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Abstract
Linear Mixed Effect Models (LMEM) have become a popular method for analyzing nested
experimental data, which are often encountered in psycholinguistics and other fields. This
approach allows experimental results to be generalized to the greater population of both subjects
and experimental stimuli. In an influential paper Bar and his colleagues (2013; https://doi.org/
10.1016/j.jml.2012.11.001) recommend specifying the maximal random effect structure allowed by
the experimental design, which includes random intercepts and random slopes for all within-
subjects and within-items experimental factors, as well as correlations between the random effects
components. The goal of this paper is to formally investigate whether their recommendations can
be generalized to wider variety of experimental conditions. The simulation results revealed that
complex models (i.e., with more parameters) lead to a dramatic increase in the non-convergence
rate. Furthermore, AIC and BIC were found to select the true model in the majority of cases,
although selection accuracy varied by LMEM random effect structure.
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In psycholinguistic studies, a common outcome measure is reaction time (RT). For exam‐
ple, subjects might judge whether strings of letters are words or non-words, indicating
their decision by pressing a button. The real words represent different categories, consti‐
tuting the experimental manipulation. The nature of psycholinguistic studies necessitates
accounting for variability in the outcome variable caused by particular subjects and items
(i.e., by-subject and by-item random effects).

METHODOLOGY
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Classical methods for analyzing psycholinguistic data are by-subjects or by-items
analysis of variance (ANOVA), known as F1 and F2 (Clark, 1973). The distinct feature of
these methods is that subjects and items are treated as fixed factors. However, this choice
might be inappropriate, as the interest of most studies is generalizing conclusions beyond
the particular individuals and stimuli used in the experiment. Thus, both subjects and
stimuli should be treated as random factors when analyzing data from such experiments.

The quasi F-ratio (F’; Clark, 1973) was an early attempt at solving this problem.
The F’ and min-F statistics account for both item and subject variability (e.g., Forster &
Dickinson, 1976; Santa, Miller, & Shaw, 1979; Wickens & Keppel, 1983). However, this
method requires balanced data with no missing responses and computing by-subject and
by-item effects separately.

The recently-popularized linear mixed effects model (LMEM) enables simultaneous
modeling of by-subject and by-item random effects while handling missing data better
than previous ANOVA methods (Baayen, Davidson, & Bates, 2008). Such random effects
include random intercepts, reflecting differences in the overall level of the dependent
variable across experimental units (e.g., subjects or items) and/or random slopes, reflect‐
ing differences in the effects of predictors across the experimental units.

Although LMEMs are receiving increased attention in psycholinguistics, there is no
widely-accepted rule for determining the random effects to include in an LMEM, caus‐
ing confusion and inconsistent use of LMEMs. To provide practical recommendations
concerning the choice of random effect structure, Barr, Levy, Scheepers, and Tily (2013)
conducted a simulation study. They manipulated the number of items, whether treatment
was within- or between-items, and the presence of a treatment effect as the experimental
factors, resulting in eight experimental conditions. The simulated data sets from the eight
conditions were then analyzed with min-F’, F1, F1 × F2, and several LMEMs differing in
the complexity of the random effects component.

Based on the results, the authors suggested that LMEMs with the most complex
random effect structure justified by the design (i.e., maximal LMEM) should be imple‐
mented, providing the model converges. Their results showed that maximal LMEMs
performed well in terms of type I error rate, power, and model selection accuracy, while
random-intercept-only models performed worse on all criteria, and usually even worse
than separate F1 and F2 tests. On the other hand, Matuschek, Kliegl, Vasishth, Baayen,
and Bates (2017) demonstrated that fitting the maximal model successfully controls the
Type I error, but leads to a significant loss of power. They noted that higher power can
be achieved without inflating Type I error if information criteria is used to select the
optimal model.

Although innovative and informative, Barr et al. (2013) was limited to relatively
simple conditions, including only one predictor with a continuous outcome variable in
the model. It is unclear whether their recommendations regarding choice of random
effects generalize to more complex experimental designs common in contemporary psy‐
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cholinguistic studies. When fitting LMEMs under complex experimental designs, a model
non-convergence issue may arise. Several papers noted the increasing likelihood of non-
convergence as models become more complex (e.g., Baayen, Vasishth, Kliegl, & Bates,
2017; Bates, Kliegl, Vasishth, & Baayen, 2015). This problem has also been encountered
in a number of empirical applications of LMEMs. For example, Nixon, Chen, and Schiller
(2015) investigated the processing of tones in Chinese. In this study, the maximal model
with reaction time as the response variable and three predictors (trial number, stimulus
onset asynchrony, and experimental condition) failed to converge. After simplifying the
model by removing random effect correlations, the model still did not converge.

For cases in which a maximal model does not converge, Barr et al. (2013) proposed
a simple alternative: keeping all random slopes for the predictor of interest and fixing
correlations among all random effect components to zero. In the follow-up paper, Barr
(2013) suggested that the “keeping maximal model with zero correlations” strategy can
also be applicable when higher-order interaction terms are included in LMEMs.

The purpose of this paper is to systematically investigate the applicability of the Barr
et al. (2013) recommendation under complex experimental conditions, and to provide
practical recommendations for selecting the random effect structure when analyzing
psycholinguistic data with LMEMs. The remainder of this section briefly introduces
essential concepts of LMEMs and explains the hypotheses and approach of the present
study. The details of the simulation study are provided, followed by the results. Finally,
the results are discussed, including recommendations and future directions.

Linear Mixed Effects Models
A LMEM can be formally specified as follows,

y = Xβ + Zb + ε (1)

In Equation (1), X is a design matrix encoding all factor contrasts and predictors, which
is multiplied by the vector of population coefficients (β) containing the overall intercept
and main-effect slope(s). What differentiates a LMEM from linear regression is the term
Zb, where Z is another design matrix and b is a vector of subject and item random effects
assumed to be normally distributed with mean 0 and variance-covariance of the two
random effects. These random effects adjust the intercept and/or slope for each subject
and each item. This might be clarified by an example using different notation. The term
ε is the residual errors that are assumed to follow a normal distribution with mean 0 and
variance of σ2.

If a hypothetical study were both within-subjects (i.e., each subject sees all items)
and within-item (i.e., each item occurs in all experimental conditions), the corresponding
LMEM could be expressed as follows:

Ysi = β0 + S0s + I0i + (β1 + S1s + I1i) Xi + esi (2)
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In Equation (2), the response of a subject to an item is modeled as the fixed-effect
intercept (β0) and fixed-effect slope (β1) plus random effects, where “fixed effect” means
that the value does not change for different subjects and items. The fixed-effect intercept
represents the average response value under one of the experimental conditions, while
the fixed-effect slope represents the mean difference between the two experimental
conditions (i.e., the overall treatment effect). The random intercepts adjust the baseline
response value for each subject (S0s) and item (I0i). The random slopes adjust the treat‐
ment effect for each subject (S1s) and item (I1i). Consequently, a different response is
predicted for each unique subject–item combination. While this is the conceptual basis
of LMEM, the actual model-fitting procedure does not estimate individual subject and
item random effects, instead estimating the population variance-covariance matrices of
random subject effects (Equation 3) and random item effects (Equation 4), where τ002
and ω002  represent the variances of the by-subject and by-item intercept distributions
respectively. The parameters τ112  and ω112  likewise represent the by-subject and by-item
slope distribution variances. The parameters ρs and ρi represent the correlation between
subject random slopes and intercepts, and item random slopes and intercepts respective‐
ly. Formally, these parameters are specified as:

Τ = τ002 ρsτ00τ11
ρsτ00τ11 τ112

(3)

Ω = ω002 ρiω00ω11
ρiω00ω11 ω112

(4)

Multiple software packages can implement LMEMs, including SAS (e.g., Yu, 2015), and
R (e.g., Bates, Maechler, Bolker, & Walker, 2015). Several books and papers (e.g., Baayen
et al., 2008) are often credited with popularizing the use of the R package lme4 (Bates,
2005; Bates, Maechler, Bolker, & Walker, 2015) for applying LMEMs to psycholinguistic
data. More recently, promising new tools for fitting LMEMs have become available. For
example, MixedModels.jl, an LMEM package coded in the Julia programming language
(https://github.com/dmbates/MixedModels.jl). Additionally, LMEMs can be implemented
in a Bayesian framework (Sorensen, Hohenstein, & Vasishth, 2016) using the program‐
ming language Stan (Stan Development Team, 2016).

Evaluation Criteria
Three evaluation criteria – parameter estimation accuracy, non-convergence rate, and
model selection accuracy – were considered to evaluate different random effect struc‐
tures in LMEMs. We first assessed parameter estimate accuracy of both fixed and random
effects under the random effect structures included in the simulation study.
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The second criterion was non-convergence rate. Non-convergence occurs when the
model-fitting algorithm fails to reach a solution within the specified number of iterations
or stopping criteria. In real-world experiments, it is closely related to model complexity,
especially concerning the random effects structure; non-convergence is more likely to
occur as models become more complex, such as when additional parameters are estima‐
ted, including item order effects, extra random components.

The third evaluation criterion is model selection accuracy. Model selection means
selecting a statistical model from candidate models for interpretation of the results. The
candidate models should ideally be grounded in sound theory, and thus researchers
should develop several theory-based candidate models for comparison using objective
model-selection techniques (Vallejo, Tuero-Herrero, Núñez, & Rosário, 2014). In the
LMEM context, model selection aims to determine the fixed and random effects to
include in the model. However, the best method for selecting the random component
structure is particularly unclear (Barr et al., 2013; Yu, 2015).

Simulation Study

Design Factors
A simulation study was designed to investigate non-convergence rates and model se‐
lection accuracy in LMEMs. Two factors were varied to generate datasets from nine
models (Table 1) with various LMEM structures: (1) number of predictors and (2) random
component complexity. The numbers in Table 1 indicate the number of binary predictors
(one, two, or three) in the model.

Table 1

Summary of Examined Models

Random structure complexity

Number of predictors

1X 2X 3X

Random-intercept only (A) A1 A2 A3

No random correlations (B) B1 B2 B3

Maximal (C) C1 C2 C3

Additionally, the three random effects structures considered in this study – random-in‐
tercept-only model, random intercepts and slopes without random correlations in the
covariance matrix, and the maximal random effects model – are designated A, B, and
C, respectively. The letter designations follow the order of increasing model complexity,
i.e., the intercept-only model A was extended to create the no-correlation model B by
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adding by-subject and by-item random slopes. The introduction of correlations between
random intercepts and random slopes gives the maximal model C. These correlation
coefficients represent conceptually the pairwise relatedness between random intercepts
and slopes. They are part of the off-diagonal terms in the random effect covariance
matrices. In the three-predictor maximal (C3) model, the random correlation coefficients
add 56 parameters compared to the three-predictor no-correlation (B3) model.

The combination of number of predictors and random effect component letter creates
unique identifiers for each model. For example, the random-intercept-only model with
two predictors is labeled A2. In each of the nine simulation conditions and generating
models, both the number of subjects and items was 24, equivalent to the larger-sample
conditions in Barr et al. (2013).

Analysis
The simulation design included nine combinations of the levels of the two manipulated
factors. As in Barr et al. (2013), all predictors were binary and deviation coded (-0.5, 0.5).
Generated models with multiple predictors also included all possible two- and three-way
interactions in both fixed and random components. As in Barr et al. (2013), all fixed-ef‐
fect parameters were set to 0.8. The parameter sampling ranges from Barr et al. (2013)
were used to maximize comparability of results. However, for maximal models with more
than one fixed effect, independent random sampling of random effect variances and
correlation coefficients can produce covariance matrices that are not positive definite. To
circumvent this problem, we instead randomly sampled the eigenvalues of the random
component covariance matrix, then simulated the covariance matrix from these eigen‐
values (Varadhan, 2008). The eigenvalues were restricted such that the random effect
variances did not exceed 3, the upper limit of the variance sampling range used in the
non-maximal models. The parameters used in data simulation are summarized in Table 2.

Table 2

Parameter Values for Fixed Effect and Parameter Sampling Ranges for Random Effects

Parameter Description Value

β0 Grand-average intercept ~U(-3,3)

β Grand slopes X1, X2, etc 0.8

τ2 By-subject random effect variances ~U(0,3)

ω2 By-item random effect variances ~U(0,3)

λ Random effect matrix eigenvalues ~U(0,4)

ρ Correlation between by-subject and by-item random effects ~U(-1,1)

σ2 Residual error ~U(0,3)
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After generating 1,000 datasets from each of the nine models A1 through C3, each dataset
was fit with four models differing in complexity of the random component. The simplest
model had no random component, i.e., a fixed-effects-only regression model. This basic
model was included to provide an additional candidate for model selection, and so that
all LMEMs considered would have a simpler alternate model. In all fitted models, the
fixed-effect structure was specified such that the fitted model included the same number
of predictors and interactions as the model from which the data were generated.

From each fitted model, we recorded model convergence and the model’s AIC
(Akaike, 1974) and BIC (Schwarz, 1978). A model was recorded as not converging if
the model-fitting process returned a convergence warning message based on lme4’s
default convergence criteria; otherwise, the model was considered to have converged.
To formally test the effects of our experimental factors on convergence, we performed
logistic regression with model non-convergence as the outcome variable (1 = non-con‐
vergence, 0 = convergence). The number of predictors and classifications of fitted models
(i.e., underfit/true model/overfit) were also included as predictors to capture the possible
effect of the number of predictors and model mismatch on non-convergence.1

We also performed logistic regression to evaluate the effects of our experimental
factors on whether a fitted model was “selected” using AIC and BIC from the candidate
models (i.e., the model had the lowest IC value). In each regression analysis, the outcome
variable was a binary variable in which 1 represented selection using the particular IC.
For the analysis, a model was first fit containing model match, number of predictors (as
two dummy-coded variables), and generated model (as two dummy-coded variables) as
predictors.

All LMEMs were fit using the lmer function of the R package lme4 version 1.1-7
in R version 3.1.3 (R Core Team, 2013). All default settings of the function were used, in‐
cluding the REML estimation method, the optimizer BOBYQA with the default tolerance
value of 0.02, and default starting values.

Results

Accuracy of Parameter Estimation
Table 3 presents mean fixed-effects estimates and corresponding standard errors (SE) for
all nine generated models. The results show that the mean fixed-effects estimates were
close to the true values (0.8) under most conditions, indicating that they are robust to
changes in the random effects specification. This result is consistent with previous stud‐

1) The number of predictors in the simulation was included as two dummy-coded binary predictors, one-predic‐
tor (1 = model with 1 predictor) and three-predictors (1 = model with 3 predictors). Likewise, two dummy-coded
binary variables - Underfit (1 = fitted model less complex than generated model) and Overfit (1 = fitted model more
complex than generated model) - were also included as predictors.
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ies demonstrating robust fixed-effects estimates when the outcome variable is continuous
and normally distributed (McCulloch, Searle, & Neuhaus, 2008; Verbeke & Lessafre, 1997).

Table 3

Mean Fixed-Effects Estimates and SES for all Nine Generated Models

Model β0 (SE) β1 (SE) β2 (SE) β3 (SE) β4 (SE) β5 (SE) β6 (SE) β7 (SE)

A1 0.795 (0.073) 0.798 (0.014) - - - - - -

B1 0.788 (0.072) 0.778 (0.068) - - - - - -

C1 0.791 (0.072) 0.805 (0.077) - - - - - -

A2 0.802 (0.070) 0.800 (0.011) 0.802 (0.010) 0.799 (0.020) - - - -

B2 0.799 (0.073) 0.783 (0.071) 0.784 (0.072) 0.806 (0.075) - - - -

C2 0.791 (0.073) 0.795 (0.076) 0.808 (0.073) 0.787 (0.077) - - - -

A3 0.809 (0.069) 0.799 (0.008) 0.799 (0.007) 0.800 (0.007) 0.801 (0.014) 0.800 (0.014) 0.802 (0.015) 0.796 (0.030)

B3 0.790 (0.074) 0.808 (0.071) 0.798 (0.073) 0.799 (0.071) 0.780 (0.071) 0.798 (0.073) 0.806 (0.074) 0.803 (0.076)

C3 0.790 (0.073) 0.795 (0.079) 0.806 (0.074) 0.786 (0.075) 0.820 (0.074) 0.813 (0.077) 0.808 (0.072) 0.817 (0.074)

Figures 1, 2, and 3 display the mean estimates of each random component variance in the
nine generated models, with error bars representing SE. The expected value of all random
effect variances is 1.5, as the variances were randomly sampled from U(0,3). The Figures
reveal that the random effect variances (τ2 and ω2) were also well recovered.

Figure 1

The Mean Estimates of Random Effect Variances for All 1-Predictor Generated Models (A1, B1, and C1), Error Bars
Represent 1 Standard Error (SE)
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Figure 2

The Mean Estimates of Random Effect Variances for All 2-Predictor Generated Models (A2, B2, and C2), Error Bars
Represent 1 Standard Error (SE)

Figure 3

The Mean Estimates of Random Effect Variances for All 3-Predictor Generated Models (A3, B3, and C3), Error Bars
Represent 1 Standard Error (SE)
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Figure 4 shows that the average values of correlations between random intercepts and
random slopes are all close to zero and the distributions nearly span the full range of
possible values (-1 to 1), indicating that the data was successfully generated with random
effect correlations.

Figure 4

Distribution of Model Estimates for All 28 by-Subject (Left) and by-Item (Right) Random Correlation Coefficients

Model Non-Convergence Rates
Table 4 summarizes the model non-convergence rate for each combination of generated
model, fitted model, and number of predictors. Each number represents the proportion of
simulation runs in the corresponding category that did not reach convergence. None of
the random-intercept-only models (A1, A2, and A3) fit to data experienced non-conver‐
gence. For no-correlation models (B1, B2, and B3), non-convergence rates were relatively
low, ranging from 0 to .023. However, there is a steady increase in the non-convergence
rate of B models fit to A datasets with increasing number of predictors, from .002 in the
one-predictor condition to .023 in the three-predictor condition. Some non-convergence
occurred in all conditions fitting the maximal (C) model, with a dramatic increase in
non-convergence for C models fit to A datasets as the number of predictors increased.

Park, Cardwell, & Yu 101

Methodology
2020, Vol.16(2), 92–111
https://doi.org/10.5964/meth.2809

https://www.psychopen.eu/


Table 4

Model Non-Convergence Rates for All Combinations of Generated and Fitted

Generated Model

Fitted Model

A1 B1 C1 A2 B2 C2 A3 B3 C3

A1 0 0.002 0.008

B1 0 0 0.011

C1 0 0.002 0.001

A2 0 0.013 0.331

B2 0 0 0.016

C2 0 0 0.006

A3 0 0.023 0.954

B3 0 0.004 0.150

C3 0 0 0.045

Each pair of generated and fitted models can be classified as underfit, overfit, and true
models. The diagonal of the table corresponds to fitting the “true model” (i.e., the fitted
model is the same as the generated model). Non-convergence rates are relatively low
in the true model scenarios, despite a slight increase as additional predictors are added.
Below the diagonal, which represents when models were underfit (i.e., the model was
less complex than the data), non-convergence only occurred twice, so the non-conver‐
gence rate is effectively zero regardless of the number of predictors. Almost all cases of
non-convergence are above the diagonal, representing when models were overfit (i.e.,
the model was more complex than the data). Overfit models suffered from higher non-
convergence rates than other model pairs with the same number of predictors, and also
displayed a trend of dramatically increasing non-convergence rates with the inclusion
of additional predictors. When displayed visually (Figure 5), it is even more apparent
that non-convergence occurs most often for maximal models with multiple predictors,
especially when overfitting.
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Figure 5

The Model Non-Convergence Rates of All 27 Combinations of Generated and Fitted Models

Note. The letters in grey boxes at the top of each panel represent the generated models,
while the letters along the X-axis correspond to the fitted models. The different lines
represent the number of predictors in the model (1, 2, or 3).

In Table 4, the upper left block summarizing the one-predictor models corresponds to
the models used in Barr et al. (2013). While the authors did not formally investigate
non-convergence, they mentioned that convergence rates exceeded 99% in all experi‐
mental conditions, with the lowest rate being 99.61% convergence. Thus, our observed
non-convergence rates in the one-predictor models are consistent with those observed
by Barr et al. (2013). It is only in the two- and three-predictor conditions, which go
beyond the scope of Barr et al.’s study, that we observed a dramatic increase in model
non-convergence. Specifically, when data generated from A models were fit with a C
model, representing substantial model overfitting, the rates of non-convergence were
33.1% and 95.4% in the two- and three-predictor conditions respectively.

Logistic regression analysis reveals that both the number of predictors and the rela‐
tionship between the generated and fitted models are independently significant predic‐
tors of model non-convergence. Models are more likely to result in non-convergence
when overfit, as compared to the true model, by a factor of nearly 50 (Z = 11.50, p
< .001). Non-convergence was also significantly more likely for three-predictor models
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(Z = 4.85, p < .001) and significantly less likely for one-predictor models (Z = -13.38, p
< .001) in comparison to two-predictor models, reflecting the observed trend of increas‐
ing non-convergence as the number of predictors increased.

Model Selection Using Information Criteria
In addition to model convergence, another research concern of this paper is using in‐
formation criteria (AIC and BIC) to select the best-fitting model. In each replication,
four models differing only in complexity of the random-effects component were fit to
a dataset, one of which corresponded to the “true” model. Theoretically, the true model
should be the best fitting of the four candidate models. Figure 6 displays the proportion
of simulation runs in which the true model was selected (i.e., had the lowest IC value)
among the four candidate models using AIC and BIC (hereafter “true model selection
rate”).

Figure 6

True Model Selection Rate Using AIC and BIC for All Nine Generated Models

Using AIC, the true model selection rate was generally high (> 85%) for random-inter‐
cept-only (A) and no-correlation (B) models, with the rate for models A3 and B3 reaching
100% and 99.9% respectively. For maximal (C) models, the rate was lower, ranging from
57.3% to 75.3%. The overall true model selection rate for AIC was 85.8%. Using BIC, the
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true model selection rate was uniformly high (> 99%) for A and B models. However, the
rate for C models was substantially lower, ranging from 21% (C1) to 0% (C3). When the
true model was not selected in C model conditions (except two simulation runs in the
C1 condition), the corresponding B model was selected by BIC. The overall true model
selection rate for BIC was 69.1%. So overall, AIC and BIC selected the true model in the
majority of cases, otherwise selecting the next simplest model.

Logistic regression was also implemented to predict model selection using AIC. A
logistic regression model was first fitted containing model match, number of predictors
(as two dummy-coded variables) and generated model (as two dummy-coded variables)
as predictors. The saturated model containing model match and number of predictors
as parameters was subjected to model simplification via stepwise Likelihood-ratio test
(LRT), resulting in the final model with significant effects for Model Match, one-Predic‐
tor, and their interaction (Table 5).

Table 5

Results of the Logistic Regression Analysis Predicting Model Selection Using AIC

Variable β (SE) 95% CI (Lower) Odds 95% CI (Upper)

Model Match 4.98 (0.06) 130.54 146.16*** 163.94

One-Predictor 0.74 (0.06) 1.87 2.09*** 2.34

Model Match × One-Pred -1.54 (0.08) 0.18 0.21*** 0.25
Note. R 2 = .68 (Nagelkerke); R 2 =.49 (Cox & Snell).
***p < .001.

The final model includes model match and one-predictor and their interaction. Model
Match is the primary variable that predicts AIC selection, with the true model being
more likely to be selected by a factor of 146.16 (Z = 85.80, p < .001). The significant nega‐
tive coefficient of the Model Match × One-Predictor interaction indicates that the true
model was significantly less likely to be selected by AIC when the model only contains
one predictor (Z = -18.28, p < .001). In other words, AIC was less accurate at selecting the
true model in one-predictor conditions compared to two-predictor conditions.

The logistic regression results for BIC differed more starkly based on generated model
than by number of predictors. Therefore, model match and generated model were used
as predictors. The saturated model was subjected to model simplification via stepwise
LRT, resulting in the final model containing Model Match, C-Generated (a binary dummy
variable indicating whether the data were generated from a maximal model), and the
Model Match × C-Generated interaction (Table 6).
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Table 6

Results of the Logistic Regression Analysis Predicting Model Selection using BIC

Variable β (SE) 95% CI (Lower) Odds 95% CI (Upper)

Match 13.82 (0.49) 413688 1001297*** 2826149

C-Generated 7.22 (0.44) 629.54 1364.12*** 3560.81

B-Generated 0.12 (0.49) 0.430 1.13 3.00

Match × C-Gen -16.14 (0.49) 0.000 0.000*** 0.000
Note. R 2 = .82 (Nagelkerke); R 2 = .59 (Cox & Snell).
***p < .001.

The true model is extremely unlikely to be selected for C datasets (Z = -32.79, p < .001),
reflecting the extremely low rates of true model selection observed for maximal (C)
datasets. Since the model includes an interaction, coefficients for the single predictors
can be interpreted as the effect when the variable with which it interacts is 0. Therefore,
the coefficient of Model Match represents the effect of model match for random-inter‐
cept-only (A) and no-correlation (B) datasets, indicating that BIC is almost guaranteed to
select the true model in the A and B model conditions (Z = 28.39, p < .001). Finally, the
significant coefficient of C-Generated represents the very high odds that BIC will select a
model other than the true model in the case of C datasets (Z = 16.49, p < .001).

Conclusion and Discussion
Barr et al. (2013) has been quite influential in the field of psycholinguistics. The authors
conducted a simulation study generating data from a model with one binary predictor
and a continuous outcome variable, concluding that the maximal model should be the
“gold standard” when using LMEMs for confirmatory hypothesis testing because it ach‐
ieved the Type I error rate closest to .05 under all conditions, while also having greater or
similar corrected Power (a metric devised by the authors) compared to other methods.

The primary differences between our study and Barr et al. (2013) are the number of
predictors in the generated model and the dependent variables of interest. While Barr et
al. used a one-predictor model, we generated data from one-, two-, and three-predictor
models. Furthermore, whereas Barr et al. (2013) compared fitted models based on Type
I error and Power, we recorded model non-convergence, AIC, and BIC. Our results are
therefore not directly comparable to those of Barr et al., and we cannot contest their
findings concerning Type I error and Power in the models included in both studies.
Rather, the goal of the present study is to investigate whether their recommendations can
be generalized to more complex conditions by investigating a potential obstacle to their
implementation (non-convergence) and a potential alternative (IC-based model selection)
that minimizes non-convergence caused by overfitting.
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The results showed that overall non-convergence rates increase with the addition
of predictors. There was no clear pattern in non-convergence rates under the one-pre‐
dictor conditions. However, when the simulation scenarios were expanded to include
two and three predictors, two intertwined patterns of model non-convergence emerged.
Furthermore, a significant effect of number of predictors was found in logistic regression
analysis of the non-convergence data, with models with fewer predictors less likely to
experience non-convergence.

Upon closer inspection of the non-convergence rates within models containing the
same number of predictors, another pattern emerges: when a dataset is fit with its true
model, non-convergence is very infrequent. In underfit models, there is essentially no
non-convergence. In overfit models, however, non-convergence is considerably more
common. This pattern of non-convergence is reflected in the logistic regression analysis
by the significant effect of model match, showing that a true model is significantly less
likely to suffer non-convergence.

The two patterns of non-convergence also form an interaction. There is no change
in the non-convergence rate of underfit models as the number of predictors increases.
For true models, there is a small increase in non-convergence with additional predictors.
For overfit models, there is a more dramatic increase in non-convergence rates with
increasing numbers of predictors. This significant interaction between model overfit and
number of predictors is relevant to the recommendations of Barr et al. (2013) because
the maximal model recommended therein cannot logically be underfit if it includes all
relevant variables and the maximal random-effects structure. The maximal model likely
overfits the data in many cases, and over-fitted models suffer the most from model
non-convergence. Our findings thus support the application of the keeping maximal
model with zero correlation strategy (Barr et al., 2013; Barr, 2013) in cases where a
maximal model does not converge. Our results show that applying this strategy success‐
fully controls the non-convergence rate even when a model is overfitted. Specifically,
when fitting to data generated from the three-predictor random intercept model (A3),
the suggested strategy (i.e., fitting B3 instead of C3 model) would drastically reduce the
non-convergence rate from 95.4% to 2.3%.

Our results show that, overall, AIC selected the true model in 86% of simulated cases,
while the success rate for BIC is 69%, supporting that AIC is overall more consistently
accurate, with increasing accuracy as the number of predictors increased. However,
AIC’s true model selection rate was lower in maximal model conditions.

BIC’s true model selection rate displayed a different pattern; BIC was extremely accu‐
rate at selecting the true model for data generated from random-intercept-only models
and no-correlation models, with rates for these conditions all exceeding 99%. Only in the
maximal model conditions did BIC perform poorly.

The issue of non-convergence presents a major obstacle to implementing the advice
of Barr et al. (2013) to fit the LMEM with the maximal random-effects structure. Non-

Park, Cardwell, & Yu 107

Methodology
2020, Vol.16(2), 92–111
https://doi.org/10.5964/meth.2809

https://www.psychopen.eu/


convergence is especially problematic when the model overfits the data and includes
multiple predictors. However, the back-up strategy proposed by Barr et al. (2013) pro‐
vides a helpful solution when the maximal model fails to converge. As models with
multiple predictors and higher-order interactions are utilized frequently in social science
studies, the recommendation of constraining random-component correlations to zero
while retaining all random slopes in the model will improve model convergence. Fur‐
thermore, recent software for LMEM such as MixedModels.jl and Bayesian LMEM using
Stan also present alternative ways to circumvent the problem of non-convergence when
fitting the maximal model.

In this study, AIC and BIC have proven to be useful tools for selecting the optimal
random-effects structure under different conditions. Specifically, AIC performs well
when the random-effects structure of the fitted model is more complex, while BIC is
preferable under conditions when the fitted model is relatively simple. These IC are
usually in the default output of most statistical software for LMEM, and are thus a
realistic means for selecting the best-fitting model.

Crucially, when fitting LMEMs, studies suggest that a priori knowledge about the
random-effects structure is important for gauging the potential risk of overfitting and
non-convergence, even though the true random-effects structure is usually ‘‘unknown.’’
We suggest paying careful attention to the methodological literature on current LMEM
best practices, substantive knowledge on the research topic, as well as information from
visualization techniques (e.g., residuals pattern) and model criticism, as these would
help in making a more confident decision concerning the appropriate random-effects
structure.

There are limitations to the present study, which should be considered when weigh‐
ing our recommendations. First, the generated simulation conditions may not reflect the
wide array of scenarios in empirical studies, and thus researchers should interpret the
results with caution and not overgeneralize the findings.

Second, we did not investigate Type I error rate and Power, so we cannot say if
Barr et al.’s findings of the maximal model’s superior performance on these metrics
generalizes to models containing more predictors. Furthermore, it is unclear whether our
method for generating positive definite random-effects covariance matrices was adequate
in approximating the maximal model. Finally, we only considered model selection using
AIC and BIC in isolation, without considering other ICs or using multiple ICs simultane‐
ously to select a model. Future research could rectify these shortcomings.
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