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Abstract
Researchers often apply moderation analyses to examine whether the effects of an intervention 
differ conditional on individual or cluster moderator variables such as gender, pretest, or school 
size. This study develops formulas for power analyses to detect moderator effects in two-level 
cluster randomized trials (CRTs) using hierarchical linear models. We derive the formulas for 
estimating statistical power, minimum detectable effect size difference and 95% confidence 
intervals for cluster- and individual-level moderators. Our framework accommodates binary or 
continuous moderators, designs with or without covariates, and effects of individual-level 
moderators that vary randomly or nonrandomly across clusters. A small Monte Carlo simulation 
confirms the accuracy of our formulas. We also compare power between main effect analysis and 
moderation analysis, discuss the effects of mis-specification of the moderator slope (randomly vs. 
non-randomly varying), and conclude with directions for future research. We provide software for 
conducting a power analysis of moderator effects in CRTs.
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A critical consideration in the evaluation of treatment programs is whether those treat
ment effects are moderated by context or individual characteristics. As a result, an 
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important consideration that emerges in the planning stage is how to design studies that 
have the sufficient power to detect such moderation if it exists. Although there has been 
a steady pace of advancement in the design of moderation studies in cluster randomized 
trials (CRTs; Bloom, 2005; Dong, Kelcey, & Spybrook, 2018; Mathieu, Aguinis, Culpepper, 
& Chen, 2012; Moerbeek & Maas, 2005, Spybrook, Kelcey, & Dong, 2016), extant studies 
are largely fragmented in that they normally consider only isolated aspects of the design 
rather than the full assembly of design considerations that are typically encountered in 
planning such a study. For instance, with the exception of a few studies (e.g., Dong, 
Kelcey, & Spybrook, 2018), prior literature regarding the estimation of statistical power 
for moderation has often limited its analysis to only binary moderators or has failed 
to include additional covariates (i.e., “unconditional designs”; Bloom, 2005; Spybrook, 
Kelcey, & Dong, 2016). Given the widespread presence of moderators that are continuous 
in nature (e.g., pretest) and the widespread use of covariate-adjusted designs to improve 
power and reduce potential bias due to unhappy randomization, it is critical to provide 
a more general set of tools for power analyses that can readily accommodate such 
variations (e.g., Bloom, 2006; Bloom, Richburg-Hayes, & Black, 2007; Dong & Maynard, 
2013; Moerbeek, 2006; Moerbeek, van Breukelen, & Berger, 2001; Raudenbush, Martinez, 
& Spybrook, 2007).

Similarly, current multilevel literature is limited in the guidance it offers concern
ing statistical power when assessing the extent to which treatment effects vary across 
subgroups defined by an individual-level variable. More specifically, assessments of indi
vidual-level moderators are typically operationalized through cross-level interactions be
tween the cluster-level treatments and individual-level moderators (e.g., child’s gender). 
The result is that the effect of the individual-level variable (i.e., as quantified through the 
coefficient) can be regarded as randomly or nonrandomly varying across clusters. The 
nonrandomly varying slope approach assumes that the gender achievement gap does not 
vary randomly across schools but rather only as an explicit function of cluster-level vari
ables (e.g., the individual-level slope or coefficient for gender varies across clusters only 
as a function of the treatment status). The randomly varying slope or coefficient model 
addresses the same moderation question, but allows for the possibility that the gender 
achievement slope or coefficient randomly varies across schools even after accounting 
for the treatment effect (e.g., unexplained heterogeneity across schools in terms of the 
relationship between gender and the outcome). The choice between these approaches 
ultimately depends on prior knowledge of the effects of the moderator variables and 
the theory underlying the intervention. However, it is important that design frameworks 
consider both of these approaches and the implications of designing a study based on one 
of the frameworks.

Our review of the literature identified only two methodological studies that have ex
amined the power for the randomly varying slope model in moderation analysis (Dong, 
Kelcey, & Spybrook, 2018; Mathieu, Aguinis, Culpepper, & Chen, 2012). In addition, there 
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are no studies that have examined the trade-offs between the design assumptions, the 
effects on power when the slope is mis-specified (randomly vs. non-randomly varying 
slope) or the potential inaccuracies that accumulate in power formulas under such mis
specifications. A mis-specification of the slope term potentially undermines the accuracy 
of the standard error estimates for the moderator effect, which may result in incorrect 
estimates of statistical power. Investigation of the effects of a mis-specified slope can 
help us understand how much the bias on power arises due to either type of mis-specifi
cation, helps develop potential strategies to mitigate bias due to such mis-specifications, 
and ultimately to design moderation studies that are robust and well-positioned to detect 
such effects.

A key prior contribution to the literature with regard to designing multilevel modera
tion studies was Mathieu et al. (2012). Mathieu et al. (2012) conducted a comprehensive 
Monte Carlo simulation to estimate the statistical power to detect cross-level interaction 
effects in multilevel modeling. However, Mathieu et al. (2012) only studied two-level 
models without including covariate adjustment on additional covariates separate from 
the moderator, and did not provide closed form formulas to estimate the statistical power, 
minimum detectable effect size difference (MDESD) between moderator subgroups, or 
minimum required sample size to detect meaningful effects. Dong, Kelcey, and Spybrook 
(2018) extended this line of inquiry by developing the formulas to calculate statistical 
power and MDESD by considering the levels of the moderators at which they have 
been assessed, the distribution of moderators (binary vs. continuous), the slopes of lower 
level moderators (random vs. non-randomly varying), and the level of covariates for 
three-level CRTs. However, the scope, developments and analyses in Dong, Kelcey, and 
Spybrook (2018) did not cover two-level CRTs.

The purpose of this study is to consolidate and extend the literature on power 
analyses for moderators by developing power formulas that accommodate categorical 
or continuous moderators, models with or without covariates, same or cross-level moder
ator effects, and nonrandomly varying or randomly varying slopes in two-level CRTs. 
We then advance the practical application of these results by examining the effects 
on power when the slope is mis-specified (randomly varying slope vs. non-randomly 
varying slope) to outline the sensitivity of power analysis to such mis-specifications. 
Because a team planning a CRT may be interested in the power for a moderator effect of 
a given magnitude or the MDESD given sample size and the desired power, we provide 
the power formulas as well as the MDESD calculations and their corresponding confi
dence intervals. We also created a Microsoft Excel-based function, an R function, and 
an R shinny app to assist researchers conducting power analyses for various moderator 
effects1.

1) The software can be accessed from the website: https://www.causalevaluation.org/
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The paper is organized as follows. We present the formulas for statistical power 
and the MDESD and its confidence intervals for the moderator variable at level 2 and 
subsequently for a moderator at Level 1. In each case, we start with a continuous 
moderator and extend it to a binary moderator. We also conduct a small Monte Carlo 
simulation to assess the empirical validity of the formulas in finite sample sizes. We then 
compare the statistical power and MDESD for moderation effects under different design 
considerations followed by a comparison of the MDES for main treatment effects and 
the MDESD for the moderation effects. Finally, we discuss the implications of planning 
studies to detect moderator effects in two-level CRTs and consider directions for future 
work.

Statistical Power and Minimum Detectable Effect 
Size Difference in Two-Level CRTs

We present the key results of the formulas for statistical power and the MDESD and 
its confidence intervals for different moderator effects in the framework of a two-level 
hierarchical linear model (HLM; Raudenbush & Bryk, 2002). The detailed derivations are 
in Supplementary Materials SM1.

Two-Level CRTs With a Moderator at Level 2
We begin with a two-level design that randomly assigns groups/clusters (e.g., schools) to 
the treatment or control condition and conditions on a cluster-level covariate (e.g., the 
percentage of students eligible for free or reduced-price lunch) and probes a cluster-level 
moderator (e.g., school size). The data are generated using a two-level hierarchical linear 
model (Raudenbush & Bryk, 2002):
Level 1:

Y ij = β0j + β1j X ij − X .j + rij, rij N 0, σ X
2 (1)

Level 2:

β0j = γ00 + γ01Sj + γ02Tj + γ03 Sj × Tj + γ04Wj + γ05X .j + u0j, u0j N 0,τ S,W ,X , T
2

β1j = γ10
(2)

Y ij is the outcome measure for observation i (i = 1,…,nj) in cluster j (j = 1,…,J ), Tj is a 
binary variable indicating the treatment status coded as ± ½, Sj is a level-2 continuous 
moderator, (Sj N 0,Ss2 ), X ij is a Level 1 covariate and X ⋅j is the sample group mean, 
and Wj is a Level 2 covariate (Wj N 0,Sw2 ). rij is the Level 1 random error, rij N 0,σ X

2 , 
and u0j is the random effect for the intercepts, u0j N 0,τ S,W ,X , T

2 . As in the single level 
regression analysis, centering variables yields desirable statistical properties (Aiken & 
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West, 1991), group-mean centering is used in Equation 1 to gain some computational 
and derivational advantages. Note that in random intercept models, parameter estimates 
under group-mean centering, grand-mean centering, and no centering can be equated 
using simple transformations (e.g., Kreft, de Leeuw, & Aiken, 1995). γ02 and γ03 represent 
the main effect of treatment and moderator effect, respectively.

We assume that the data are balanced such that each cluster has the same number of 
observations (nj = n). However, we do not assume the clusters are equally allocated to 
treatment conditions. Although equal allocation of clusters to the treatment and control 
conditions typically yields the most sensitive design (i.e., highest power to detect main 
and moderator effects), such balance is not always possible in reality. For this reason, we 
considered a more flexible approach that introduces P as the proportion of total clusters 
that are randomly assigned to the treatment group.

We can test γ03 using a t-test. Assuming the alternative hypothesis is true, the 
test statistic follows a non-central t-distribution, T’, and the standardized noncentrality 
parameter is:

λ S,W ,X = δ2c2 P 1 − P J − 6
1 − R22 ρ + 1 − R12 1 − ρ /n (3)

where J  is the number of total clusters, n is sample size for every cluster (e.g., number of 
students per school), P is the proportion of total clusters that are randomly assigned to 
the treatment group. R22 is the proportion of variance at level 2 that is explained by the 
Level 2 predictors (Sj, Wj, Tj, X ⋅j, and (Sj × Tj)): R22 = 1 − (τ S,W ,X , T

2 )/τ2, where τ2 is the un
conditional Level 2 variance; R12 is the proportion of variance at level 1 that is explained 
by the Level 1 predictor (X ij − X .j), R12 = 1 − σ X

2 /σ2, where σ2 is the unconditional Level 
1 variance. ρ is the unconditional intraclass correlation, ρ = τ2

τ2 + σ2 . δ2c is the standardized 
coefficient of (Sj × Tj), (where the subscript indicates the use of a Level 2 continuous 
moderator) such that δ2c = γ03 SS2/(τ2 + σ2), where SS2 is the variance of Sj.

The statistical power for a two-sided test is (note t0 = t1 − α/2,J − 6):
1 − β = 1 − P T ′ J − 6, λ S,W ,X < t0 + P T ′ J − 6, λ S,W ,X ≤ − t0  where the de

grees of freedom2 is v = J − 6.
The MDESD for the standardized coefficient is:

MDESD δ2c = Mv
1 − R22 ρ + 1 − R12 1 − ρ /n

P 1 − P J − 6
(4)

2) Generally, v = J − g* − 4, where g* is the number of Level 2 covariates (excluding the treatment variable, modera
tor, and moderator*treatment).
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where, Mv = tα + t1 − β for one-tailed tests with v degrees of freedom (v = J − 6), and 
Mv = tα/2 + t1 − β for two-tailed tests.

The 100*(1−α)% confidence interval for MDESD δ2c  is given by:

(Mv ± tα/2)
1 − R22 ρ + 1 − ρ 1 − R12 /n

P 1 − P J − 6
(5)

When the moderator, Sj, is a binary variable with a proportion of Q in one moderator 
subgroup and (1-Q) in another moderator subgroup, the standardized noncentrality pa
rameter is:

λ S,W = δ2b2 P 1 − P Q 1 − Q J − 6
1 − R22 ρ + 1 − R12 1 − ρ /n (6)

where δ2b is the effect size (standardized mean difference), δ2b = γ03/ τ2 + σ2.
Table 1 presents the summary of standardized noncentrality parameters, MDESD 

and 100*(1−α)% confidence intervals, and degrees of freedom for the t-test for various 
two-level moderation models. The above results are presented under Model “CRT2-2”, 
which stands for a two-level CRT with a Level 2 moderator and flexible treatment 
allocation. Note that we assume the fixed slope for covariate X ij − X .j  in Equation 2 for 
the purpose of simplicity. Because the moderation term is in the equation for the Level 
2 intercept, the standard error of the moderator effect is not affected by the slopes of 
other Level 1 covariates, hence, the power and MDESD formulas apply to the model with 
random slope for X ij − X .j .

Two-Level CRTs With a Moderator at Level 1
Under the same design, we next consider individual-level moderators allowing for two 
different specifications: 1) the randomly varying slope model, which assumes that the 
effect of the Level 1 moderator varies by the treatment status and varies randomly across 
the Level 2 units, and 2) the nonrandomly varying slope model, which assumes that the 
effect of the Level 1 moderator varies by the treatment status but does not vary further 
across the Level 2 units.

The Randomly Varying Slope Model

The randomly varying slope hierarchical linear model, including one treatment variable, 
Tj, and one Level 1 moderator, Sij (Sij N 0, Ss2 ), with a random slope is:
Level 1:

Y ij = β0j + β1jSij + rij, rij N (0, σ S
2 ) (7)
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Level 2:

β0j = γ00 + γ01Tj + u0j
β1j = γ10 + γ11Tj + u1j

, 
u0j
u1j

N 0
0 ,

τ00 T
2 τ01 T
τ10 T τ11 T

2 (8)

The Level 2 residuals for the intercept, u0j, and the slope, u1j, conditional on the treatment 
status, have a multivariate normal distribution with means of 0. τ00 T

2  and τ11 T
2  are the 

variances, and τ01 T  is the covariance for u0j and u1j conditional on the treatment status. 
The parameter of interest for the moderator effect is γ11. Note that in the context of 
CRTs, we treat the treatment status (Tj) as the focal predictor and Sij as the moderator, 
and interpret γ11 as the treatment effect of Tj depending on Sij. We may also interpret γ11
as the effect of Sij on the outcome depending on the treatment status (Tj).

We test the moderator effect (γ11) using a t-test. Based on the formula for the variance 
of the estimated regression coefficients of a Level 1 variable with random slope (Snijders, 
2001, 2005), we can derive the standardized noncentrality parameter as below:

λ S =
δ1c2 P(1 − P)J

(1 − R2T2 )ρω + (1 − R12)(1 − ρ)/n (9)

ρ is the unconditional intraclass correlation, ρ = τ002
τ002 + σ2 , where σ2 and τ002  are the varian

ces of residuals for Level 1 and Level 2 intercept in the unconditional model without 
any predictors. R12 is the proportion of variance at Level 1 that is explained by the 
Level 1 moderator (Sij): R12 = 1 − σ S

2

σ2 . R2T2  is the proportion of the random slope (for S) 
variance explained by the treatment indicator (Tj): R2T2 = 1 − τ11 T

2

τ112 . ω is the proportion of 
the variance (τ112 ) between clusters on the effect of Sij to the between-cluster residual 
variance (τ002 ) when τ002  > 0 under the multilevel modeling framework, ω = τ112

τ002 . ω indicates 
the effect heterogeneity for the Level 1 moderator (Sij) across Level 2 units (clusters) in 
the model that is not conditional on the treatment variable, Tj. P is the proportion of 
clusters in the treatment group. δ1c is the standardized coefficient, δ1c = γ11 SS2/(τ002 + σ2), 
where SS2 is the variance of Sij.

The statistical power for a two-sided test is (note t0 = t1 − α/2,J − 2): 
1 − β = 1 − P[T ′(J − 2,λ S) < t0] + P[T ′(J − 2,λ S) ≤ − t0], where the degrees of freedom 
is v = J − 2.

The MDESD for the standardized coefficient is:

MDESD( δ1c ) = Mv
(1 − R2T2 )ρω + (1 − R12)(1 − ρ)/n

P(1 − P)J (10)

where, Mv = tα + t1 − β for one-tailed tests with v degrees of freedom (v = J − 2), and 
Mv = tα/2 + t1 − β for two-tailed tests.

The 100*(1−α)% confidence interval for MDESD( δ1c ) is given by:
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(Mv ± tα/2)
(1 − R2T2 )ρω + (1 − R12)(1 − ρ)/n

P(1 − P)J (11)

The Nonrandomly Varying Slope Model

In the nonrandomly varying slope model the Level 1 model is the same as that in 
Equation 7. However, the Level 2 model is:

β0j = γ00 + γ01Tj + u0j
β1j = γ10 + γ11Tj

, u0j N (0,τ T
2 ) (12)

The standardized noncentrality parameter is:

λ S =
δ1c2 P(1 − P)Jn
(1 − R12)(1 − ρ) (13)

The degrees of freedom3 is v = J n − 1 − 2.

Extension to Binary Moderator

When the Level 1 moderator, Sij, is a binary variable with a proportion of Q in one mod
erator subgroup and (1 - Q) in another moderator subgroup, the noncentrality parameters 
(standardized) for the randomly varying slope model and the nonrandomly varying slope 
model are:

λ S =
δ1b2 P(1 − P)J

(1 − R2T2 )ρω + (1 − R12)(1 − ρ)/(nQ(1 − Q)) (14)

and

λ S =
δ1b2 P(1 − P)Q(1 − Q)Jn

(1 − R12)(1 − ρ) (15)

where δ1b is the effect size (standardized mean difference), δ1b = γ11/ τ002 + σ2.
The standardized noncentrality parameters, the MDESD for the standardized regres

sion coefficient, and the 100*(1−α)% confidence interval for MDESD( δ1c ) for a continu
ous Level 1 moderator with randomly varying slope and nonrandomly varying slope 
are presented under Models “CRT2-1R” and “CRT2-1N” in Table 1. The MDESD for the 
standardized mean difference, and the 100*(1−α)% confidence interval for MDESD( δ1b )

3) Generally, v = J (n − 1) − 2 − g*, where g* is the number of Level 1 covariates (excluding the moderator).

Power Analyses for Moderator Effects 100

Methodology
2021, Vol. 17(2), 92–110
https://doi.org/10.5964/meth.4003

https://www.psychopen.eu/


for a binary Level 1 moderator with randomly varying slope and nonrandomly varying 
slope are presented under Models “CRT2-1R” and “CRT2-1N” in Table 1.

Monte Carlo Simulation
To validate the standard error and power formulas we derived, we conducted a small 
Monte Carlo simulation. The simulation results provided initial but limited evidence of 
the close correspondence on the standard error and power (or Type I error) between our 
formulas and the empirical distribution from the simulation when the analytic model was 
correctly specified. The detailed procedures and results are presented in Supplementary 
Materials SM2.

We note one particular finding that emerges from the results of the simulation. For a 
Level 1 moderator, we set the effect heterogeneity (ω) for the Level 1 moderator across 
Level 2 units varied from 0 to 0.8. For each dataset, we used both the randomly varying 
slope model and the nonrandomly varying slope model to estimate the moderator effects. 
When ω is set as 0, the nonrandomly varying slope model is the correctly specified 
analytic model while the randomly varying slope model is mis-specified analytic model. 
In these simulations, the randomly varying slope model tended to slightly over-estimate 
the standard error, but the coverage rate of 95% CI is as good as the nonrandomly vary
ing slope model. Comparing with the nonrandomly varying slope model, the randomly 
varying slope model produced slightly smaller power. When ω is set as 0.2, 0.4, 0.6, 
and 0.8, the nonrandomly varying slope model is the mis-specified analytic model while 
the randomly varying slope model is the correctly specified analytic model (see Tables 
S1-S24 in Supplementary Materials SM2). In these simulations, the randomly varying 
slope model produced closer estimates of the standard error and the coverage rate of 95% 
CI than the nonrandomly varying slope model. The nonrandomly varying slope model 
produced bigger bias in the standard error estimates and worse coverage rage of 95% 
CI when ω increases. Bias in the standard error estimates for mis-specified models are 
consistent with LaHuis et al.’s (2020) findings. Figure 1 below clearly demonstrates the 
relationship between the standard error (SE) and the coverage rate of 95% CI with the 
heterogeneity coefficient (ω).

Discussion: Comparisons Among Moderation 
Designs and Main Effect Designs

Contrasting Moderation Designs
As in the power analysis of the main treatment effect, the power of the moderator effect 
in two-level CRTs is associated with the noncentrality parameter (λ) and the critical 
t value (t0). The critical t value (t0) is associated with the degrees of freedom (v), the 
Type I error rate (α), and the choice of a one-tailed or two-tailed test. The noncentrality 
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parameter (λ) is a ratio of the moderator effect estimate to its standard error (SE), which 
is a function of the total number of clusters (J ) and the number of individuals per cluster 
(n), the proportion of clusters in the treatment group (P), the proportion of variance at 
Level 2 explained by covariates (R22), and the unconditional intraclass correlation (ICC).

If the moderator is a binary variable, the power is also associated with the proportion 
(Q) of the sample in one moderator subgroup. The MDESD using the standardized mean 
difference for the binary moderators is Q(1 − Q) times larger than the MDESD using the 
standardized regression coefficient for the continuous moderators when the moderators 
are at Level 2 or Level 1 with the nonrandomly varying slopes. When the sample is 
equally allocated between the moderator subgroups (Q = 0.5), the design has the biggest 
power (smallest MDESD) among all options of Q that ranges from 0 to 1.

Figure 1

Standard Error (SE) and Coverage Rate of 95% CI vs. Heterogeneity Coefficient

Note. Under the assumptions: ρ = 0.2, J  = 40, n = 20, R12 = 0.4, R2T2  = 0.07, P = 0.5, Q = 0.5, effect size difference = 
0.2.
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If the moderator is at Level 1 with a randomly varying slope, the power is also associ
ated with the effect heterogeneity (ω) for the Level 1 moderator across Level 2 units. The 
MDESD increases and power decreases as ω increases. The results for the nonrandomly 
varying slope model for the Level 1 moderator do not contain the factor that is related to 
ω. The degrees of freedom also differ depending on whether it is a random slope model 
or not. The degree of freedom (v) is J n − 1 − 2 for the nonrandomly varying model 
while v = J − 2 for the randomly varying slope model. This is because the interaction 
term of the treatment and moderator variables varies among the Level 1 units within 
each Level 2 cluster for the nonrandomly varying model, but the Level 2 random term 
(i.e., u1j in Equation 8) associated with the coefficient of the moderator in the randomly 
varying slope model varies among the Level 2 clusters. As a result, when the estimation 
models are correctly specified for the real data, the model with a varying moderator 
slope will yield less precise estimates than the model with a constant moderator slope. 
The differences for the power and MDESD between the two models decreases when the 
number of clusters (J ) increases and the effect heterogeneity (ω) decreases.

Using the mis-specified analytic models for study design will result in either overesti
mating or underestimating the power. Specifically, if the randomly varying slope model 
is used to design the studies where ω = 0, the power will be underestimated; if the 
nonrandomly varying model is used to design the studies where ω > 0, the power will 
be overestimated. The bias in power estimates due to model mis-specification decrease 
when the sample size for the clusters (J ) increases and the effect heterogeneity (ω) 
decreases.

To make these comparisons more concrete, we compare MDESD and power among 
three moderation designs using several examples. Suppose a team of researchers are 
designing a two-level CRT to test the efficacy of a school-based intervention on student 
achievement. They are interested in student-level moderator effects and school-level 
moderator effects. They approach the moderator power analyses from two perspectives: 
1) what is the MDESD given power of 0.80 and 2) what is the power for a moderation 
effect size of 0.20. Based on the literature (Bloom, Richburg-Hayes, & Black, 2007; Hedges 
& Hedberg, 2007, 2013) they assume an intraclass correlation coefficient (ρ) of 0.23, and 
the proportions of variance explained by the covariates at Level 1 and Level 2 of 0.5 
(R12 = R22 = 0.5). To be conservative, they assume the proportion of variance between 
schools on the effect of the student-level moderator explained by the school-level pre
dictor to be 0 (R2T2  = 0). The effect heterogeneity (ω) for the student-level moderator 
across school-levels is assumed as 0.3 for the randomly varying slope model, which is 
equivalent to an effect size variability of 0.069 (= ρ × ω = 0.23 × 0.3). They use a balanced 
design with equal assignment of schools to the treatment and control groups (P = 0.5) 
and 100 students per school. They are interested in the results for a binary moderator 
and a continuous moderator. For the binary case, they assume half of the sample is in one 
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moderator subgroup (Q = 0.5). Table 2 shows the results of MDESD and power for the 
total numbers (J ) of schools of 40 and 80 under the above assumptions.

Table 2

MDESD and Statistical Power of Two-Level CRTs

Level of 
moderator

Slope of lower level 
moderator

MDESD Power

Binary 
moderator

Continuous 
moderator

Binary 
moderator

Continuous 
moderator

J  = 40 J  = 80 J  = 40 J  = 80 J  = 40 J  = 80 J  = 40 J  = 80

1 Nonrandomly varying 0.11 0.08 0.06 0.04 1.00 1.00 1.00 1.00

1 Randomly varying 0.26 0.18 0.25 0.17 0.56 0.86 0.63 0.91

2 N/A 0.67 0.45 0.34 0.23 0.13 0.24 0.39 0.70

Note. MDESD = minimum detectable effect size difference. Under the assumptions: n = 100, ρ = 0.23, P = 0.5, Q 
= 0.5, R12 = 0.5, R22 = 0.5, R2T2  = 0 and ω = 0.3 for random slope design, power = 0.8 for the calculation of MDESD, 
and effect size difference = 0.2 for the calculation of power, a two-sided test with α = .05.

The findings in Table 2 are discussed below. First, a design always has a smaller MDESD, 
or larger power for a fixed effect size when the Level 2 sample size is bigger. Second, 
the MDESD is larger or the power is smaller for a fixed effect size when the moderator 
is at the school level compared to the student level. Third, when the moderator is at the 
student level, the nonrandomly varying moderator slope model has a smaller MDESD, or 
bigger power for a fixed effect size than the random moderator slope model. Finally, the 
MDESD as defined by the standardized mean difference for the binary moderator and Q 
= 0.5 is always twice the value of the MDESD defined by the standardized coefficient for 
the continuous moderator when the moderator is at the school level or the moderator is 
at the student level with the nonrandomly varying slope.

Comparing Moderation Designs With Main Effect Designs
We examine the ratio of the MDESD for the moderator analysis to the minimum detecta
ble effect size (MDES) for the main effect analysis. The MDES formula for a two-level 
cluster randomized design with a Level 1 and two Level 2 covariates is as follows (Bloom, 
2006):

MDES = MJ − 4
ρ(1 − R22)
P(1 − P)J + (1 − ρ)(1 − R12)

P(1 − P)Jn (16)

where the multiplier MJ − 4 = tα/2 + t1 − β with J - 4 degrees of freedom.
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We use the MDESD formulas for binary moderators in Table 1. The ratio of MDESD 
for a Level-2 binary moderator to the MDES of the main effect when there is no Level 1 
covariate is:

MDESDCRT2 − 2
MDES =

MJ − 6
MJ − 4

J − 6
JQ 1 − Q (17)

The result in Equation 17 is consistent with Bloom (2005) except Equation 17 includes 
an extra factor J − 6

J . Bloom (2005) derived the standard error of the moderator effects 
based on the population using the sample size J  while we derived the standard error 
based on the sample by adjusting for the degrees of freedom using J  - 6 (our Monte 
Carlo simulation suggested that our formulas worked better especially when the sample 
size is small). MDESDCRT2 − 2/MDES is around 2 when it is a balanced design (Q = 0.5) 
and there is a large sample size (MJ − 6/MJ − 4 is close to 1 when J  is larger than 10, e.g., 
MJ − 6/MJ − 4 = 1.01 when J  = 11). This result indicates that the MDESD for a Level 2 
moderator is about twice as large as the MDES of the main effect using the same set 
of covariates in both cases in the same study. This is analogous to using the ordinary 
least square (OLS) regression to analyze the completely randomized trials, which do not 
involve hierarchical data. This makes the Level 2 moderator effect more difficult to detect 
than the main effect just as in the OLS analysis of the completely randomized trials.

The situation is different for the analysis of the Level-1 moderator effect, which 
may have bigger power than the main effect. The MDES formula for the main effect in 
Equation 16 includes an additional component that is associated with the Level 2 residual 
variance which is not related to the sample size at the individual level (n), while the 
MDESD formulas for a Level 1 binary moderator with nonrandomly varying slope in 
Table 1 only includes the component associated with the Level 1 residual variance. As a 
result, n is more influential on the MDESD than the MDES.

Figure 2 shows the relationship between power and cluster sample size by comparing 
the main treatment effect analysis with moderation analyses with binary Level 1 and -2 
moderators.

The figure is based on the following assumptions: the intraclass correlation coeffi
cient (ρ) is 0.2 in Figure 2A and 0.1 in Figure 2B in two-level CRTs. The proportions of 
variance explained by the covariates at Level 1 and Level 2 for the main effect analysis 
is 0.5 (R12 = R22 = 0.5); The proportions of variance explained for the Level 2 moderation 
analysis, R22 = 0.5 at Level 2, and for the Level 1 moderation analysis, R12 = 0.5 at the 
Level 1. The proportion of variance between clusters on the effect of the student-level 
moderator explained by the school-level predictor is set to 0 (R2T2  = 0). The effect hetero
geneity (ω) for the student-level moderator across school-levels is assumed as 0.3 for the 
randomly varying slope model, which is equivalent to an effect size variability of 0.06. 
We assume a balanced design with equal assignment of schools to the treatment and 
control groups (P = 0.5) and 20 students per school. In addition, half of the sample is 
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in one moderator subgroup (Q = 0.5). For comparison purposes, we assume the effect 
size for the main treatment effect and the effect size difference for the moderator effect 

Figure 2

Power vs. Group Sample Size

Note. Panel A: ρ = 0.20. Panel B: ρ = 0.10. Under the assumptions: n = 20, R12 = 0.5, R22 = 0.5, P = 0.5, Q = 0.5, R2T2  = 
0 and ω = 0.3 for randomly varying slope design, effect size (standardized mean difference) = 0.2, effect size 
difference (standardized mean difference) = 0.2, and a two-sided test with α = .05.
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(standardized mean difference) to be detected using a two-sided test with α = .05 are 
both .20. This is equivalent to effect sizes for the two moderator subgroups of 0.3 and 0.1, 
respectively. The resulting power curves are for the moderation analyses with a binary 
Level 2 moderator (grey solid line), a binary Level 1 moderator with randomly varying 
slope (long dashed black line), a binary Level 1 moderator with nonrandomly varying 
slope (short dotted black line), and the main treatment effect analysis (black solid line).

Figure 2A and Figure 2B indicates that the power increases for a binary Level 1 
moderator effect with the increase of the group sample size The power for detecting 
the effects of a binary Level 1 moderator with nonrandomly varying slope (short dotted 
black line) is bigger than that for a binary Level-1 moderator with randomly varying 
slope (long dashed black line). The power for detecting the effects of a binary Level 1 
moderator with nonrandomly varying slope (short dotted black line) is bigger than the 
power for the main treatment effect analysis (black solid line) in Figure 2A (ρ = 0.20). By 
comparing Figure 2A (ρ = 0.20) with Figure 2B (ρ = 0.10), we can see that the power for 
detecting the effect of a binary Level 1 moderator with nonrandomly varying slope (short 
dotted black line) is bigger when the intraclass correlation is bigger. This is also apparent 
in the formulas for the MDESD which contain a factor of (1 - ρ), hence when ρ increases 
the MDESD decreases and the power increases. Note that across all scenarios the power 
for a binary Level 2 moderator effect (grey solid line) is the smallest.

Conclusion
The main findings are summarized as follows. First, the effects of the sample sizes 
at different levels, the levels of the moderators at which they have been assessed, 
the slopes of Level 1 moderators (random vs. non-randomly varying), the distribution 
of moderators (binary vs. continuous), and the inclusion of covariates on power and 
MDESD in two-level CRTs are consistent with that in three-level CRTs (Dong, Kelcey, & 
Spybrook, 2018). For instance, the sample size at the higher level (e.g., Level 2) is more 
critical than the sample size at lower level (e.g., Level 1) for increasing the power to 
detect the effects of a Level 2 moderator and a Level 1 moderator with randomly varying 
slope. However, the sample size at Level 1 is as important as at Level 2 for increasing 
the power to detect the effect of a Level 1 moderator with nonrandomly varying slope. 
Furthermore, the MDESD is larger or the power is smaller when the moderator is at the 
higher level. In other words, studies are more likely to be well-powered to detect Level 
1 moderator effects than Level 2 moderator effects. Besides, the MDESD measured by 
the standardized mean difference for the binary moderator is always 1/ Q(1 − Q) times 
of the MDESD measured by the standardized coefficient for the continuous moderator 
when it is Level 2 moderator or Level 1 moderator with nonrandomly varying moderator 
slope. In addition, including Level 1 covariates can improve power for both Level 1 and 
Level 2 moderator effects; including Level 2 covariates may improve power only if the 
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Level 2 covariates are in the intercept model for the Level 2 moderator or the Level 2 
covariates are in the slope model to explain the heterogeneity of the Level 1 moderator.

Second, when the estimation models are correctly specified for the real data, the 
model with a varying moderator slope will yield less precise estimates than the model 
with a constant moderator slope. The differences on the power and MDESD between 
the two models decreases when the number of clusters (J ) increases and the effect 
heterogeneity (ω) decreases.

Lastly, the mismatch between the study design and real data will result in either 
overestimating or underestimating the power. Specifically, if the randomly varying slope 
model is used to design the studies where ω = 0, the power will be underestimated; 
if the nonrandomly varying slope model is used to design the studies where ω > 0, 
the power will be overestimated. The bias in power estimates due to model mismatch 
decreases when the sample size for the clusters (J ) increases and the effect heterogeneity 
(ω) decreases. However, it is generally preferable to use the randomly varying slope 
model to design the cross-level moderation studies unless there is strong theory or prior 
knowledge that the slope of the lower level moderator does not vary across clusters.

This study focused on two-level CRTs. There are many important directions for 
further work. First, extending the work to other designs is necessary. This includes 
multisite randomized trials (MRTs), which are also common designs used to evaluate 
the effectiveness of programs (Spybrook, Shi, & Kelcey, 2016), and longitudinal study 
designs. Second, a well conducted power analysis heavily relies on accurate empirical 
estimates of the design parameters. Hence more empirical studies of design parameters 
such as the ICC, effect heterogeneity of Level 1 covariates, and meaningful moderator 
effect size differences are important as we move forward.

Funding: This project has been funded by the National Science Foundation [1437679, 1437692, 1437745, 1913563, 

1552535, 1760884]. The opinions expressed herein are those of the authors and not the funding agency.

Acknowledgments: The authors have no additional (i.e., non-financial) support to report.

Competing Interests: The authors have declared that no competing interests exist.

Supplementary Materials
For this article the following Supplementary Materials are available via the PsychArchives reposi
tory (for access see Index of Supplementary Materials below):

• SM1: Derivations of power and MDESD formulas.
• SM2: Procedures and results of Monte Carlo simulation (Tables S1-S24).

Power Analyses for Moderator Effects 108

Methodology
2021, Vol. 17(2), 92–110
https://doi.org/10.5964/meth.4003

https://www.psychopen.eu/


Index of Supplementary Materials

Dong, N., Spybrook, J., Kelcey, B., & Bulus, M. (2021). Supplementary materials to: Power analyses 
for moderator effects with (non)randomly varying slopes in cluster randomized trials [Formulas, 
Tables]. PsychOpen GOLD. https://doi.org/10.23668/psycharchives.4947 

References

Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. New 
York, NY, USA: SAGE Publication.

Bloom, H. S. (2005). Randomizing groups to evaluate place-based programs. In H. S. Bloom (Ed.), 
Learning more from social experiments: Evolving analytic approaches (pp. 115-172). New York, 
NY, USA: Russell Sage Foundation.

Bloom, H. S. (2006). The core analytics of randomized experiments for social research (MDRC 
working papers on research methodology). Retrieved from 
http://www.mdrc.org/publications/437/full.pdf

Bloom, H. S., Richburg-Hayes, L., & Black, A. R. (2007). Using covariates to improve precision for 
studies that randomize schools to evaluate educational interventions. Educational Evaluation 
and Policy Analysis, 29(1), 30-59. https://doi.org/10.3102/0162373707299550

Dong, N., Kelcey, B., & Spybrook, J. (2018). Power analyses of moderator effects in three-level 
cluster randomized trials. Journal of Experimental Education, 86(3), 489-514. 
https://doi.org/10.1080/00220973.2017.1315714

Dong, N., & Maynard, R. A. (2013). PowerUp!: A tool for calculating minimum detectable effect 
sizes and minimum required sample sizes for experimental and quasi-experimental design 
studies. Journal of Research on Educational Effectiveness, 6(1), 24-67. 
https://doi.org/10.1080/19345747.2012.673143

Hedges, L. V., & Hedberg, E. (2007). Intraclass correlation values for planning group randomized 
trials in education. Educational Evaluation and Policy Analysis, 29(1), 60-87. 
https://doi.org/10.3102/0162373707299706

Hedges, L. V., & Hedberg, E. (2013). Intraclass correlations and covariate outcome correlations for 
planning two- and three-level cluster-randomized experiments in education. Evaluation Review, 
37(6), 445-489. https://doi.org/10.1177/0193841X14529126

Kreft, I. G. G., de Leeuw, J., & Aiken, L. S. (1995). The effect of different forms of centering in 
Hierarchical Linear Models. Multivariate Behavioral Research, 30(1), 1-21. 
https://doi.org/10.1207/s15327906mbr3001_1

LaHuis, D., Jenkin, D. R., Hartman, M. J., Hakoyama, S., & Clark, P. (2020). The effects of 
misspecifying the random part of multilevel models. Methodology, 16(3), 224-240. 
https://doi.org/10.5964/meth.2799

Mathieu, J. E., Aguinis, H., Culpepper, S. A., & Chen, G. (2012). Understanding and estimating the 
power to detect cross-level interaction effects in multilevel modeling. The Journal of Applied 
Psychology, 97(5), 951-966. https://doi.org/10.1037/a0028380

Dong, Spybrook, Kelcey, & Bulus 109

Methodology
2021, Vol. 17(2), 92–110
https://doi.org/10.5964/meth.4003

https://doi.org/10.23668/psycharchives.4947
http://www.mdrc.org/publications/437/full.pdf
https://doi.org/10.3102/0162373707299550
https://doi.org/10.1080/00220973.2017.1315714
https://doi.org/10.1080/19345747.2012.673143
https://doi.org/10.3102/0162373707299706
https://doi.org/10.1177/0193841X14529126
https://doi.org/10.1207/s15327906mbr3001_1
https://doi.org/10.5964/meth.2799
https://doi.org/10.1037/a0028380
https://www.psychopen.eu/


Moerbeek, M. (2006). Power and money in cluster-randomized trials: When is it worth measuring a 
covariate? Statistics in Medicine, 25(15), 2607-2617. https://doi.org/10.1002/sim.2297

Moerbeek, M., & Maas, C. J. M. (2005). Optimal experimental designs for multilevel logistic models 
with two binary predictors. Communications in Statistics. Theory and Methods, 34(5), 1151-1167. 
https://doi.org/10.1081/STA-200056839

Moerbeek, M., van Breukelen, G. J. P., & Berger, M. P. F. (2001). Optimal experimental designs for 
multilevel models with covariates. Communications in Statistics. Theory and Methods, 30(12), 
2683-2697. https://doi.org/10.1081/STA-100108453

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis 
methods (2nd ed.). Thousand Oaks, CA, USA: Sage Publications.

Raudenbush, S. W., Martinez, A., & Spybrook, J. (2007). Strategies for improving precision in group-
randomized experiments. Educational Evaluation and Policy Analysis, 29(1), 5-29. 
https://doi.org/10.3102/0162373707299460

Snijders, T. (2001). Sampling. In A. H. Leyland & H. Goldstein (Eds.), Multilevel modeling of health 
statistics (pp. 159-173). New York, NY, USA: John Wiley.

Snijders, T. A. B. (2005). Power and sample size in multilevel linear models. In: B. S. Everitt & D. C. 
Howell (Eds.), Encyclopedia of statistics in behavioral science (Vol. 3, pp. 1570–1573). Hoboken, 
NJ, USA: John Wiley & Sons.

Spybrook, J., Shi, R., & Kelcey, B. (2016). Progress in the past decade: An examination of the 
precision of cluster randomized trials funded by the U.S. Institute of Education Sciences. 
International Journal of Research & Method in Education, 39(3), 255-267. 
https://doi.org/10.1080/1743727X.2016.1150454

Spybrook, J., Kelcey, B., & Dong, N. (2016). Power for detecting treatment by moderator effects in 
two and three-level cluster randomized trials. Journal of Educational and Behavioral Statistics, 
41(6), 605-627. https://doi.org/10.3102/1076998616655442

Methodology is the official journal 
of the European Association of 
Methodology (EAM).

PsychOpen GOLD is a publishing 
service by Leibniz Institute for 
Psychology (ZPID), Germany.

Power Analyses for Moderator Effects 110

Methodology
2021, Vol. 17(2), 92–110
https://doi.org/10.5964/meth.4003

https://doi.org/10.1002/sim.2297
https://doi.org/10.1081/STA-200056839
https://doi.org/10.1081/STA-100108453
https://doi.org/10.3102/0162373707299460
https://doi.org/10.1080/1743727X.2016.1150454
https://doi.org/10.3102/1076998616655442
https://www.psychopen.eu/

	Power Analyses for Moderator Effects
	(Introduction)
	Statistical Power and Minimum Detectable Effect Size Difference in Two-Level CRTs
	Two-Level CRTs With a Moderator at Level 2
	Two-Level CRTs With a Moderator at Level 1
	Monte Carlo Simulation

	Discussion: Comparisons Among Moderation Designs and Main Effect Designs
	Contrasting Moderation Designs
	Comparing Moderation Designs With Main Effect Designs

	Conclusion
	(Additional Information)
	Funding
	Acknowledgments
	Competing Interests

	Supplementary Materials
	References


