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Abstract
Although measures such as sensitivity and specificity are used in the study of diagnostic test
accuracy, these are not appropriate for integrating heterogeneous studies. Therefore, it is essential
to assess in detail all related aspects prior to integrating a set of studies so that the correct model
can then be selected. This work describes the scheme employed for making decisions regarding the
use of the R, STATA and SAS statistical programs. We used the R Program Meta-Analysis of
Diagnostic Accuracy package for determining the correlation between sensitivity and specificity.
This package considers fixed, random and mixed effects models and provides excellent summaries
and assesses heterogeneity. For selecting various cutoff points in the meta-analysis, we used the
STATA module for meta-analytical integration of diagnostic test accuracy studies, which produces
bivariate outputs for heterogeneity.
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Diagnostic accuracy plays a central role in the evaluation of diagnostic tests, where
accuracy can be expressed as sensitivity, specificity, positive predictive value, negative
predictive value, and reasons of probability. However, predictive values depend directly
on the prevalence of the disease in question and, therefore, cannot be directly compared
in different situations. By contrast, it is believed that test sensitivity and specificity do
not vary with the prevalence of disease.
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This is also the case for reasons of probability. Since they depend on sensitivity
and specificity they are believed to remain constant, although variability with regard to
prevalence does exist. However, some studies (Brenner & Gefeller, 1997; Leeflang et al.,
2013; Ransohoff & Feinstein, 1978) have shown contradictory findings.

Several studies have indicated that the variability of sensitivity and specificity may
be related to differences in thresholds (Holling, Böhning, & Böhning, 2007; Jiang, 2018;
Mulherin & Miller, 2002; Szklo & Nieto, 2014). One study has reported differences in
cutoff points or in the definition of the disease (Brenner & Gefeller, 1997). Therefore, it is
necessary to analyze to what extent, in what form and why the sensitivity and specificity
of diagnostic tests vary with respect to prevalence before performing a meta-analysis
(Holling et al., 2007). However, these factors are quite difficult to identify and often
warrant the use of models that consider this fact when generating summary estimates of
sensitivity and specificity. The bivariate model of random effects captures the correlation
between sensitivity and specificity and models the logits of both factors (Reitsma et al.,
2005).

In situations of low prevalence, where the test being employed provides a high
number of true negatives and a small number of true positives, the percentage of cases
correctly classified does allow different tests to be compared. This is because true posi‐
tives will be very high, even when the number of false positives is equal to or greater
than the number of true positives, which is a situation that can cause the test to be
rejected and declared as being inefficient.

Meta-Analysis of Diagnostic Accuracy (MADA) libraries are among the statistical
packages available that can be used with the most relevant models (Doebler, 2020). These
include the Hierarchical Summary Receiver Operating Characteristic (HSROC; Schiller &
Dendukuri, 2013) by R, Meta-analytical Integration of Diagnostic Test Accuracy Studies
(MIDAS; Dwamena, 2007; Wang & Leeflang, 2019) by STATA, and the Macro for Meta-
analysis of Diagnostic accuracy studies (MetaDas; Takwoingi & Deeks, 2010; Wang &
Leeflang, 2019) by SAS.

This paper describes the main models used in this context, as well as the available
software. Since it is not always easy for researchers to decide on the model most appro‐
priate for their study or to choose the correct software for interpreting their results, we
have created a guide for carrying out a meta-analysis on diagnostic tests. According to
the assumptions that fulfill the analyzed data, we present findings regarding the most
suitable model, the software that allows this model to be used and how the results
obtained can be interpreted.

Evaluation of Heterogeneity
To investigate the effect of a cutoff point on sensitivity and specificity, the results
have been presented in the form of a receiver operating characteristic (ROC) curve. In
addition, one way to summarize the behavior of a diagnostic test from multiple studies
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is to calculate the mean sensitivity and specificity (Bauz-Olvera et al., 2018); however,
these measures are invalid if heterogeneity exists (Midgette, Stukel, & Littenberg, 1993).
The sensitivity and specificity within each study are inversely related and depend on
the cutoff point, which implies that sensitivity and medium specificity are not acceptable
(Irwig, Macaskill, Glasziou, & Fahey, 1995). On the other hand, the Biplot has proved to
be an extremely useful multivariate tool in the analysis of data from the meta-analysis
of diagnostic tests, both in the descriptive phase and in the search for the causes of
variability (Pambabay-Calero et al., 2018).

In diagnostic tests, the assumption of methodological homogeneity in studies is not
met and thus it becomes important to evaluate heterogeneity. Assessing the possible
presence of statistical heterogeneity in the results can be done (in a classical way) by
presenting the sensitivity and specificity of each study in a forest plot.

A characteristic source of heterogeneity is that which arises because the studies
included in the analysis may have considered different thresholds for defining positive
results; this effect is known as the threshold effect.

The most robust statistical methods proposed for meta-analysis take this threshold
effect into account and do so by estimating a summary ROC curve (SROC) of the studies
being analyzed. However, on some occasions the results of the primary studies are homo‐
geneous and the presence of both threshold effect and other sources of heterogeneity can
be ruled out. This statistical modelling can be done using either a fixed-effect model or
a random-effects model, depending on the magnitude of heterogeneity. Several statistical
methods for estimating the SROC curve have been proposed. The first, proposed by
(Moses, Shapiro, & Littenberg, 1993), is based on estimating a linear regression between
two variables created from the validity indices of each study.

Accuracy Analysis in Diagnostic Tests
The discriminatory capacity of a test is commonly expressed in terms of two measures
(sensitivity and specificity) and there is usually an inverse relationship between the
two due to the variability of the thresholds. Some of the recommended methods for
meta-analysis of diagnostic tests, such as the bivariate model, focus on estimating a
summary sensitivity and specificity at a common threshold. The HSROC model, on the
other hand, focuses on estimating a summary curve from studies that have used different
thresholds.

The test can be based on a biomarker or a more complex diagnostic procedure.
However, the value of the index that the test provides may not be completely reliable.
The starting information is a 2×2 table showing the concordance between the test results
in binary form and information associated with disease (see Table 1; Deeks, Macaskill, &
Irwig, 2005).
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Table 1

Generic Representation of the Data of a Study of Accuracy in Diagnostic Test

Test result

Disease state

TotalD+ D−

T+ TP FP TP + FP

T− FN TN FN + TN

Total n1 n2 n

Note. n = sample size; n1 = patients who actually have the disease; n2 = patients who are disease free. T+ = a
positive result; T− = a negative result; TP = true positives; FP = false positives; TN = true negatives; FN = false
negatives (Deeks et al., 2005).

The results of a meta-analysis of diagnostic tests are usually reported as a pair, repre‐
senting both sensitivity and specificity. However, some attempts have been made to
consolidate the result as a single number. The most common approach is the use of
diagnostic odds ratio (DOR; Lee, Kim, Choi, Huh, & Park, 2015). But other important
measures are positive LR+ or negative likelihood LR− ratios, which are estimated from
sensitivity and specificity. Summary graphs can be generated that show the variability
among the studies based on sensitivity and specificity. Thus, we have (see Figure 1 for a
more detailed explanation):

1. Forest plot for sensitivity and specificity help in assessing the heterogeneity of
individual aspects of test accuracy, but do not allow immediate assessment of
whether the observed variation is that expected from the relationship of two
variables, i.e. sensitivity decreases as specificity increases (Brenner & Gefeller, 1997).

2. Crosshair, shows the bivariate relationship and the degree of heterogeneity
between sensitivity and the rate of false positives. These “cross-hair” graphs reflect
the results of individual studies in the ROC space with confidence intervals denoting
sensitivity and specificity. They also allow meta-analysis studies to be overlaid on
the graph.

3. RocEllipse, shows a region of confidence that describes the uncertainty of the pair
of sensitivity and specificity of each study. The clinical utility or relevance of the
diagnostic test carried out on a patient is evaluated using maximum likelihood ratios
to calculate post-test probability. On the basis of Bayes’ theorem, this concept is
shown in Fagan’s nomogram (Fagan, 1975). The nomogram is a tool that allows
estimating the post-test probability once the prevalence of the disease and the
likelihood ratio are known. This graph has three columns with numbers: the first
corresponds to the pre-test probability, the second to the likelihood ratio (LR) and
the third to the post-test. This post-test allows likelihood to be quantified after
testing if an individual will be affected by a specific condition. Also, the result of an
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observed test and the likelihood that the individual will have the condition before
the test is performed is taken into account.

Figure 1

Summary Graphs That Show the Variability Among the Studies
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Tests Based on a Continuous Marker
Let X be the continuous diagnostic marker that underlies a test, which must take into
account two different probability distributions for X between diseased and healthy in‐
dividuals respectively. It is assumed that the diagnostic marker tends to be higher in
diseased individuals than in healthy individuals. A graphical representation is shown in
Figure 2.

Figure 2

The Distributions of a Continuous Biomarker of Diseased and Healthy Individuals With a Specific Cut-Off Point

Note. TP = true positives; FP = false positives; TN = true negatives; FN = false negatives.

A consequence of the overlapping of the distributions of Figure 2 is that the cutoff point
may not have been defined correctly. If, for example, the cutoff point moves to the
left, TP and FP will increase, whereas both TN and FN decrease. The variation in the
sensitivity–specificity pair and the cutoff point is shown in Figure 3.
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Figure 3

SROC Curve Showing the Impact of the Heterogeneity on the Performance of the Test

Model of Moses (SROC Model)
The objective of this model is to transform true positive rate (TPR) and false positive
rate (FPR) so that the relationship becomes linear; thus making an adjustment for the
points given (Moses et al., 1993). It is based on estimating a linear regression between
two variables created from the validity indices of each study. These variables are D and
S, respectively, and represent the DOR. The model is adjusted using either weighted or
unweighted least squares.

Various useful statistical methods have been proposed to summarize a SROC curve.
The most common is the area under the curve (AUC), which summarizes the diagnostic
performance of the test in a single number (Walter, 2002): perfect tests have an AUC
close to 1 whereas unusable tests have an AUC close to 0 (de Llano et al., 2007).

The Moses model does present some limitations. On one hand, it does not take into
account the different levels of precision with which sensitivity and specificity are estima‐
ted in each study, nor does it incorporate heterogeneity between studies. To overcome
these limitations, more complex regression models have been proposed. The first of these
is a bivariate random effects model (Reitsma et al., 2005) that assumes that the logit of
sensitivity and specificity follow a bivariate normal distribution. The model contemplates
the possible correlation between both indices, models the different precision with which
sensitivity and specificity have been estimated and incorporates a source of additional
heterogeneity due to variance between studies. The second model refers to the HSROC
approach or hierarchical model (Rutter & Gatsonis, 2001). It is similar to the previous
model, except that it clearly defines the relationship between sensitivity and specificity
across the threshold (Doi & Williams, 2013).
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Bivariate Model
It should be noted that the SROC model does not quantify the error in S (Baker, Kim,
& Kim, 2004). An alternative approach for the construction of a SROC curve has been
described by Reitsma et al. (2005). This author proposes the use of a bivariate model
through a joint distribution of sensitivity and specificity, which allows the linear correla‐
tion throughout the studies to be modelled. This model follows an approach developed
for meta-analysis of binary results (Van Houwelingen, Zwinderman, & Stijnen, 1993),
the same that has been improved by other authors (Arends et al., 2008). At the study
level, this model assumes that the TP and FP within the study k, k = 1, 2, …, K follow
binomial distributions. For the levels among the studies, a bivariate random effect model
is assumed, logit(Sek) and logit(1−Spk), in which normal distributions of the specific
parameters of the study are assumed a priori, Equation 1:

logit Sek
logit 1 − Spk

N
μ1
μ2

; σ12 σ12
σ12 σ22

(1)

Alternatively, the covariance can be parameterized by the correlation coefficient ρ and
standard errors in such a way that σ12 = ρσ1σ2. This model has five parameters:

• Means, µ1, µ2
• Variances σ12, σ22

• Covariance σ12

The inclusion of covariates in the sensitivity or specificity, or both, is done by replacing
one or both means µ1 and µ2 by linear variables in the covariates. For example, if
there is only one covariate that affects sensitivity and specificity, we could substitute
µ1 by µ1 + ν1Zi and µ2 by µ2 + ν2Zi (Harbord, Deeks, Egger, Whiting, & Sterne, 2007;
Takwoingi, Guo, Riley, & Deeks, 2017).

Hierarchical Model HSROC
Rutter and Gatsonis (2001) were the first to develop a model that quantifies the size of
heterogeneity. These authors proposed a hierarchical model with a Bayesian empirical
version added by Macaskill (2004). The model includes random effects for cutoff points
and the accuracy of the test and focuses on estimating the ROC curve (Schwarzer,
Carpenter, & Rücker, 2015). The objective is to obtain significant estimates of sensitivity
and specificity and better manages variability, applying a Bayesian approach for the
estimation of the parameters. Rutter and Gatsonis (2001) divided the model into three
levels. At the study level, it is assumed that within each study k, k = 1, 2, …, K; the TP and
the FP follow binomial distributions (Schwarzer et al., 2015), where Index 1 indicates the
sick people and Index 2 denotes those without the disease, Equation 2.
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TP Binomial nk1, Sek
FP Binomial nk2, 1 − Spk

(2)

The authors parameterized the sensitivities and specificities as follows (Schwarzer et al.,
2015), Equation 3,

logit Sek = θk +
αk
2 e−β/2logit 1 − Spk = θk −

αk
2 eβ/2 (3)

where θk is the random threshold in the study k, αk is the random accuracy in the study
k, and β is a parameter of the shape (asymmetry) of the ROC curve (Schwarzer et al.,
2015). Normal distributions are used to model variation in the specific parameters of the
study among the studies, Equation 4, which corresponds to the second level of modelling,
i.e. variation between studies.

θk N θ, τθ2
αk N λ, τλ2

(4)

Finally, the specification of the hierarchical model is completed by choosing a priori the
distributions of the parameters. In short, the model has five parameters (Schwarzer et al.,
2015):

• the mean and variance of the cutoff points θ, τθ2 ;
• the mean and variance of the accuracy λ, τλ2 ; and
• the shape parameter β.

A value of β = 0 would represent a symmetric curve in the ROC space (Schwarzer et al.,
2015). The ROC curve is calculated by applying the inverse function logit to a function
that is linear in logit(1 −Spk), Equation 5 (Schwarzer et al., 2015).

Se = logit−1 e−βlogit 1 − Sp + λe−β/2 (5)

The above expression is equivalent to Equation 6.

Se = 1 + exp −e−βlogit 1 − Sp
Sp − λe−β/2

−1
(6)

Further details can be found in some related papers (Macaskill, 2004; Rutter & Gatsonis,
2001). To understand the operation of the analyzed models, it is necessary to use a
statistical program. In our case, we will analyze R, STATA, and SAS to facilitate the
necessary analysis.

In more generally, the mean sensitivity and specificity can be modeled through linear
regressions of study-level covariates (Harbord et al., 2007). This could be achieved, for
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example, by using a single covariate Z that affects both the cutoff points and accuracy
parameters such as Equation 7,

θk N θ + γZ , τθ2
αk N λ + νZ , τλ2

(7)

where the coefficients γ and ν quantify the weight of the covariate Z on the cutpoint and
precision respectively. This model allows to include more than one covariate, also, allows
to model the covariates independently in the parameters of accuracy and cutoff points
(Harbord et al., 2007).

Software to Integrate the Meta-Analysis of
Diagnostic Tests

R Language
The MADA package of the statistical program R is a tool that allows the meta-analysis
of diagnostic tests to be accurately carried out. Although there are many methods for
diagnostic meta-analysis, it is still not a routine procedure. One of the reasons may be
due to the complexity of the bivariate approach. The MADA statistical package offers
some current approaches to diagnostic meta-analysis, as well as functions that allow
for statistical methods for a data set include sensitivity, specificity, true/false positives,
true/false negatives, and their DOR (Glas et al., 2003). These statistical methods can be
employed using the madad function of the MADA library and the mslSROC function
of the META library. Prior to the advent of the bivariate approach, some univariate
approaches were very popular. This approach is characterized by the separate estimation
of sensitivity and specificity. There are three methods in R for this approach:

• the Mantel–Haenszel (MH) method, for a fixed effect model (Deeks, 2001);
• the model is formulated in terms of DOR logarithms and is a weighted estimator;
• the proportional model of Hazards (Holling, Böhning, & Böhning, 2012), which is

constructed on the assumption of a simple ROC curve and assumes the conditions of
the Lehmann model.

In meta analysis of diagnostic tests, the relationship between sensitivity and specificity
is negative. Since these quantities are related to each other, the bivariate approach for
meta-analysis in the accuracy of the diagnosis has been welcomed. Using the Reitsma
function in the MADA library, it is possible to use the aforementioned model. Finally,
the HSROC library that contains the HSROC function is used to estimate the HSROC
hierarchical model, which makes the necessary adjustments in the model.
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STATA
The MIDAS package is a comprehensive program of statistical and graphical routines
used to understand the meta-analysis of diagnostic tests in STATA, which is a statistical
software package that was created by StataCorp in 1985. It provides statistical and
graphical functions that allow us to study the accuracy of diagnostic tests. The modeling
of primary data is done through a binary regression of bivariate mixed effects. Model fit‐
ting, estimation, and prediction are performed by adaptive quadrature. Using the values
of the coefficients and the variance-covariance matrices, the sensitivity and specificity
are estimated with their respective zones of confidence and prediction in the ROC space
(Dwamena, 2007).

SAS
MetaDas is a high-performance SAS program, which adjusts the parameters of bivariate
and HSROC models to analyze the accuracy of diagnostic tests using Proc nonlinear
mixed models (NLMIXED; Takwoingi & Deeks, 2010). NLMIXED adjusts the parameters
of the models using likelihood functions through optimization algorithms, the main ones
being adaptive Gaussian quadrature and a first-order Taylor series approach (Takwoingi
& Deeks, 2010).

Steps for Performing a Meta-Analysis of
Diagnostic Tests in Low Prevalence

Once the systematic review of the diagnostic tests has been performed, it is necessary to
integrate the results using the approaches described above. For this reason, we propose
the following four steps:

1. Perform a descriptive statistical analysis of the studies using the R language and the
MADA and META libraries together with the madad and mslSORC functions,
respectively, which provide the following results and graphs.
• Sensitivity per study with their respective confidence intervals (IC)
• Specificity per study, IC
• DOR per study, IC
• Chi-square test that allows comparing the sensitivity and specificity of the studies
• LR+ and LR− per study with their respective confidence intervals
• Correlation between sensitivity (Se) and specificity (Sp)
• Rate of false-positive (RFP) per study, IC
• Forest plot for sensitivity and specificity
• Crosshair and RocEllipse chart
• SROC Curve of Moses model
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2. If there is independence between sensitivity and specificity, a univariate analysis is
then performed using the madauni and phm functions of the MADA library of the R
language. This analysis uses the Mantel–Haenszel (fixed effects), DerSimonian-Laird
(random effects) models and the Hazards proportional approach (fixed and random
effects), which generate the following results.
• DOR and DOR logarithm with their respective confidence interval
• Forest plot for sensitivity and specificity with their respective confidence intervals
• τ2 with confidence interval
• Q test, I 2

• AUC
• Forest plot with summary measures for DOR, LR+ and LR− log
• Chi-square test of homogeneity between studies
• Chi-square test of heterogeneity between studies
• Curve SROC with RocEllipse

3. If the sensitivity and specificity are related, i.e., there are different cutoff points in
the meta-analysis and the data is adjusted to a normal bivariate distribution, a
bivariate analysis is performed using the R and STATA languages using the MADA
and MIDAS libraries. Note that for using the bivariate approach in R, the reitsma
function is used. This bivariate analysis generates the following results, see Table 2.

Table 2

Main Outputs of the Bivariate Model

R Language Stata Language

Logit of consensus sensitivity with confidence

interval

Forest plot for sensitivity with and with- out measure

summary and their confi- dence intervals

Logit of false-positive rate with confidence

interval

Forest plot for specificity with and with- out measure

summary and their confi- dence intervals

Sensitivity consensus with confidence interval DOR, LR+, and LR− consensus with their respective

confidence intervals

False-positive consensus rate with confidence

intervals

Q test, I 2

SROC curve with sensitivity and false- positive

consensus rate

AUC

Matrix of variances between studies Sensitivity and specificity, consensus with their respective

Correlation matrix SROC curve with sensitivity, specificity consensus and

confidence intervals

HSROC model parameters Fagan plot
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4. If the effect of the characteristics or the study on the threshold, accuracy, and shape
of the SROC curve must be determined, a hierarchical approach HSROC should be
used. The data must conform to this hierarchical approach using the HSROC and
MetaDas packages of the R and SAS languages, respectively, which generate the
following main outputs, see Table 3.

Table 3

Main Outputs of the HSROC Model

R Language SAS Language

A priori values of the model parameters Information on covariates

A posteriori values of the model parameters Initial values of the model and state of convergence and

adjustment of the model

Sensitivity and specificity by studies with their

respective confidence intervals

Sensitivity, specificity, DOR, LR+, LR− consensus

Sensitivity and specificity, consensus with their

respective confidence intervals

Confidence intervals and prediction of model parameters

SROC curve with sensitivity and specificity

consensus and its confidence intervals

Predictive values of sensitivity and specificity for studies,

histogram and normal probability graphs of Bayesian

empirical estimates of random effects

A graphic representation of the above is detailed in Figure 4. The above mentioned
statistical and graphical measurements can be obtained using the algorithms available in
Supplementary Materials.
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Discussion
The Moses model uses true and false positive rate logit functions to build a linear regres‐
sion model where the response variable (test accuracy) is explained by the proportion
of positive test results (relative to the threshold). The SROC curve is symmetrical if
the statistical relationship between precision and threshold is zero, i.e. constant DOR.
This modeling is characterized by a fixed effect since the variation is attributed to
the threshold and the sampling error. This model generates errors, which makes the
statistical inference invalid (Arends et al., 2008; Chu, Guo, & Zhou, 2010; Ma et al., 2016;
Macaskill, 2004; Verde, 2010).

Hierarchical models capture the stochastic relationship between sensitivity, specifici‐
ty, and variability of test accuracy in all studies by incorporating random effects into
the modeling. Bivariate and HSROC models differ in their parameterization but are
mathematically equivalent when covariates are not included (Harbord et al., 2007). The
choice of model depends on the variation in reported thresholds in the studies, and the
inference is given by a summary point or an SROC curve (Takwoingi et al., 2017).

The bivariate model models random effects to estimate sensitivity and specificity, as
well as to construct 95% credibility intervals. The model is based on logit transformations
of sensitivity and specificity as bivariate normal distributions. The estimation of the cor‐
relation parameter is achieved from the subsequent means of sensitivity and specificity
(Launois, Le Moine, Uzzan, Navarrete, & Benamouzig, 2014). Random effects also follow a
bivariate normal distribution. If the model is simplified by assuming that the covariance
or correlation is zero, the model is reduced to two univariate random effects regression
models for sensitivity and specificity (Bauz-Olvera et al., 2018).

The HSROC model is a reference in the study of diagnostic test accuracy and can
be seen as a generalization of the Moses SROC approach, in which TPR and FPR are
modeled directly. (Macaskill, 2004; Takwoingi et al., 2017).

The HSROC model and the bivariate model are different settings of the same underly‐
ing model, and both approaches can be used to calculate estimates of the SROC curve
and random effects. Moreover, there is a difference in the software packages that can
fit them. While the HSROC model requires a non-linear mixed model program like
NLMIXED in SAS, the bivariant only requires a linear mixed model program and can be
installed in R and Stata.

Since the bivariate model is parameterized in terms of sensitivity and mean specificity
(logit), it is often claimed that this is the preferred model for estimating the mean operat‐
ing points. However, in practice, it is possible to obtain estimates of both the average
operating point and the summary ROC curve from both HSROC modes. Therefore, the
estimation of average operating points depends on the homogeneity of the thresholds
included in the analysis, not on the choice of the statistical model. The bivariate model
allows covariates to be included in sensitivity and/or specificity, while the HSROC model
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facilitates the inclusion of covariates that affect threshold and/or accuracy (Takwoingi &
Deeks, 2010).

We suggest that meta-analysts carefully explore and inspect their data using a forest
plot and an SROC curve before performing meta-analyses. These first analyses will
quantify stochastic heterogeneity and the dispersion of study points in the ROC space
(Lee, Kim, Choi, Huh, & Park, 2015). This visualization should provide information on the
approach to be taken at the time of model selection. Although the Bayesian approach is
complex in its parameterization it is not commonly used, but, it represents an alternative
to the maximum likelihood approach. In an empirical evaluation, both approaches were
found to be similar, although Bayesian methods suggest greater uncertainty around point
estimates (Dahabreh, Trikalinos, Lau, & Schmid, 2012; Harbord et al., 2008).

The hierarchical approach can be used in different situations such as (1) the presence
or absence of heterogeneity and (2) cutoff points being homogeneous among studies.
This is the reason we recommend using this model in situations of low prevalence,
because it better handles the variability between and within studies. Thus, this model is
an approach suitable for fixed and random effects depending on the nature of the data.

The bivariate model allows covariates to be included in sensitivity and/or specificity,
while the HSROC model facilitates the inclusion of covariates that affect threshold
and/or accuracy (Takwoingi & Deeks, 2010).

The selection of the statistical model in the meta-analysis of diagnostic tests of
low-prevalence diseases is essential for the integration of the study results. Regardless of
the software used, the rigorous application of the decision-making scheme will help to
guarantee high quality results and facilitate the analysis and interpretation of the results.
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Supplementary Materials
For this article the following supplementary materials are available (Pambabay-Calero, Bauz-
Olvera, Nieto-Librero, Galindo-Villardón, & Sánchez-García, 2020):

• Scripts in R: script_1.R (foresplot, crosshair and RocEllipse); script_2.R (models DSL, MH and
PHM); script_3.R (model Reitsma); script_4.R (model HSROC)

• Script in Stata: script_stata.do
• Scripts in SAS: ejecHSROC.sas; metadas.sas; data_set.csv
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