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Abstract
Nonlinear structural equation models within the frequentist framework were developed to work
with continuous items. Applied researchers who usually work with Likert-type items choose
between two strategies to estimate such models: treat items as continuous variables or create item
parcels. Two Monte Carlo studies were conducted to evaluate the effects of each strategy on
estimates and Type I errors for models with interaction and quadratic effects estimated using LMS.
The first study evaluated the effect of asymmetry type and item quantity. The second assessed the
use of item parcels and parcel configuration under equivalent conditions. Results reveal that
treating items as continuous variables is not problematic when item categories are symmetrical or
have opposite-direction asymmetries; however, meaningful parameter bias and increased Type I
errors are produced in the case of same-direction asymmetry. Use of parcels does not overcome
these problems. The results are discussed to provide recommendations for applied researchers.
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Researchers are often interested in using Structural Equation Models (SEM) to assess
the nonlinear relationships between latent variables (e.g., Graves, Sarkis, & Zhu, 2013;
Jackson, 2015; Hardy et al., 2013; Masland & Lease, 2016). In these applied research sce‐
narios, latent variables are usually measured by items with discrete response categories
whose level of measurement is ordinal at best (Michell, 2009). However, frequentist non‐
linear SEM modeling techniques currently available (e.g., Kelava & Brandt, 2009; Klein &
Moosbrugger, 2000; Marsh, Wen, & Hau, 2004) have been developed to work with factors
measured by continuous observed variables rather than categorical variables.

Although some researchers (e.g., Jamieson, 2004; Norman, 2010) sustain that many
statistical tools are robust to ordinal data, evidence indicates that overlooking the cat‐
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egorical nature of data produces invalid results and conclusions (Bernstein & Teng,
1989; DiStefano, 2002), unless item categories are symmetrical or exhibit low levels of
asymmetry (Asún, Rdz-Navarro, & Alvarado, 2016). Measurement modeling procedures—
such as item factor analysis—and linear SEM allow most of the problems produced by
category asymmetry to be overcome. This is accomplished by replacing mean vectors
with thresholds, and variance-covariance matrices with polychoric or tetrachoric correla‐
tion matrices used to estimate model parameters (Rhemtulla, Brosseau-Liard, & Savalei,
2012).

In nonlinear SEM, estimation of the model is not possible using correlation matrices.
This is because correlations can only capture linear relationships between variables.
Furthermore, nonlinearity produces non-normal dependent variables (Kelava et al., 2011)
and non-normal underlying response variables. The multivariate normality assumption
of poly-tetrachoric correlations will therefore not hold true.

Given that frequentist nonlinear SEM procedures assume measurement models com‐
prised of continuous indicators, applied researchers willing to estimate nonlinear SEM
models need to decide between two options (Little, Rhemtulla, Gibson, & Schoemann,
2013): (a) to treat ordinal items as if they were continuous variables in the hope that this
will not seriously distort the results; or (b) to create item parcels as a means of avoiding
the potential problems caused by the use of ordinal variables. An argument in favor of
the second option may be that parcels tend to approximate normal distributions better
than isolated items do, and the fact that they have more categories means that they are
closer to being a continuous distribution (Bandalos, 2002).

According to evidence gathered by our team, more than 200 applied research articles
using nonlinear SEM models were published between 2011 and 2016 across the social
sciences. Most of them use the Latent Moderated Structural equation method (LMS: Klein
& Moosbrugger, 2000) to estimate the model, and all of them either treat categorical
items as if they were continuous indicators (e.g., Jackson, 2015; Masland & Lease, 2016),
or create parcels (e.g., Graves et al., 2013; Hardy et al., 2013) that are used as indicators of
factors. Despite the popularity of these decisions, their impact on nonlinear estimates is
still unknown.

The present study addresses this gap by evaluating the impact of treating items as
continuous indicators and creating item parcels to estimate nonlinear structural models
using the LMS method. It focuses on the effects of type and degree of category asymme‐
try, how parcels are configured, parameter bias, standard errors (SE), and Type I error
rates of nonlinear effects. The decision to focus on Type I error for nonlinear effects is
based on the fact that this represents false positives, which are traditionally considered
more serious than Type II errors (Jackson, 2014). Inflated Type I error rates produce
unnecessarily overparametrized models, and this compromises parsimony and replication
of results (Ioannidis, 2005; Simmons, Nelson, & Simonsohn, 2011). Moreover, if Type
I errors are not guaranteed at a given significance level (e.g., α = .05) for a statistical
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procedure, its statistical power will also be compromised (Agresti & Finlay, 1997), and
researchers will not be able to distinguish between true and false effects. The present
research will therefore focus on situations where structural models are linear in the
population, and where the analysis model estimates interactions and/or quadratic effects.

Nonlinear SEM Modeling
Substantive theory in the social sciences often suggests the presence of relationships
between latent variables that are nonlinear, such as interactions and U-shaped (quad‐
ratic) relationships. In these circumstances, researchers may estimate models with an
interaction (MI), such as that presented in Equation 1, or models with simultaneous
interaction and quadratic (MIQ) effects, such as that presented in Equation 2, where η
is an endogenous latent variable predicted by two exogenous latent variables (ξ1 and ξ2).
Here, α is a latent intercept, γ1 and γ2 are the linear slopes of the exogenous factors,
and the parameters ωij represent the slopes of the multiplicative (nonlinear) effects of
predictors on η. The term ξ1ξ2 represents a two-way interaction between predictors, ξ12
and ξ22 represent quadratic effects, and ζ represents a latent prediction error.

(1)MI: η = α + γ1ξ1 + γ2ξ2 + ω12ξ1ξ2 + ζ
(2)MIQ: η = α + γ1ξ1 + γ2ξ2 + ω12ξ1ξ2 + ω11ξ12 + ω22ξ22 + ζ

Estimation of MI or MIQ models involves major methodological problems that are differ‐
ent to those found in linear SEM. On the one hand, dealing with nonlinearity implies
inherent non-normality, because even when exogenous factors follow a standard normal
distribution, their products (ξ1ξ2, ξ12 and ξ22) will not be normal, nor will their means be
equal to zero (Aiken & West, 1991). Moreover, if at least one nonlinear effect in the
structural model is not equal to zero, the endogenous latent variable (η) will depart from
normality (Kelava et al., 2011). This violates the multivariate normality assumption of
most estimation procedures. On the other hand, it is not possible to estimate nonlinear
models simply by using sample means and variance-covariance matrices (or correlation
matrices), because they only capture linear relationships between variables.

Various methods have been proposed for estimation of nonlinear SEM models. They
can be classified into four modeling frameworks: (a) the so-called product-indicator
approaches (e.g., Kelava & Brandt, 2009; Kenny & Judd, 1984; Marsh et al., 2004); (b)
distribution analytic methods (Klein & Moosbrugger, 2000; Klein & Muthén, 2007); (c) the
method of moments approach (Mooijaart & Bentler, 2010; Wall & Amemiya, 2003); and
(d) Bayesian methods (e.g., Lee, Song, & Tang, 2007).

All of these methods are designed to work with latent variables measured by contin‐
uous items. Each item is defined as a linear combination of the latent construct and
measurement error (δi), as shown in Equations 3 and 4.
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(3)Xi = μ0i + λijξj + δi
(4)Yi = μ0i + λiη + εi

In product-indicator approaches, estimation requires the creation of products of observed
variables to represent nonlinear terms (Marsh et al., 2004). Model parameters are estima‐
ted using maximum likelihood estimation. Because creation of products means using
indicators more than once, correlations between error terms and other constraints need
to be specified (Kelava & Brandt, 2009). This makes its use highly error-prone, especially
as the number of indicators, factors, and/or nonlinear effects increases. In addition,
there is evidence that product-indicator approaches yield biased results when applied to
congeneric indicators (Rdz-Navarro & Alvarado, 2015) typically found in applied research
scenarios.

The method of moments and Bayesian methods approaches do not require the crea‐
tion of products and constraints. However, they are complex, and discussion of their
properties is highly technical (e.g., Mooijaart & Bentler, 2010; Wall & Amemiya, 2003).
This has probably undermined their use in applied research. Indeed, in our review, we
did not find a single research article that made use of these methods in applied research
in the social and behavioral sciences. By contrast, we found that the distribution analytic
procedure LMS (Klein & Moosbrugger, 2000) has become the most popular nonlinear
SEM method among applied researchers in the social sciences.

Nonlinear SEM Using the LMS Method
What distinguishes LMS from other methods is the way in which model parameters are
estimated. When latent predictors and model errors are normally distributed and the
population model is linear, the distribution of η will also be normal. By contrast, when
at least one nonlinear effect is not equal to zero, the non-normal distribution of latent
products will be reflected by the distribution of η no longer being normal. This allows
LMS to attempt to explain any departure from a normal distribution of η as the result of a
nonlinear effect of exogenous predictors (Klein & Moosbrugger, 2000).

Under this assumption, LMS uses the Cholesky decomposition to split the distribution
of η into its linear (normal) and nonlinear (non-normal) parts, and to represent both as a
finite mixture of weighted normal distributions with different means and variances (for
technical details, see Klein & Moosbrugger, 2000). Model parameters are obtained using
robust Maximum Likelihood Estimation (i.e., MLR). LMS is readily implemented in Mplus
(Muthén & Muthén, 1998-2012).

The Impact of Non-Normal and Categorical Items on LMS
It has been demonstrated that LMS yields unbiased, efficient and consistent parame‐
ter estimates when the normality assumption of predictors is true (Jackman, Leite, &
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Cochrane, 2011; Kelava et al., 2011; Rdz-Navarro & Alvarado, 2015). However, because
of the strong dependence of LMS on such an assumption, its properties may not remain
true when predictors are not normal (Brandt, Kelava, & Klein, 2014). Evidence indicates
that in the presence of non-normal latent predictors and non-normal continuous items,
LMS produces biased nonlinear parameters, and inflated Type I errors for interaction and
quadratic effects (Brandt et al., 2014; Cham, West, Ma, & Aiken, 2012; Wu, Wen, Marsh, &
Hau, 2013).

Although this evidence points to limitations of LMS when running the analysis on
non-normal exogenous factors and items, it is unclear whether such negative results
are explained by having non-normal latent factors or non-normal items. Indeed, the key
assumption of LMS is that exogenous factors and model errors are normally distributed
(Klein & Moosbrugger, 2000). When this is the case, and items measuring each factor
are continuous, items will also be normal. However, in real life applications, items may
depart from normality for reasons other than non-normality of the latent factors. This
will be the case when items are answered using discrete categories (k) coded with integer
values (i.e., 1, 2, …, k). In such situations, item distribution does not depend on factor dis‐
tributions, but on the distribution of thresholds that define the limits between response
categories, which in turn produce variables whose measurement levels are ordinal at best
(Michell, 2009). Therefore, even when the factor normality assumption of LMS is not
violated, categorical items may not reflect such a distribution and, to our knowledge, the
consequences of this situation for nonlinear SEM estimates using LMS have not been
studied.

In applied research, categorical items are often treated as continuous variables, al‐
though this practice is controversial. Some authors argue that ordinal variables can
always be treated as continuous (e.g., Norman, 2010); others maintain that items can be
treated as if they were continuous if specific conditions are met (e.g., Bollen & Barb,
1981); while others categorically deny this possibility (e.g., Jamieson, 2004). Nevertheless,
evidence reveals that treating items as continuous variables produces spurious factors,
attenuated variance-covariance matrices (Muthén & Kaplan, 1985), and parameter bias,
especially when items have fewer than five response categories and/or item skewness is
greater than |1.0| (Asún et al., 2016; Bernstein & Teng, 1989; DiStefano, 2002; Rhemtulla,
Brosseau-Liard, & Savalei, 2012).

Although treating categorical items as continuous variables is rather common in
applied research that uses nonlinear SEM (e.g., Graves et al., 2013; Jackson, 2015; Hardy
et al., 2013; Masland & Lease, 2016), the consequences of this practice are still unknown.
Nevertheless, it is not unreasonable to hypothesize that such treatment of items would be
problematic, especially when categories are asymmetrical.
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Parcels as a Possible Solution
The recommendation to use item parcels as indicators of latent variables was made
during the initial debate among experts as to the suitability of their application (for a
summary of this controversy, cf., Little, Cunningham, Shahar, & Widaman, 2002).

The main arguments in favor of using parcels (a summary can be found in Little et
al., 2013, Table 3, p. 393) are based on the fact that they: (a) tend to approximate normal
distributions better than isolated items do (Bandalos, 2002); (b) have more categories
than isolated items do, such that they are close to being a continuous distribution (Hall,
Snell, & Foust, 1999); (c) are more reliable than individual items (Marsh, Hau, Balla, &
Grayson, 1998); (d) reduce the number of parameters to be estimated and model complex‐
ity, thereby producing more stable estimations (Little et al., 2013), especially in small
samples (Hau & Marsh, 2004); and (e) reduce the global model error-variance (Little et al.,
2013). By contrast, detractors of parcels argue that they: (a) may distort the dimensional
structure of the data (Bandalos, 2002); (b) mask specification errors in the model (Rogers
& Schmitt, 2004); (c) constitute a modification of the data which contaminates the results
by the researcher’s intervention; and (d) distort the metric of the scale that would be
obtained if working directly with the items, possibly deforming some interpretations
based on the total score distributions (Little et al., 2002).

Although research using simulated data (e.g., Bandalos, 2002; Hall et al., 1999; Hau
& Marsh, 2004; Marsh et al., 1998) shows that parcels have small or negligible effects
on parameter recovery, it has been argued that their potentially positive effect depends
on the manner in which they are constructed (Little et al., 2002) and on the context in
which they are used. Discussions concerning the advantages and disadvantages of using
parcels can also be found in some studies of nonlinear SEM models (e.g., Jackman et
al., 2011; Wu et al., 2013) that have identified neither positive nor negative effects of
their use. These studies have focused on parcels of continuous items used to measure
factors in SEM models that estimate interactions. It is not clear whether parcels of
categorical items could produce positive or negative results for nonlinear SEM models,
and whether parcels could work on models that estimate quadratic effects. This investi‐
gation will evaluate the performance of parcels in nonlinear SEM by implementing two
simple alternatives for creating parcels (Hau & Marsh, 2004): counterbalancing and not
counterbalancing category asymmetry within the parcel, when category asymmetries
have opposite directions.

Simulation Studies
Two studies were carried out to assess the consequences of estimating nonlinear SEM
models with the LMS method, firstly by treating categorical items as continuous indica‐
tors (Study 1), and secondly by using item parcels (Study 2). Parameter and SE biases,
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as well as Type I error rates in the detection of nonlinear effects were assessed in both
studies.

In order to assess Type I error, data were generated for each study using the model
in Equation 2, setting linear parameters as γ1 = γ2 = .3, and nonlinear parameters equal
to zero (i.e., ω12 = ω11 = ω22 = 0). Latent predictors (ξ1 and ξ2) were created from an
N(0, 1) and covariance equal to .3. Prediction error (ζ) was simulated from an N(0, 0.766)
distribution such that η had a variance equal to one.

The endogenous factor η was measured by a single indicator with no measurement
error (i.e., η = Y). The exogenous factors were measured with multiple items created
in two steps. First, continuous items (Xi) were generated for each factor according to a
simple structure (i.e., cross-loadings = 0) and the model in Equation 3. For simplicity, the
factor loadings were set to .5, a value which has shown reasonable results in previous
studies (Rdz-Navarro & Alvarado, 2015). The measurement errors (δi) were generated
from an N(0, 0.75) distribution, such that all Xi follow an N(0, 1) distribution. Conditions
were generated with four, eight, and 16 items per factor.

In the second step, continuous items (Xi) were transformed into categorical items
(xi). As with previous research (e.g., Rhemtulla et al., 2012), transformation was carried
out by choosing four cutting points (i.e., thresholds) that yield five response categories
to represent Likert-type items with different distributions, as shown in Figure 1. In
symmetry conditions, thresholds were distributed symmetrically around the zero-mean
of all Xi (i.e., thresholds were -1.8, -0.6, 0.6, and 1.8). In asymmetry conditions, thresholds
were selected such that the peak of the distribution was the highest response category.
In moderate asymmetry conditions, threshold values had a mean equal to -0.942 (i.e.,
thresholds were -1.799, -1.248, -0.656, and -0.065). In extreme asymmetry conditions,
threshold values had a mean equal to -1.277 (i.e., thresholds were -2.054, -1.476, -0.994,
and -0.583).

Two additional conditions were created to represent moderate asymmetry-alternating
and extreme asymmetry-alternating situations. Here, threshold values were the same as
those used in asymmetry conditions, with the exception that the threshold sign was
reversed for half of the items that measured a given factor1. Thus, for example, in the
moderate asymmetry-alternating condition with four categorical items, the first two
categorical items of the factor were created using thresholds with negative values (i.e.,
-1.799, -1.248, -0.656, and -0.065), and the other two were created using thresholds with
positive values (0.065, 0.656, 1.248 and 1.799). This meant that half of the items peaked in
the highest response category and the other half in the lowest response category.

1) Simulation code is available to researchers upon email request.
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Figure 1

Simulated Items According to Their Distributions.

The second study evaluated the performance of item parcels. Data were created under
conditions equivalent to Study 1, although in this case, after categorical items were
created, they were used to form parcels comprising two or four items. The specialized
literature recommends a minimum of three or four parcels per factor (Marsh et al.,
1998), because a single factor model is not identified (i.e., degrees of freedom are less
than zero) when only two indicators are used. Thus, because four-item conditions only
allow creation of two two-item parcels, this setting was discarded from the analysis. The
same rationale was used for other configurations, eventually leaving only two-parcels
per factor (i.e., two four-item parcels and two eight-item parcels). Thus, in eight-item
conditions, four two-item parcels were created, and under sixteen-item conditions, four
four-item parcels and eight two-item parcels were created. In the asymmetry-alternating
conditions, the items of each parcel were grouped in two ways: counterbalanced within
the parcel (i.e., items with opposite-direction asymmetries grouped within each parcel)
or non-counterbalanced within the parcel (i.e., items with same-direction asymmetries
grouped in each parcel). In the symmetry and asymmetry conditions, it was only possible
to group parcels in a non-counterbalanced way. Given that λi was kept at .5, population
factor loadings of two-item parcels were equal to .632, and .756 for four-item parcels.
Mean skewness and excess kurtosis of item parcels for each simulated condition are
displayed in Table 1.
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Table 1

Skewness and Excess Kurtosis of Parcels

Item category distribution TP

Four Two-item Eight Two-item Four Four-item

SK KU SK KU SK KU

Symmetry NCB -0.001 -0.151 0.001 -0.154 0.001 -0.116

Moderate asymmetry
Same-direction NCB -0.918 0.360 -0.915 0.347 -0.820 0.347

Alternating NCB 0.028 0.370 0.025 0.365 0.025 0.380

Alternating CB 0.048 -0.093 0.048 -0.093 0.040 -0.148

Extreme asymmetry
Same-direction NCB -1.542 2.045 -1.539 2.035 -1.379 1.871

Alternating NCB 0.003 2.031 0.000 2.029 0.000 1.855

Alternating CB -0.001 0.920 0.000 0.915 0.001 0.575
Note. TP = type of parcel. SK = skewness. KU = excess kurtosis. NCB = non-counterbalanced parcel. CB =
counterbalanced parcel.

Samples of 1,000 subjects were used, and 500 replicates were created for each condition
in both studies. The data were analyzed with two types of nonlinear model: the MI model
in Equation 1, and the MIQ model in Equation 2. Analyses were run in Mplus 7 (Muthén
& Muthén, 1998-2012) using the LMS method. Results were considered acceptable upon
meeting the following conditions: (a) 80% or more replicates produced convergent and
admissible solutions (Forero & Maydeu-Olivares, 2009); (b) relative bias of linear parame‐
ters was equal to or less than |0.05| (Hoogland & Boomsma, 1998); and (c) relative bias
of SE was equal to or less than |0.10|. Given that relative bias of nonlinear parameters is
not defined in this case because the population parameter is zero, the mean of nonlinear
parameter estimates was assessed instead. No standard evaluation criterion is available to
assess this mean, so an ad-hoc criterion of values less than or equal to |0.025| was used2.
Following Bradley’s liberal criterion (Serlin, 2000), Type I errors between 2.5% and 7.5%
were considered adequate at a 95% confidence level.

2) This cut-off may sound too restrictive; however, given that the true parameter is exactly zero, almost any
departure from that result could be considered unacceptable. The rationale behind this is the following. Relative bias
is defined as (Parameter – Mean(Estimates)) / Parameter. When the parameter is zero, the formula is not defined.
However, if we replace the population value with any number as close to zero as possible, say 0.0001 or 0.001 to
calculate the bias, obtaining a mean of estimates equal to |0.025| will result in a relative bias of 250.0 (25,000%) and
25.0 (2,500%), respectively.
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Study 1
Treating Categorical Items as Continuous

The first study assessed the impact of treating categorical items as if they were continu‐
ous. All 30 research conditions yielded convergent and admissible results. The following
analysis will focus on parameter and SE recovery, and Type I error rates, as shown in
Table 2.

Table 2

Parameter Estimates (Averages) and Type I Error Rates Using Items Treated as Continuous Indicators

TI

MI MIQ

Parameters %Sig Parameters %Sig

λi γ1 γ2 ω12 ω12 λi γ1 γ2 ω12 ω11 ω22 ω12 ω11 ω22

4 items
SI .472 .298 .301 .000 4.4 .472 .298 .302 -.001 .001 .000 6.2 4.2 6.4

M .452 .301 .301 .040 15.4 .452 .316 .315 -.026 .044 .045 7.6 15.2 18.2
E .409 .300 .297 .058 20.0 .410 .327 .324 -.020 .051 .052 6.8 21.2 19.8
MA .436 .298 .301 .004 5.0 .436 .299 .302 .002 .000 .003 4.8 5.6 6.8

EA .379 .305 .304 .000 7.0 .379 .308 .308 .002 -.001 -.001 6.2 5.8 7.4

8 items
SI .471 .302 .298 .001 5.0 .471 .302 .298 .000 -.001 .001 6.4 4.8 3.8

M .453 .302 .302 .040 20.8 .453 .319 .319 -.012 .041 .041 7.2 21.6 19.0
E .409 .298 .304 .059 32.0 .409 .334 .345 -.015 .055 .059 7.6 34.6 36.0
MA .439 .303 .301 .000 6.6 .439 .303 .301 .002 -.002 -.001 5.0 4.0 4.4

EA .384 .305 .300 .000 5.6 .384 .307 .301 .002 -.001 -.001 6.0 6.2 5.2

16 items
SI .472 .299 .302 .001 4.8 .472 .299 .302 -.002 .003 .001 5.0 4.2 5.4

M .453 .302 .300 .042 28.4 .453 .332 .319 -.002 .039 .039 5.0 27.4 26.2
E .410 .304 .302 .061 45.4 .410 .345 .344 .003 .050 .050 4.0 45.0 43.4
MA .440 .303 .300 -.001 4.0 .440 .303 .300 -.002 .001 .001 3.6 3.4 5.2

EA .386 .300 .302 .000 5.0 .386 .301 .302 .001 -.001 -.001 5.6 6.0 4.6

Note. MI = model with one interaction. MIQ = model with one interaction and two quadratic terms. %Sig
= percentage of significant nonlinear effects (Type I error). TI = type of item distribution. SI = symmetrical
items. M = moderate asymmetry. MA = moderate asymmetry-alternating. E = extreme asymmetry. EA = extreme
asymmetry-alternating. Unacceptable results are in bold. Population parameters: λi = .5, γ1 = γ2 = .3, ω12 = ω11 =
ω22 = 0.

Factor loadings were underestimated in all conditions regardless of the analysis mod‐
el. Bias was greater when item categories exhibited greater asymmetry, especially in
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asymmetry-alternating conditions. Increasing the number of items slightly decreased
the magnitude of bias for these parameters. The factor loading SEs were systematically
overestimated, and such biases increased with the number of items, as shown in Figure
2. It should be noted that LMS uses MLR estimation, meaning that SE bias found here is
not the result of an incorrect estimator, but a problem resulting from the treatment of
categorical data as continuous.

Figure 2

Relative Bias of the Standard Errors Using Categorical Items Treated as Continuous

Note. RB = Relative bias; SE = Standard error.

Regarding structural model parameters, low biases and acceptable Type I error rates were
observed for linear and nonlinear parameters in symmetry and asymmetry-alternating
conditions. Under asymmetry conditions, linear effects were unbiased, but interaction
effects and Type I errors increased for the MI analysis model. For the MIQ analysis
model, linear effects were also affected, nonlinear parameters were overestimated, and
Type I errors were severely inflated. Bias was greater for linear and quadratic estimates
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than for interactions. This may indicate that the overestimation of interaction effects
observed in the MI analysis was transferred to the quadratic effects when using the
MIQ model. Under these conditions, use of more items per factor and higher threshold
asymmetry levels, seemed to increase the magnitude of bias. The structural model SEs of
all parameters were recovered with acceptable levels of bias.

Conclusions

Treatment of categorical items as continuous indicators in nonlinear SEM models estima‐
ted using LMS tends to generate estimation problems for the different parameters of the
model. In measurement models, this treatment produces underestimation of the factor
loadings and overestimation of SEs. In the structural model, it generates overestimation
of nonlinear parameters and increases in the Type I error when items are asymmetrical.
A set of exploratory simulations conducted to cross-validate these results enabled us to
establish that using items with three, four or seven response categories generates results
equivalent to those reported here when item asymmetry levels are also equivalent to
those examined here. It may therefore not be the number of response categories that
produces bias, but the threshold asymmetry that is not accounted for by the model.
This is further supported by the fact that treatment of categorical items as continuous
indicators seems unproblematic for the structural model when threshold distributions are
symmetrical or alternating.

Study 2
The Impact of Working With Item Parcels

The second study evaluated the performance of item parcels and their ability to solve the
problems detected. As in the first study, no convergence or admissibility problems were
found. The research results presented in Table 3 show that use of parcels does not solve
any of the problems detected in Study 1.

The parcel factor loadings were underestimated for all conditions. Small bias was
found when the parcels comprised symmetrical items. Bias increased for parcels gen‐
erated from more asymmetrical items. Counterbalancing item asymmetry within the
parcels partially compensated for the underestimation of factor loadings. Unbiased factor
loading SEs were found when four two-item parcels or eight two-item parcels where
used (see Figure 3). However, when four four-item parcels were used, factor loading SEs
displayed severe bias.
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Table 3

Parameter Estimates (Averages) and Type I Error Rates Using Parcels

Np/Nip

MI MIQ

Parameters %Sig Parameters %Sig

λp γ1 γ2 ω12 ω12 λp γ1 γ2 ω12 ω11 ω22 ω12 ω11 ω22

Type of item: SI
4/2 .603 .302 .298 .000 5.0 .603 .302 .298 -.001 .000 .001 5.8 4.8 4.6

4/4 .731 .299 .302 .001 5.6 .731 .299 .302 -.002 .003 .001 5.8 4.4 5.4

8/2 .604 .299 .302 .001 5.2 .604 .299 .302 -.002 .003 .001 5.0 4.2 5.4

Type of item: M / Parcel configuration: NCB
4/2 .584 .302 .302 .040 19.6 .584 .318 .319 -.011 .040 .040 7.6 21.4 18.6
4/4 .713 .303 .299 .041 28.0 .713 .321 .318 -.002 .039 .039 5.8 27.2 25.4
8/2 .583 .302 .299 .041 28.0 .583 .321 .318 -.002 .039 .039 5.6 26.8 25.8

Type of item: MA / Parcel configuration: NCB

4/2 .564 .303 .302 .000 6.6 .564 .304 .302 .002 -.002 -.002 4.8 5.4 4.0

4/4 .690 .304 .301 -.001 4.0 .690 .305 .301 -.002 .002 .001 4.4 4.0 4.6

8/2 .566 .304 .300 -.001 4.0 .566 .304 .300 -.002 .002 .001 4.2 3.6 5.2

Type of item: MA / Parcel configuration: CB

4/2 .573 .302 .300 -.002 7.0 .573 .302 .301 .004 -.005 -.003 5.2 5.2 4.8

4/4 .702 .303 .299 -.002 3.8 .702 .303 .299 -.002 .000 -.001 4.2 3.4 5.4

8/2 .572 .303 .299 -.002 4.2 .572 .303 .299 -.001 .000 -.001 4.2 4.0 5.4

Type of item: E / Parcel configuration: NCB
4/2 .536 .298 .303 .059 31.6 .536 .333 .343 -.014 .054 .058 7.4 33.6 35.4
4/4 .668 .304 .302 .060 45.0 .668 .344 .342 .003 .050 .050 4.0 44.8 43.6
8/2 .536 .304 .302 .060 46.0 .536 .344 .343 .003 .050 .050 4.0 44.4 42.2

Type of item: EA / Parcel configuration: NCB

4/2 .498 .307 .302 .000 5.8 .498 .310 .303 .003 -.001 -.002 5.4 6.4 6.2

4/4 .619 .303 .304 -.001 4.6 .619 .304 .306 .001 -.002 -.001 4.8 6.0 4.8

8/2 .503 .301 .303 .000 4.6 .503 .302 .303 .001 -.001 .000 5.0 5.8 4.8

Type of item: EA / Parcel configuration: CB

4/2 .516 .304 .298 .000 6.6 .516 .304 .298 .002 .000 -.002 6.6 5.4 4.8

4/4 .647 .299 .301 .000 3.8 .647 .299 .301 .001 -.001 .000 5.0 5.4 4.0

8/2 .515 .299 .301 .000 4.2 .515 .299 .301 .001 -.001 .000 5.4 5.0 3.4
Note. MI = model with one interaction. MIQ = model with one interaction and two quadratic terms. %Sig =
percentage of significant nonlinear effects (Type I error). SI = symmetrical items. M = moderate asymmetry.
MA = moderate asymmetry-alternating. E = extreme asymmetry. EA = extreme asymmetry-alternating. NCB =
non-counterbalanced parcel. CB = counterbalanced parcel. Np/Nip = number of parcels created / number of
items within each parcel. λp = parcel factor loading. Unacceptable results are in bold. Population parameters: γ1

= γ2 = .3, ω12 = ω11 = ω22 = 0. Two-item λp = .632. Four-item λp = .756.

Rdz-Navarro & Asún 13

Methodology
2020, Vol.16(1), 1–20
https://doi.org/10.5964/meth.2305

https://www.psychopen.eu/


Figure 3

Relative Bias of Parcel Factor Loading Standard Errors

Linear structural parameters were estimated with negligible bias when using an MI anal‐
ysis model, but the tendency to obtain overestimated interaction parameters remained
when parcels comprised same-direction asymmetry items. This produced inflation of
Type I errors for the interaction. Upon analyzing the data with an MIQ model, severe
overestimation of linear and nonlinear parameters, as well as a strong increase in Type I
errors was observed for extreme asymmetry item parcels. No problems were observed in
the recovery of the SEs of any structural model parameters. The manner of building the
parcels (i.e., counterbalancing or non-counterbalancing for item asymmetries within the
parcels) had no noticeable effect on the results.

Conclusions

Use of item parcels does not generate additional problems beyond those noted when
dealing with items as continuous indicators; however, parcels does not offer a solution
to the problems detected in Study 1. Indeed, contrary to our hypothesis, neither the

Items and Item Parcels in Nonlinear SEM 14

Methodology
2020, Vol.16(1), 1–20
https://doi.org/10.5964/meth.2305

https://www.psychopen.eu/


number of parcels nor the number of items forming each parcel seem to affect the
results. The limited impact of using parcels may be due to the fact that only items with
same-direction asymmetry were available for the conditions in which problems were
observed. This obstacle is not eliminated by the use of parcels, as their scores retain an
important part of this asymmetry. In alternating-asymmetry situations, counterbalancing
asymmetry within the parcels did not offer an improvement in estimation compared to
isolated items.

Given that problems observed when treating asymmetrical items as continuous indi‐
cators are not solved by the use of parcels, they do not appear to be an advisable alterna‐
tive in these situations, and it may be presumed that other types of parcel configurations
(e.g., a smaller or larger number of parcels, or using parcels comprised of a smaller or
larger number of items) would produce results equivalent to those presented here.

General Discussion and Conclusions
Based on the results of this investigation, it can be asserted that treating categorical
items as continuous indicators in nonlinear SEM using LMS does not seem to be prob‐
lematic when items are symmetrical. However, even in this best-case scenario, this
approach will produce underestimated factor loadings which might lead the researcher
to believe that the items are of a lower quality than they actually are. Despite this, treat‐
ment of categorical items as continuous was not found to produce negative consequences
for structural model parameter estimates when item thresholds are symmetrical or have
alternating asymmetry, confirming previous studies (e.g., Rhemtulla et al., 2012). Howev‐
er, when item category distributions have same-direction asymmetry, treating them as
continuous variables produces overestimated nonlinear effects. Such bias increases Type
I errors, especially when larger tests or scales are used.

The bias problem detected in asymmetrical conditions remains unsolved when work‐
ing with item parcels. The results confirm that while parceling does not generate further
problems, as had been reported in previous literature (Hau & Marsh, 2004; Jackman et al.,
2011; Wu et al., 2013), it does not produce additional benefits either. Use of parcels does
not, therefore, appear to be an acceptable solution to the problems derived from thresh‐
old asymmetry. It is true that nonlinear SEM procedures able to handle non-normal data
have been proposed within the frequentist framework (e.g., Brandt et al., 2014; Cham et
al., 2012); however, they assume the presence of continuous items that are non-normal,
because they belong to a factor that is not normal either. Because the distribution
of categorical items depends on thresholds and not on the factors themselves, further
research is needed to examine whether these procedures that are capable of handling
non-normality in nonlinear SEM could also solve the problems encountered here.

The development of nonlinear SEM procedures able to handle categorical data is a
challenging task, as estimation must consider two sources of nonlinearity at the same
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time: nonlinearity in measurement models (due to categorical data), and nonlinearity in
the structural model (due to the relationship between latent variables). Full development
of such a methodology may take some time, although a number of proposals have
emerged within Bayesian nonlinear SEM (Lee, Song, & Cai, 2010; Lee & Zhu, 2000). Evi‐
dence to date reveals that such methods yield unbiased linear and nonlinear parameter
estimates when factors are measured with dichotomous or polytomous items (Lee et
al., 2010). Although results look promising, the methodology is still under development.
Parameter SEs show substantial bias, estimates are sensitive to prior misspecifications,
and estimation requires sample sizes larger than those needed for continuous indicators.

Given all of the above, researchers should be aware that, in common applied research
situations (e.g., items with moderate or large same-direction asymmetry), biased parame‐
ter estimates and inflated Type I error rates could be obtained as a consequence of item
asymmetry in nonlinear models. This is particularly important given the fact that—to the
best of our knowledge—current frequentist nonlinear SEM procedures assume that items
are truly continuous. Therefore, researchers willing to fit nonlinear models using the
LMS method (or any other method that assumes normality of latent predictors) should
check the distribution of items before proceeding with the analysis to ensure the data set
meets the conditions required for use of the method without jeopardizing the accuracy of
results and statistical conclusions.

It should be noted that the findings presented here are restricted to situations where
nonlinear effects are equal to zero in the population (i.e., Type I error conditions). Further
studies are needed to evaluate whether these findings could be generalized to situations
where true nonlinear effects exist in the population. This may be an important limitation
of this study. However, a small simulation study (not reported here)—conducted as a
validity evaluation under a subset of conditions equivalent to those in Study 1—revealed
that the problem of overestimation bias of parameter estimates remains when interaction
and/or quadratic effects exist in the population and the model is estimated using same-
sign asymmetry items. Indeed, the trend of bias was comparable to that observed in
Study 1 (i.e., bias increased with asymmetry), and the magnitude of bias was around 16%
for true non-zero interaction and quadratic parameters. These results reinforce the idea
that treating asymmetrical items as continuous variables in nonlinear models fitted using
LMS is counterproductive, because even moderate asymmetries—which are usually not
considered damaging (Rhemtulla et al., 2012)—may lead the researcher to believe that
there is a nonlinear effect when in fact the effect is spurious, or that the nonlinear effects
found are more important than they actually are due to overestimation bias.

Further studies are still required to evaluate the generalization of these results to
other situations, such as those that involve non-normally distributed exogenous factors.
As current research evidence (e.g., Brandt et al., 2014; Cham et al., 2012; Wu et al., 2013)
reveals that, even with continuous items, problems may be worse for LMS when the
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assumption of factor normality is not met, it is presumed that this could further affect
work with categorical items.
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