses is,

p(y~obs |β) ≡ ℒ∗(β | y~obs) = p(y~obs, ymis |β)dymis,

where y~obs is the sample realization of the observed item response vector variable Yobs, ymis is a 
vector of the item responses that are missing, β are the item parameters, and ℒ∗ is the assumed 
marginal likelihood.

Following Rubin (1976), the actual marginal likelihood is,

p(y~obs,m~ |β, ϕ) ≡ ℒ(β, ϕ | y~obs,m~) = p(y~obs, ymis |β)p(m~ | y~obs, ymis, ϕ)dymis,

where ϕ are the parameters that govern the missing-data mechanism, m~  is the sample realization 
of the vector variable of missing data indicators M, and ℒ is the actual marginal likelihood.1

In internal item selection, p(m) = p(g), so the characteristic conditional independence in inter
nal item selection (Equation 1), implies that the Missing At Random (MAR) assumption is satisfied. 
With the MAR assumption, the actual marginal likelihood can be simplified,

ℒ(β, ϕ | y~obs,m~) = p(y~obs, ymis |β)p(m~ | y~obs, ϕ)dymis,

= p(m~ | y~obs, ϕ) p(y~obs, ymis |β)dymis .

Finally, with the assumption that β and ϕ is distinct (D), which is satisfied with internal item 
selection,

ℒ∗(β | y~obs) ∝ ℒ(β, ϕ | y~obs,m~),

which shows that marginal-likelihood inferences for β, which are based on ratios of the likelihood 
function, are valid with internal item selection when the missing data is ignored. This conclusion is 
consistent with prior proofs with special cases of internal item selection designs (i.e., adaptive and 
multistage testing designs; Eggen & Verhelst, 2011; Glas, 1988; Mislevy & Wu, 1996). □

1) Although ymis is discrete in the context of IRT, we used integral notation to be consistent with Rubin (1976) and 
Mislevy and Wu (1996).
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Theorem 2. Under internal item selection, item parameter estimation with routing-group mem
bership g as a grouping variable in the model is invalid.

Proof. The assumed likelihood based on internal item selection data, when g is used as a 
grouping variable, is not proportional to the actual marginal likelihood.

The assumed marginal likelihood in a multigroup item response theory (IRT) model (Bock & 
Moustaki, 2007), is,

p(yobs |β) ≡ ℒ∗(β |yobs) = ∏
g
ℒ∗(β, g |yobs),

where,

ℒ∗(β, g |yobs) = p(yc | θ, β)p(yg | θ, β)f (θ |g)dθ,

where yc are the item responses to items observed in common for all examinees, yg are the item 
responses to items only observed by group g, and θ is latent proficiency.

The actual marginal likelihood in a multigroup IRT model is,

p(yobs |β) ≡ ℒ(β |yobs) = ∏
g
ℒ(β, g |yobs),

where,

ℒ(β, g |yobs) = p(yc | θ, β, g)p(yg | θ, β)f (θ |g)dθ .

In internal item selection, yc are used in the routing decision, and the characteristic conditional 
dependence in internal item selection (Equation 2) implies that,

p(yc | θ, β, g) ≠ p(yc | θ, β),

and,

ℒ∗(β |yobs) ∝̸ ℒ(β |yobs),

which shows that marginal-likelihood inferences for β, which are based on ratios of the likelihood 
function, are invalid in internal item selection designs when the g is used as a grouping variable. □

Theorem 3. Under external item selection, item parameter estimation without routing-group 
membership g as a grouping variable in the model is invalid.

Proof. Under external item selection, the marginal likelihood that is generally used by default 
that ignores the missing data is not proportional to the actual marginal likelihood.

The marginal likelihood used when ignoring the missing responses is,

p(y~obs |β) ≡ ℒ∗(β | y~obs) = p(y~obs, ymis |β)dymis,
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where y~obs is the sample realization of Yobs.
Following Rubin (1976), the actual marginal likelihood is,

p(y~obs,m~ |β, ϕ) ≡ ℒ(β, ϕ | y~obs,m~) = p(y~obs, ymis |β)p(m~ | y~obs, ymis, ϕ)dymis,

where m~  is the sample realization of M. Under external item selection, p(m) = p(g), so the char
acteristic conditional dependence (Equation 4) implies that the MAR assumption is not satisfied. 
Because the MAR assumption is not satisfied, the actual marginal likelihood does not simplify, and,

ℒ∗(β | y~obs) ∝̸ ℒ(β, ϕ | y~obs,m~),

which shows that marginal-likelihood inferences for β, which are based on ratios of the likelihood 
function, are invalid in external item selection designs when the missing data is ignored. This 
conclusion is consistent with prior proofs with special cases of external item selection designs (i.e., 
targeted testing designs, e.g., Eggen & Verhelst, 2011; Mislevy & Sheehan, 1989). □

Theorem 4. Under external item selection, item parameter estimation with routing-group mem
bership g as a grouping variable in the model is valid.

Proof. The assumed likelihood based on the external item selection data, when g is used as a 
grouping variable, is proportional to the actual marginal likelihood.

The assumed marginal likelihood in a multigroup IRT model (Bock & Moustaki, 2007), is,

p(yobs |β) ≡ ℒ∗(β |yobs) = ∏
g
ℒ∗(β, g |yobs),

where,

ℒ∗(β, g |yobs) = p(yc | θ, β)p(yg | θ, β)f (θ |g)dθ .

The actual marginal likelihood in a multigroup IRT model is,

p(yobs |β) ≡ ℒ(β |yobs) = ∏
g
ℒ(β, g |yobs),

where,

ℒ(β, g |yobs) = p(yc | θ, β, g)p(yg | θ, β)f (θ |g)dθ .

In external item selection, the characteristic conditional independence in external item selection 
(Equation 4), implies that,

p(yc | θ, β, g) = p(yc | θ, β),

and,
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ℒ∗(β |yobs) = ℒ(β |yobs),

which shows that marginal-likelihood inferences for β, which are based on ratios of the likelihood 
function, are valid in external item selection designs when the g is used as a grouping variable. □
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