
Original Article

The Effects of Misspecifying the Random Part of
Multilevel Models

David M. LaHuis a, Daniel R. Jenkins a, Michael J. Hartman b, Shotaro Hakoyama b,

Patrick C. Clark b

[a] Department of Psychology, Wright State University, Dayton, OH, USA. [b] Infor, Dallas, TX, USA.

Methodology, 2020, Vol. 16(3), 224–240, https://doi.org/10.5964/meth.2799

Received: 2019-03-26 • Accepted: 2019-10-16 • Published (VoR): 2020-09-30

Corresponding Author: David M. LaHuis, Department of Psychology, Wright State University, Dayton, OH
45435-0001, USA. Tel. +1 937 775 3818, E-mail: david.lahuis@wright.edu

Abstract
This paper examined the amount bias in standard errors for fixed effects when the random part of
a multilevel model is misspecified. Study 1 examined the effects of misspecification for a model
with one Level 1 predictor. Results indicated that misspecifying random slope variance as fixed had
a moderate effect size on the standard errors of the fixed effects and had a greater effect than
misspecifying fixed slopes as random. In Study 2, a second Level 1 predictor was added and
allowed for the examination of the effects of misspecifying the slope variance of one predictor on
the standard errors for the fixed effects of the other predictor. Results indicated that only the
standard errors of coefficient relevant to that predictor were impacted and that the effect size for
the bias could be considered moderate to large. These results suggest that researchers can use a
piecemeal approach to testing multilevel models with random effects.
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The use of multilevel modeling has become common in social science research because
it allows researchers to analyze data that reside at different levels. Multiple levels may
include employees nested within teams, students nested within classrooms, or measure‐
ments nested within individuals. A strength of multilevel modeling is the flexibility
that it allows researchers in testing how variables at higher levels relate to variables
at lower levels. A cost of the flexibility is that multilevel models can be complicated
to specify. As such, studies have investigated the effects of misspecifying multilevel
models. For example, studies have investigated the effects of ignoring (a) the heteroge‐
neity of Level 2 variances (Korendijk, Maas, Moerbeek, & Van der Heijden, 2008), (b)
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inequalities of within-group effects (Korendijk, Hox, Moerbeek, & Maas, 2011), (c) a
level of nesting (Moerbeek, 2004), (d) random cross classifications (Gilbert, Petscher,
Compton, & Schatschneider, 2016; Luo & Kwok, 2009; Meyers & Beretvas, 2006; Shi,
Leite, & Algina, 2010), (e) multiple membership structures (Chung & Beretvas, 2012),
and (f) partial clustering (Baldwin, Bauer, Stice, & Rohde, 2011). The effects of these
misspecifications primarily affect the standard errors of the regression coefficients and
variance components.

In multilevel modeling, specifying the random part of the model is often the most
difficult because there are rarely strong theories about which effects should vary. Proper
specification of the random part of the model is important because it influences the
standard errors of the fixed effects (Snijders & Bosker, 2011). For example, failing to
model random slopes will decrease the standard errors and modeling nonrandom slopes
may lead to an overly complicated model resulting in estimation problems.

Despite its importance, there has been little research concerning the effects of misspe‐
cifying the random part of the model. One exception is Berkhof and Kampen (2004)
who derived expressions for the changes in the standard errors for fixed effects as a
result of omitting a random effect in a multilevel model. They based the expressions on
moment estimators that yield closed form expressions. Although they found that their
expressions were useful in determining the general effect of omitting a random effect,
the expressions were not useful in describing the magnitude of the effect. In addition,
they focused on a single predictor and did not examine the effects of including an extra
random effect. Thus, there are still some questions about the effects of misspecifying the
random part of the model.

In the present studies, we examined the consequences of misspecifying the random
part of the model on the standard errors of the fixed effects. We were interested in
the effects of specifying fixed slopes as varying and varying slopes as fixed. Because
closed-form expressions are not possible when there are unequal group sizes or random
slopes, we used Monte Carlo simulations to assess the effects of model misspecification.
In our simulations, we assessed bias by comparing standard errors for the fixed effects
from a model where the slope varied to a model where the slope was fixed. Our goal was
to determine which type of misspecification produced the most detrimental effects on the
standard errors of the fixed effects.

Multilevel Modeling
A succinct way of expressing a basic two-level model where there are P Level 1 predic‐
tors (X’s) and Q Level 2 predictors (Z’s) is:

Y ij = γ00 +
ℎ = 1

P
γℎ0Xℎij +

k = 1

Q
γ0kZkj +

k = 1

Q

ℎ = 1

P
γℎkZkjXℎij + u0j +

ℎ = 1

P
uℎjXℎij + rij (1)
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In Equation 1, the Level 1 error is labeled rij and its variance (σ2) represents within group
variance not explained by the model. The subscripts i and j refer to the Level 1 and 2
units, respectively. There are P + 1 random parameters because every Level 1 predictor
has a random slope and there is one random intercept. In practice, only a subset of Level
1 predictors may be specified as having random slopes. The first four terms contain the
fixed part of the model, and the last three terms contain the random part of the model.
The variance of u0j is represented as τ00 and represents intercept variance not explained
by the Zs. Similarly, the variances of uhj are labeled τhh and represent the unexplained
variances in the Level 1 slopes. It is common to allow the intercept and slopes to covary.

Researchers are often advised to test for the significance of the variance components
in order to determine what effects should vary. One potential problem with using sig‐
nificance tests for the slope variance components is that the power for these tests is
low (LaHuis & Ferguson, 2009; Raudenbush & Liu, 2000). Thus, these tests have greater
likelihoods of committing Type II errors. The result of such an error is that the random
part of the multilevel model will be misspecified in that the slope is fixed when it should
vary. As a result, the standard errors for the fixed effects would be too small. This would
lead to a greater risk of Type I errors for the fixed effects.

Random Effects and Standard Errors

To understand how the misspecification of the random part of the model affects the
standard errors for the fixed effects, it is helpful to consider the unrealistic case where
the variance components are known, every Level 1 predictor has a random slope, and
each group has sufficient size to calculate ordinary least squares (OLS) estimates. Follow‐
ing Raudenbush and Bryk (2002, Chapter 3), the Level-1 model for group j in an example
with P Level 1 predictors can be expressed as

Yj = Xjβj + rj (2)

where Yj is a vector of ni outcome scores. Xj is a ni by (P + 1) matrix where the first
column is a series of ones to represent the intercept and the other columns are the Level
1 predictors. βj is a vector of unknown parameters and rj are the random errors with a
mean of zero and a variance of σ2. The ordinary least squares (OLS) estimator for the
unknown parameters is

βj = Xj
TXj

−1Xj
TYj (3)

The error variance matrix for βj in estimating βj is denoted as Vj and is given by

Vj = σ2 Xj
TXj

−1 (4)
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Finally, pre-multiplying both sides of Equation 2 by Xj
TXj

−1Xj
Tproduces a simpler model

for βj:

βj = βj + ej,                   ej N(0,Vj) (5)

At Level 2, the model for βj is

βj = Zjγ + uj,                   uj N(0,T) (6)

In Equation 6, γ is a F by 1 vector of fixed effects, the matrix Zj is a (P + 1) by F matrix
that is stacked in block diagonal fashion. For example, in a model with one Level 2
variable Zj predicting one Level 1 intercept and one Level 1 slope, Equation 6 would be:

β0j
β1j

=
1 Zj 0 0
0 0 1 Zj

γ00
γ01
γ10
γ11

+
u0j
u1j

(7)

Both u0j and u1j are the random effects representing the intercept and slope, respectively.
They are assumed to be normally distributed with a mean vector of zeros and a variance
covariance matrix Τ.

Substituting Equation 6 into Equation 5 creates a single combined model:

βj = Zjγ + uj + ej (8)

The dispersion of βj conditional on Zj is a function of the error variance matrix at Level 1
and the random effects matrix at Level 2:

var(βj) = Δj = T + Vj =
τ00 τ01
τ01 τ11

+
V00j V01j
V01j V11j

= τ00 + V00J τ01 + V01J
τ01 + V01J τ11 + V11J

(9)

Finally, the dispersion matrix for the fixed effects (γ’s) based on generalized least squares
is given by:

var(γj) = Vγ =
j = 1

J
(Zj

TΔj
−1Zj)

−1
(10)

The square roots of the diagonals of Vγ are the standard errors. To trace the effects of
Δj on the standard errors, it is helpful to consider a very simple model with two Level
1 predictors and no Level 2 predictors. The underlying concepts are identical for models
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with more fixed and random effects but are more difficult to demonstrate. Thus, in our
simple model, Z is simply a 3 × 3 identity matrix and Equation 10 becomes:

var(γj) = Vγ =
j = 1

J
(Zj

TΔj
−1Zj

T)
−1

=
j = 1

J 1 0 0
0 1 0
0 0 1

τ00 + V00j τ01 + V01j τ02 + V02j
τ01 + V01j τ11 + V11j τ12 + V12j
τ02 + V02j τ12 + V12j τ22 + V22j

−1 1 0 0
0 1 0
0 0 1

−1 (11)

standard errors for γ00, γ10, and γ20 are simply the square roots of the diagonals of Vj.
Importantly, the slope variance for one Level 1 predictor does not impact the standard
error for the other Level 1 predictor. It follows that fixing the slope of a given predictor
when it should vary should only affect the standard errors associated with that predictor.

In practice, the variance components are not known and need to be estimated with
the fixed effects using full or restricted maximum likelihood estimation. Based on the
above discussion, we would expect the bias in standard errors would be limited to those
fixed effects that are associated with the random effect that is misspecified and that
the amount of this bias should decrease as the amount of slope variance decreases. In
addition, the amount of bias in standard errors should increase as group size increases.
This is because, all things being equal, the elements of the error matrix Vj will decrease
as group size increases. Thus, the Level 2 variances will have a greater relative impact on
the standard errors of the regression coefficients.

Study 1
The major focus of Study 1 was to examine the effects of omitting a slope from the
random part of the model. We also explored the effects of freeing a slope when it
should have been fixed. We considered a simple model with only one Level 1 predictor
and one Level 2 predictor. As mentioned above, specification of the random part of
the model impacts the standard errors for the fixed effects. We assessed the effect of
misspecification on the standard errors of three fixed effects: the cross-level effect (γ01),
the slope mean for X (γ10), and the cross-level interaction (γ11). Misspecification occurred
by allowing the slope to vary when it should have been fixed and vice-versa. For each
fixed effect, we were interested in the overall degree of bias. In addition, we assessed the
impact of the number of groups, average group size, the mean slope, the magnitude of
the cross-level interaction, and the amount of slope variance on the amount of bias.
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Method
We used a 3 (number of groups) × 3 (average group size) × 2 (cross-level interaction
effect size) × 4 (slope mean) × 3 (slope – intercept correlation) × 5 (slope variance
effect size) design. The values chosen for the conditions were based somewhat on the
simulations conducted by Mathieu, Aguinis, Culpepper, and Chen (2012). The intraclass
correlation coefficient (ICC) for Y was set to .20, and the cross-level effect was set at
0.40. The number of groups was 50, 100, or 200. The average group sizes were 5, 10,
and 20, and were chosen to be consistent with previous simulations (LaHuis & Ferguson,
2009; LaHuis, Hartman, Hakoyama, & Clark, 2014; Mathieu et al., 2012). Group sizes
were drawn randomly from a uniform distribution. For the average group size of 5
condition, values ranged from 1 to 9. The range of group sizes for average group size of
10 condition was 6 to 14. In the average group size of 20 condition, the range was 16
to 24. We also included a cross-level interaction condition where the effect size for the
cross-level interaction was either 0.00 or 0.20. The latter value was based on Mathieu
et al (2012). The slope means were specified as 0.00, 0.10, 0.30, or 0.50. These represent
nil, small, medium, and large effects, respectively. Slope variance values were 0.00, 0.025,
0.05, 0.10, and 0.15 which produced 95% predictive intervals (Hox, Moerbeek, & van de
Schoot, 2018) of the slope mean plus or minus 0, .31, .44, .62, 76, respectively. That is,
for the slope mean condition of 0.10 and the slope variance condition of 0.05, we would
expect 95% of the slopes to be in the range of -.34 to .54. The slope variance values were
consistent with Raudenbush and Liu (2000) and represent a range of effect sizes for slope
variances. Finally, the correlation between the slope and intercept was set to .00, -.30,
or -.70. For each possible combination, we simulated 1000 samples resulting in 936,000
samples.

Data Generation

We created the Level 2 variable Z by randomly sampling values from a standard normal
distribution. We also generated values for the Level 2 random variables by randomly
sampling values from a normal distribution with a mean of 0 and a standard deviation
equal to the square root of the desired variance. For u0j, the standard deviation was set
to the value to produce an ICC for Y of .20. The value changed based on the amount
of explained variance at each level. For u1j, the standard deviation was set to the value
to produce the desired slope variance. At Level 1, we randomly sampled values from a
standard normal distribution to produce the Level 1 predictor X. In addition, the Level 1
error term, rij, was created by randomly drawing values from a normal distribution with
a mean of 0 and a standard deviation set to produce the desired ICC for Y.

To generate the Y, we first created intercepts for each group by multiplying Z by
0.40 (the cross-level effect) and added u0j. Similarly, we created the group slopes (β1j) by
adding the desired mean slope (i.e., 0.00, 0.10, 0.30, or 0.50) and the product of Z with
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the cross-level interaction effect to u1j. Finally, we computed values for Y using the group
intercept and slope values and the randomly generated values for X and rij.

Analyses

For each sample, we estimated two multilevel models using restricted maximum-likeli‐
hood estimation: one where the slope was fixed and one where the slope varied. For
each model, we recorded the estimates for γ01, γ10, and γ11, as well as their standard
errors. We calculated the bias in standard errors by subtracting the standard error from
the data generating model from that of the misspecified model. Thus, a positive value
for bias reflects the standard errors for the misspecified model was higher than the data
generating model. Cohen’s d statistics were also calculated to aid in interpreting the
size of the bias. We used the guidelines (Cohen, 1988) of .20, .50, and .80 as indicative
of small, medium, and large effects, respectively. We conducted ANOVA’s to determine
the impact of the various conditions on the bias in standard errors. Because of the large
number of samples, we focused on interpreting effect sizes (partial η2). All analyses were
conducted using the LME4 (Bates, Maechler, Bolker, & Walker, 2015) package in the
statistical program system R (R Core Team, 2018).

Results
Prior to evaluating the results, we inspected how well the population parameters were
uncovered by our analyses. We calculated root mean square error of approximation
values (RMSEA) for each parameter. RMSEA values ranged from .02 to .03. Thus, all
values were in the acceptable range and consistent with prior simulations.

Bias in Standard Errors

Table 1 presents the average bias statistics for each condition. These statistics were
calculated by collapsing across the other conditions. Misspecification of the random part
of the model did not appear to impact γ01. The Cohen’s d statistics ranged from -0.02 to
0.02. In addition, the bias values were small: They were all near .000.

Table 1

Bias Statistics for the Standard Error Differences in the Parameter Estimates Between a Model With a Fixed Slope
and a Model With a Slope Allowed to Vary

Source

γ01 γ10 γ11

SE SE Bias d SE SE Bias d SE SE Bias d
NJ = 5 .090 .000 0.01 .061 -.009 -0.52 .062 -.009 -0.47

NJ = 10 .079 .000 0.01 .046 -.010 -0.77 .046 -.010 -0.72

NJ = 20 .075 .000 0.01 .037 -.012 -1.14 .037 -.012 -1.08
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Source

γ01 γ10 γ11

SE SE Bias d SE SE Bias d SE SE Bias d
NG = 50 .110 .000 0.02 .066 -.014 -0.84 .067 -.014 -0.76

NG = 100 .078 .000 0.02 .046 -.010 -0.87 .046 -.010 -0.82

NG = 200 .055 .000 0.02 .032 -.007 -0.88 .033 -.007 -0.85

γ10 = 0.00 .081 .000 0.01 .048 -.010 -0.59 .049 -.011 -0.56

γ10 = 0.10 .081 .000 0.01 .048 -.010 -0.59 .049 -.011 -0.56

γ10 = 0.30 .081 .000 0.01 .048 -.010 -0.59 .049 -.010 -0.56

γ10 = 0.50 .081 .000 0.01 .048 -.010 -0.59 .049 -.010 -0.56

τ11 = 0.00 .044 .000 -0.02 .035 .001 0.09 .036 .001 0.09

τ11 = 0.025 .084 .000 0.00 .041 -.005 -0.28 .042 -.005 -0.26

τ11 = 0.05 .084 .000 0.01 .045 -.008 -0.47 .046 -.008 -0.44

τ11 = 0.10 .084 .000 0.01 .052 -.014 -0.78 .052 -.014 -0.74

τ11 = 0.15 .084 .001 0.02 .058 -.019 -1.03 .058 -.019 -0.96

τ01 = 0.00 .076 .000 0.01 .047 -.009 -0.53 .047 -.009 -0.50

τ01 = -0.30 .084 .000 0.01 .049 -.011 -0.64 .050 -.011 -0.60

τ01 = -0.70 .084 .000 0.01 .049 -.011 -0.62 .049 -.011 -0.59

γ11 = 0.00 .081 .000 0.01 .048 -.010 -0.59 .049 -.011 -0.56

γ11 = 0.20 .081 .000 0.01 .048 -.010 -0.59 .049 -.010 -0.56

Note. NJ = Average number of cases per group. NG = Number of groups. Standard errors are averages based on
the data generating model. Bias was calculated by subtracting the standard error for the data generating model
from the misspecified model.

Misspecification of the random part of the model did influence the standard errors for
γ10 and γ11. Cohen’s d’s ranged from -1.14 to 0.09 for γ10 and -1.08 to 0.09 to for γ11. The
smallest values were found for the no slope variance condition, and the biggest values
was found for the largest group size condition. When there was no population slope
variance, estimating a model with a random slope produced a bias of .001 (Cohen’s d =
0.09) in the standard errors for both γ10 and γ11. In contrast, misspecifying the slope as
fixed when it should have been random produced biases ranging from -.019 to -.005 for
both γ10 and γ11. Cohen’s d ranged from -1.03 to -0.28 for γ10 and -0.96 to -0.26 for γ11. As
expected, bigger biases occurred for greater levels of slope variance.

ANOVA Results

To get a better sense of the effects of the study conditions on bias, we conducted separate
ANOVA’s investigating the impact of the study characteristics on the bias in standard
errors for the γ10 and γ11. We included only the conditions where there was slope
variance to produce a fully crossed design. Table 2 presents the results. Results were
generally consistent with those for both ANOVA’s. Not surprisingly, the biggest effect
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size was for the amount of slope variance (partial η2 = .65 for γ10 and .62 for γ11). The
number of groups (partial η2 = .38 for γ10 and .36 for γ11) also had a sizable effect size.
The partial η2 for group size was .11 for γ10 and .10 for γ11. Based on Table 1, it appears
that both larger numbers of groups and group size produced less bias. Note that as the
number of groups increased, the pooled variance of bias decreased. Thus, the Cohen’s d
for bias as a function of the number of groups did not exhibit a similar pattern as the raw
bias. The slope mean and the amount of intercept – slope correlation did not have large
effect sizes (partial η2s = .00). Finally, only the interaction between the number of groups
and amount of slope variance had a sizeable effect (partial η2s = .11). Figure 1 displays the
form of the interaction for γ10. The effect for slope variance decreased as the number of
groups increased.

Table 2

Between Subjects ANOVA for Bias in the Standard Errors for γ10 and γ11 From Study 1

Source df

Bias in γ10 SE Bias in γ11 SE

F Partial η2 F Partial η2

Number of cases per group (NJ) 2 54013.35* .11 50272.89* .10

Number of groups (NG) 2 264087.34* .38 240527.90* .36

Slope Mean (SM) 3 0.54 .00 0.66 .00

Slope variance (SV) 3 521630.03* .65 466481.81* .62

Cross-level interaction (CINT) 1 2.51 .00 3.86* .00

Intercept – slope correlation 2 660.27* .00 576.28* .00

NG × SV 6 18279.90* .11 16739.40 .10
Note. All other interactions explained less than 10 percent of the variance.
*p < .05.
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Figure 1

Absolute bias of the standard errors for γ10 as a function of the amount of slope variance and
number of groups.

Study 2
In Study 2, we assessed the effects of misspecifying the random part of the model
when there were multiple random slopes by adding a second Level 1 predictor. There is
potential for greater effects as this also influences the correlations between that slope
variance with the variances of the intercept and other slopes. We were interested in how
misspecifying slope variance for X1 impacted the standard errors for the slope mean for
X2 (γ20) and how misspecifying slope variance for X2 affected the standard errors for the
slope mean for X1 (γ10) and the cross-level interaction (γ11).

Method
Design

We used a 3 (number of groups) × 3 (average group size) × 4 (slope correlation) × 5
(slope variance effect size for X1) × 2 (slope variance effect size for X2) × 4 (predictor
correlation) × 2 (between group variance for X1) × 2 (between group variance for X2)
design. It was not fully crossed because there can be no slope correlation when either
of the slopes have zero variance. The values for the number of groups, average group
size, and slope variance effect size for X1 were consistent with Study 1. The cross-level
interaction and slope mean of X1 were set at 0.20 and 0.30 respectively. We eliminated the
other conditions for these variables because Study 1 demonstrated negligible differences
in standard error bias across these conditions. In addition, we added another Level 1
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predictor (X2). We set the correlation between the two Level 1 predictors (rX1X2) to be
0.00, 0.50, and 0.90. The slope mean for X2 was also set to 0.30, and the slope variance
was set to either 0.00 or 0.10. We set the correlation between the two slopes to be .00, .50,
or .90. When the slope variance for X1 or X2 was 0.00, the correlation between slopes was
fixed to zero. Since Level 1 predictors can also contain between group variance, we set
the ICC for each predictor to be .00 or .50. The latter value represents a substantial ICC
value. For each possible combination, we simulated 1000 samples resulting in 3,168,000
samples.

Data Generation

The Level 2 variables Z and u0j were generated as in Study 1. For u1j, the standard
deviation was set to the value to produce the desired slope variance. For u2j, the standard
deviation was set to the value of either 0.00 or the square root of 0.10 depending on
the condition. We transformed these values to produce the desired covariance matrix for
random effects using procedures adapted from nonparametric bootstrapping (Goldstein,
2011). For X1 and X2, we randomly sampled values from a standard normal distribution
to produce the desired within group variance. Between group variance for X1 and X2 was
created by adding the desired between group variances to the X1 and X2 predictors. In
addition, the Level 1 error term, rij was created as in Study 1. Values for Y were generated
by multiplying the coefficients by the relevant predictors and adding the error terms.

Analysis

As in Study 1, we estimated multiple models. In Model 1, the slope for X1 was fixed and
the slope for X2 was random. In Model 2, the X1 slope was random and the X2 slope
was fixed. Finally, Model 3 specified both slopes as random. We compared the Model 1
standard errors for the fixed effects against those from Model 3 to determine the effects
of misspecifying the slope of X1 on the standard errors of γ01, γ10, γ11, and γ20. We also
compared Model 2 with Model 3 to determine if misspecifying the slope for X2 affected
the standard errors for γ11.

Results
Comparing Model 1 to Model 3

Table 3 displays the bias in standard errors as a function of comparing Model 1 with
Model 3. Overall, the results for the standard errors for γ01, γ10, and γ11 were similar to
the one-predictor case. Misspecifying the slope of X1 had little effect on the standard
errors of γ01 with bias estimates ranging from .000 to .002 and Cohen’s d’s ranging from
0.01 to 0.07. There was considerable bias in the standard errors for both γ10 and γ11 when
the slope of X1 was incorrectly fixed to zero. Bias estimates ranged from -.016 to -.005
with Cohen’s d’s ranging from -0.58 to -0.16 for the γ10 standard errors. Similarly, bias
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estimates for the γ11 standard errors ranged from -.004 to -.016 with Cohen’s d’s ranging
from -0.70 to -0.21. As with Study 1, the effects of misspecifying the τ11 as random when
it should have been fixed to zero were not as pronounced. Bias estimates for standard
errors were .002 for γ10 and .001 for γ11. Cohen’s d’s were 0.08 and 0.07, respectively.

Table 3

Bias Statistics for the Standard Error Differences in the Parameter Estimates Between a Model With a Fixed Slope
and a Model With a Slope Allowed to Vary

Source

γ01 γ10 γ11 γ20

SE SE Bias d SE SE Bias d SE SE Bias d SE SE Bias d
NJ = 5 .076 .001 0.03 .082 -.010 -0.26 .067 -.008 -0.36 .081 .002 0.06

NJ = 10 .064 .001 0.03 .060 -.009 -0.35 .050 -.008 -0.51 .059 .003 0.10

NJ = 20 .059 .001 0.03 .048 -.010 -0.47 .042 -.010 -0.63 .049 .004 0.18

NG = 50 .090 .001 0.06 .088 -.013 -0.38 .074 -.012 -0.59 .087 .004 0.12

NG = 100 .064 .001 0.07 .060 -.009 -0.36 .050 -.008 -0.60 .060 .003 0.11

NG = 200 .045 .000 0.07 .042 -.006 -0.35 .035 -.006 -0.62 .042 .002 0.12

τ11 = .000 .066 .000 -0.01 .051 .002 0.08 .040 .001 0.07 .058 .001 0.02

τ11 = .025 .066 .000 0.01 .058 -.005 -0.16 .047 -.004 -0.21 .063 .001 0.04

τ11 = .050 .066 .000 0.02 .061 -.008 -0.24 .050 -.007 -0.34 .063 .002 0.07

τ11 = .10 .067 .001 0.04 .067 -.012 -0.38 .057 -.011 -0.54 .063 .004 0.13

τ11 = .15 .067 .002 0.06 .071 -.016 -0.51 .062 -.016 -0.70 .064 .006 0.18

τ22 = .00 .066 .001 0.03 .061 -.010 -0.28 .048 -.008 -0.40 .053 .001 0.03

τ22 = .10 .067 .001 0.03 .064 -.010 -0.30 .054 -.009 -0.42 .066 .004 0.11

τ12 = .00 .066 .001 0.03 .062 -.009 -0.28 .050 -.008 -0.38 .059 .001 0.04

τ12 = .10 .067 .001 0.03 .065 -.010 -0.32 .054 -.009 -0.45 .066 .003 0.08

τ12 = .50 .067 .001 0.03 .065 -.010 -0.31 .056 -.010 -0.46 .066 .005 0.14

τ12 = .90 .067 .001 0.04 .065 -.010 -0.32 .056 -.010 -0.42 .066 .007 0.19

ICCX1 = .00 .066 .000 0.02 .062 -.010 -0.30 .052 -.009 -0.43 .063 .003 0.10

ICCX1 = .50 .067 .001 0.04 .064 -.009 -0.29 .054 -.009 -0.40 .063 .003 0.09

ICCX2 = .00 .066 .001 0.03 .063 -.010 -0.31 .053 -.009 -0.42 .061 .003 0.10

ICCX2 = .50 .067 .001 0.03 .064 -.010 -0.29 .053 -.009 -0.41 .064 .003 0.09

rX1X2 = .00 .068 .001 0.03 .052 -.010 -0.58 .051 -.010 -0.49 .052 .001 0.06

rX1X2 = .10 .067 .001 0.03 .056 -.010 -0.40 .051 -.009 -0.45 .056 .002 0.07

rX1X2 = .50 .066 .001 0.03 .056 -.010 -0.47 .052 -.010 -0.50 .055 .005 0.21

rX1X2 = .90 .065 .001 0.03 .090 -.009 -0.20 .058 -.007 -0.27 .089 .005 0.10

Note. NJ = Average number of cases per group. NG = Number of groups. ICC = Intraclass correlation coefficient.
Bias in γ01, γ10, γ11, and γ20 standard errors were calculated by subtracting those from those from a model with a
random X1 slope (Model 2) from these standard errors from a model with a fixed X1 slope (Model 1).
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It is interesting to note that varying the amount of slope variance produced little bias
in the standard errors for γ20. In general, the amount of bias was similar to that for
the standard errors of γ01. In addition, the degree of correlation between slopes did not
appear to impact the bias in the standard errors for γ10 and γ11. For example, when the
correlation was .00, the bias in the standard errors for γ10 was -.009 with a Cohen’s d of
-0.28. When the correlation equaled .90, the bias equaled -.010 with a Cohen’s d of -0.32.
The amount of between group variance in the Level 1 predictors had little effect on the
bias in the standard errors. Bias estimates for the standard errors of γ10 were -.010 with
a Cohen’s d of -0.30 when there was no between group variance in X1, and -.009 with a
Cohen’s d of -0.29 when between group variance was 0.5. We found similar results for
γ11. The between group variance conditions for X2 produced biases and effect sizes that
mimicked the findings for X1.

We conducted two ANOVA’s investigating the impact of the study characteristics on
the bias in standard errors for the average γ10 and γ11. As with Study 1, only conditions
where there was variance in the slopes were included. We limited the ANOVA to the
main effects and all two-way interactions because of the large number of conditions.
Table 4 presents the results. Results were generally consistent with those for both AN‐
OVA’s. The largest effects were associated with the amount of slope variance (partial η2

= .43 for γ10 and .49 for γ11) and the number of groups (partial η2 = .27 for both γ10 and
γ11). None of the two-way interactions a partial η2s greater than .06.

Table 4

Between Subjects ANOVA for Bias in the Standard Errors for γ10 and γ11 From Study 2

Source df

Bias in γ10 SE Bias in γ11 SE

F Partial η2 F Partial η2

Number of cases per group 2 9961.09 0.01 50982.95 0.04

Number of groups 2 427913.47 0.27 436516.19 0.27

Predictor correlation 3 23328.24 0.03 91597.76 0.11

Slopes correlation 3 121.52 0.00 3532.56 0.00

Slope variance for X1 3 573301.99 0.43 745638.19 0.49

ICC for X1 1 1746.76 0.00 2459.09 0.00

ICC for X2 1 118.75 0.00 299.74 0.00
Note. All two-way interactions were tested and resulted in Partial η2 < .02. ICC = Intraclass correlation coeffi‐
cient.

Comparing Model 2 to Model 3

Varying the slope variance for X2 (τ22) when it should have been fixed did not affect the
standard errors for γ10 or γ11. The bias estimates were -.001 and .000 with a Cohen’s d
of -0.03 and 0.01 for the standard errors for γ10 and γ11, respectively. Similarly, fixing the
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slope variance for X2 (τ22) when it should have been random also did not have a large
effect. The bias estimates were .004 and .003 with a Cohen’s d of 0.11 and 0.12 for γ10

and γ11, respectively. This provides further evidence that the effects of misspecifying the
random part of multilevel models are isolated to the standard errors for the fixed effects
associated with the misspecified slope variance.

Discussion
It is well known that misspecification of the random part of multilevel models impacts
the standard errors for the fixed effects. In the present studies, we sought to identify how
great this impact is, and what type of misspecification has the larger effect. In Study 1,
we found that fixing the slope variance when it should be random has bigger effects than
freeing the slope variance when it should be fixed. Large effect sizes for both the Level 1
slope and cross-level interaction standard errors were observed for relatively small levels
of slope variance. The bias was such that Type I errors were more likely when the slope
was fixed but should have varied, and Type II errors were more likely when the slope
varied but should have been fixed. We also found that the number of groups attenuated
the biasing effect of slope variance magnitude such that more groups were associated
with less of a biasing effect.

In Study 2, we investigated the effects of misspecifying the random part of the model
in situations with multiple random slopes and between-group variance for correlated
Level 1 predictors. Overall, the results were similar to the single random slope models
in that these added conditions did not have a large impact. As expected, the bias in
standard errors is limited to the fixed effects associated with the slope that should be
random. That is, the only fixed effects that are affected are the direct effect of the Level
1 predictor, and the cross-level interaction of the Level 2 variable predicting the Level 1
slope.

Limitation and Future Research
In our simulations, we considered a basic two-level model with relatively few continuous
predictors. Thus, it is not clear how well the results would generalize to studies with a
larger number of predictors, additional levels, or categorical variables. Similarly, we con‐
sidered a model with a simple compound symmetry variance/covariance matrix for the
Level 1 errors. The assumption of compound symmetry is often relaxed for longitudinal
models because of autocorrelation and heterogeneity of variance that occurs for repeated
measures. This directly effects the standard errors for Level 1 coefficients (Kwok, West,
& Green, 2007), but it is unclear as to how this may interact with misspecifying random
slopes.
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Recommendations
We see three major recommendations emerging from the results of the present studies.
First, we suggest that researchers, when in doubt, give preference to random slopes.
Our results suggest that doing so would minimize the amount of bias in the relevant
standard errors for the fixed effects. We suspect that it is rare that the variance for a
slope is exactly zero. However, even if this were to be the case, our results suggest that
allowing that slope to vary would produce very little bias. In contrast, fixing a slope that
should be random produces considerably more bias. If researchers desire to gauge the
potential effects of misspecifying slope variance, then they could compare models with
and without random slopes.

Second, we suggest that researchers should avoid using nonrandomly varying slope
models to evaluate cross-level interactions. Cross-level interactions may exist when the
variance in slopes is not statistically significant (LaHuis & Ferguson, 2009; Mathieu et
al., 2012). Thus, researchers are advised to test hypothesized cross-level interactions even
when the predicted slope does not exhibit significant slope variance. What is not clear
is whether the relevant slope variance should be fixed to zero. In the present studies, we
found large effect sizes for bias in the standard errors for cross-level interactions when
this was done and may lead to Type I errors for cross-level interactions.

Finally, we recommend using a piecemeal approach when there are many random
effects that may cause estimation problems or if there are not enough degrees of freedom
to estimate all of the random effects. Results from Study 2 suggest that omitting a slope
from the random part of the model only affects coefficients concerning the omitted
slope. Researchers could test their hypotheses regarding fixed effects allowing for the
appropriate random effects. For example, we may hypothesize that the Level 2 variable,
Z, predicts the slopes of X1 and X2. We could first examine the effects of Z on the X1

slope while allowing the X1 slope to vary and fixing the X2 slope to zero. Next, we would
examine the effects of Z on the X2 slope while allowing the X2 slope to vary and fixing
the X1 slope. Doing so would allow us to examine the hypotheses using the appropriate
standard errors.
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