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Abstract
Evaluating how an effect-size estimate performs between two continuous variables based on the 
common-language effect size (CLES) has received increasing attention. While Blomqvist (1950; 
https://doi.org/10.1214/aoms/1177729754) developed a parametric estimator (q') for the CLES, there 
has been limited progress in further refining CLES. This study: a) extends Blomqvist’s work by 
providing a mathematical foundation for Bp (a non-parametric version of CLES) and an analytic 
approach for estimating its standard error; and b) evaluates the performance of the analytic and 
bootstrap confidence intervals (CIs) for Bp. The simulation shows that the bootstrap bias-
corrected-and-accelerated interval (BCaI) has the best protected Type 1 error rate with a slight 
compromise in Power, whereas the analytic-t CI has the highest overall Power but with a Type 1 
error slightly larger than the nominal value. This study also uses a real-world data-set to 
demonstrate the applicability of the CLES in measuring the relationship between age and sexual 
compulsivity.

Keywords
common-language effect size, confidence intervals, bootstrapping, Monte Carlo simulation, probability-of-
superiority

In psychological research, there has been increasing attention paid to the importance of 
effect size (ES) estimates and confidence interval (CI) in improving the quality of statisti­
cal practices. Cumming (2014) provided detailed guidelines for researchers in reporting 
ES and CI when conducting meta-analysis, which is standard statistical practice in the 
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21st century. Many psychological associations (e.g., American Psychological Association, 
2010) also state that researchers should report ES and CI, because it is considered the best 
reporting strategy for research studies.

ES is mainly measured and quantified based on two theoretical frameworks: the 
d-family (group difference) and r-family (correlation). The idea of d comes from the 
standardized mean difference between two groups of observations (e.g., gender difference 
on performance), whereas the idea of r is based on the level of linear association between 
two variables (e.g., correlation between cognitive ability and performance). One benefit 
of measuring and presenting ES is that the strength of a study effect can be measured 
and disseminated in an understandable, interpretable, and replicable manner (May, 2004). 
For example, a d of .20 suggests that female job incumbents outperform male job incum­
bents by .20 SD units in an appraisal test. Cohen (1988) also provided guidelines for d 
in behavioral science, and he concluded that levels of d equal to .20, .50, and .80 were 
commonly found in behavioral research, which corresponds to a small, medium, and 
large ES, respectively.

By contrast, the interpretation of r is much more challenging (Brooks, Dalal, & Nolan, 
2014). Cohen (1988) attempted to provide an interpretation of r. Researchers can take 
a square of r (e.g., r2 = .09; known as the proportion of variance explained) in order to 
interpret the proportion of variance of variable Y (e.g., performance) that can be accoun­
ted for by variable X (e.g., cognitive ability). For example, r = .30 can be interpreted 
as 9% of variance of incumbents’ performance can be accounted for by their cognitive 
ability in an organization. Cohen (1988) provided a general rule for interpreting a small 
(r = .10), medium (r = .30), and large (r = .50) ES. Despite Cohen’s efforts in providing 
such an interpretation, r2 remains a challenging concept. First, it is hard for researchers 
and practitioners to truly understand the meaning of proportion of variance explained 
without first fully comprehending the meaning of the variance of a variable (Y), and how 
this variable can be overlapped with or explained by the variance of another variable 
(X). Second, the criteria for a small, medium, and large ES are r2 = .01 (or 1% variance 
of Y is explained by X), .09, and .25, respectively; this can seem confusing and arbitrary 
to researchers and practitioners. Even some students and researchers in psychology may 
not be comfortable with this kind of statistical terminology (e.g., Brooks et al., 2014).

In light of this, researchers have explored and considered alternative ESs beyond the 
d-family and r-family. On the basis of the probability-of-bivariate-superiority (PBS) theo­
ry, researchers (e.g., Cliff, 1993, 1994, 1996; Cliff & Keats, 2003; McGraw & Wong, 1992; 
Li, 2016, 2018a; Li & Waisman, 2019; Ruscio, 2008) proposed the idea of common-lan­
guage effect size (CLES), which is regarded as a more understandable and interpretable 
ES than r and d. For example, instead of saying that there is a d (standardized mean 
difference) of 1.00 on a cognitive ability test between the treatment group and control 
group, a researcher can express that there is a 76% likelihood (CLES = Φ d/ 2 , where 
Φ is the normal cumulative distribution function, and data are assumed to follow normal 
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distribution; Ruscio, 2008) that a randomly-selected treatment group participant will 
perform better on a cognitive ability test than a randomly-selected control group partici­
pant.

While CLES for two group comparisons has received increasing attention among 
behavioral researchers, the understanding of whether CLES can be used in evaluating 
the effect between two continuous variables X and Y is limited. Dunlap (1994) is one 
of the pioneer studies that seeks to fill in this research gap. Assuming that X and Y 
are continuous variables that follow a bivariate linear and normal correlation (BLNC), 
researchers can obtain Pearson’s correlation r and convert it to a CLES, which is labelled 
as CLr in Dunlap’s study. That is,

CLr = sin−1 r /π + .5 (1)

where CLr is the CLES that explains the effect between X and Y, r is Pearson’s correlation 
coefficient, sin−1 is the inverse sine function, and π is a constant (≈ 3.14159). For example, 
instead of saying that 16% (r = .4, or r2 = .16) of variance of sons’ heights is explained 
by variance in their fathers’ heights, one can state that “a father who is above average 
in height has a 63% likelihood of having a son of above-average height” (Dunlap, 1994, 
p. 510). The mathematical proof for Dunlap’s r-to-CLr conversion is shown in Li and 
Waisman (2019): if there is a linear correlation between normally distributed X and Y 
continuous scores, then the x-plane and y-plane can be divided into four quadrants based 
on the lines x = x and y = y  (where x is the mean of X and y  is the mean of Y). An 
observed correlation between X and Y (r) can then be converted to its corresponding CLr
through Equation 1 on the basis of the number of sample observations (n1) that belong to 
the first or third quadrants compared with the total number of observations (n).

Despite the potential of CLr, its use is relatively limited in practice because a) re­
searchers may perceive that Dunlap’s (1994) CLr is merely a r-translated statistic useful 
for better knowledge mobilization only, and b) there is no analytic method for estimat­
ing the standard error (SE) and CI for this estimate. Indeed, Li and Waisman’s (2019) 
study shows that the bivariate linear and normal correlation (BLNC) conditions are not 
necessary for researchers to obtain and interpret PBS. Instead, researchers can use and 
report the non-parametric version of CLr, which is known as Bp in Li and Waisman. This 
study aims to extend Blomqvist’s (1950), and Li and Waisman’s (2019) work by proposing 
and developing analytic methods (i.e., analytic-z and analytic-t) for estimating the SE 
and CI surrounding Bp, which offers the necessary mathematical foundation for Bp. This 
can be used by both theoretical researchers who are interested in further testing and 
generalizing Bp to other data scenarios (e.g., multivariate relationships) and by applied 
researchers who are interested in evaluating their data based on Bp, and comparing 
the performance of these methods with the empirical methods (i.e., bootstrap percentile 
interval [BPI], bootstrap bias-corrected-and-accelerated interval [BCaI], bootstrap stand­
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ard interval [BSI] based on the empirical z distribution [BSI-z], and BSI based on the 
empirical t distribution [BSI-t] in Li & Waisman, 2019).

Review of Li and Waisman’s (2019) PBS
Blomqvist (1950) developed a likelihood-based statistic (q). Assuming that (xi, yi), where 
i = 1,2,…, n be n samples from a two-dimensional population associated with a BLNC­
based cumulative distribution function (cdf),

f x, y = e− 1
2 1 − r2

x − x
sx

2 − 2r x − x
sx

y − y
sy + y − y

sy
2
/2πs1s2 1 − r2 (2)

where r is the sample correlation, x is the sample mean of x, y  is the sample mean of y, sx
is the sample SD of X, and sy is the sample SD of Y. Blomqvist’s Equation 12 proved that 
r can be mathematically linked to q, on the basis of the number of sample observations 
(n1) that belong to the first or third quadrants compared with the number of sample 
observations (n2) that belong to the second or fourth quadrants in a x-y plane. That is,

q ≡ 2
πsin−1 r

(3)

where “≡” is the equal sign, when the condition of BLNC is met.
The PBS between X and Y does not necessarily depend upon the BLNC data condition 

assumed in Equation 2. Rather, a randomly selected point (x, y) is assumed to fall into 1 
of the 4 quadrants (a, b, c, and d) in a x-y plane,

f (x, y)

a(xi, yi), if P(xi > x ∧ yi > y)
b(xi, yi), if P(xi ≤ x ∧ yi > y)
c(xi, yi), if P(xi ≤ x ∧ yi ≤ y)
d(xi, yi), if P(xi > x ∧ yi ≤ y)

(4)

Given Equation (4), n1 is defined as the number of a xi, yi  and c xi, yi  points, n2 is defined 
as the number of b xi, yi  and d xi, yi  points, and ∧ is the logical function of “and”. With 
the additional conditions—a) the population means (or medians) are uniquely defined 
as a certain point (e.g., 0); and b) x and y never equals to 0 because of a continuous 
distribution—Blomqvist proved another estimator (called q’; Equation 1 in Blomqvist’s 
study) that estimates the aforementioned likelihood parameter q. That is, q is estimated 
by q′ through

q′ = n1 − n2
n1 + n2 = 2n1

n1 + n2 − 1 (5)
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where n1 is the number of observations that belong to the first or third quadrants, and 
n2 is the number of observations that belong to the second or fourth quadrants in the 
x-y plane. Li and Waisman (2019) provided a proof between PBS (Bp) and Blomqvist’s 
likelihood estimate (q) in order to show how Dunlap’s (1994) CLr is only applicable when 
data meets the assumption of BLNC. First, given Equation 4, Li and Waisman formally 
defined PBS as

Bp = P(Yi > Y ∧ Xi > X) = n1/(n1 + n2)
= i = 1

n # sign(xi − x) ⋅ sign(yi − y) > 0 /(n1 + n2)
(6)

where Bp is the sample PBS value, Xi > X  denotes whether a X score of participant i is 
above the mean of all other X scores, and Yi > Y  denotes whether a Y score of participant 
i is above the mean of all other Y scores. Computationally, Bp can be effectively estimated 
through i = 1

n # sign xi − x ⋅ sign yi − y > 0 / n1 + n2 .
Under the special case when X and Y follow BLNC, one can divide Equation 3 by 2 

and add 0.5 to become

q′ 1
2 + 0.5 ≡ 1

πsin−1 r + 0.5 (7)

where the left side becomes n1/ n1 + n2  [given 2n1
n1 + n2 − 1 1

2 + 0.5 from Equation 5], 
such that

n1/ n1 + n2 ≡ 1
πsin−1 r + 0.5 (8)

In fact, Equation 8 is identical to Dunlap’s (1994) r-to-CLr in Equation 1. This implies 
the algorithm of “ 1

π sin−1 r + 0.5” can be used for converting r to CLr to measure PBS, 
if and only if BLNC is met ("≡"). Li and Waisman’s (2019) simulation results showed 
that researchers can routinely use Bp in Equation 6 that is robust to data generated from 
either Equation 2 (BLNC) or Equation 4 (PBS).

The Proposed Analytical Methods for Bp

Li and Waisman’s (2019) Bp provides a nonparametric method for obtaining a point esti­
mate of PBS between two continuous variables. However, this method is not sufficient 
in practice. Researchers and practitioners have to evaluate and interpret the CI for Bp
in order to evaluate the associated sampling error, precision, and significance. Moreover, 
the CI offers a range of possible Bp estimates for researchers to examine and replicate in 
reproducibility research (Cumming & Maillardet, 2006). One approach for obtaining the 
CI is using non-parametric bootstrapping, a computer-intensive technique that resamples 
data-sets with replacement many times (e.g., 2,000) in order to simulate the sampling 
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distribution for the 2,000 resampled Bp estimates and obtain the bootstrap-based CIs such 
as BSI-z, BSI-t, BPI, and BCaI. Li and Waisman found some good coverage probabilities 
of the true population Bp value (βp) from the bootstrap CIs. A second approach is using 
an analytic method for estimating the SE and CI for Bp. The mathematical proof for 
deriving the SE for a new statistical measure is often sophisticated. Fortunately, this 
study proposes and demonstrates that one can use Blomqvist’s (1950) proof for the SE of 
q (Blomqvist’s likelihood estimate) and convert it to the SE of Bp in practice, as discussed 
below.

Assuming that (x, y) points are generated from a PBS-based function in Equation 4, 
Blomqvist (1950; Section 3, Equations 3 - 9) asymptotically derived the sampling distribu­
tion of the likelihood estimate (q’): specifically, when n ∞, q’ is asymptotically and ap­
proximately distributed as a normal distribution, with an expected mean E q′ Q and SE 
equals to σ q′ (1 − Q2)/n, where Q is the true population likelihood value in Blomqv­
ist. In practice, Q can be substituted by q′. Given that q′ 1

2 + 0.5 = n1/ n1 + n2 = Bp, and 
the variance properties [Var a ⋅ X = a2Var X  and Var a + X = Var X , where a is a 
constant], Bp is asymptotically distributed as a normal distribution with

E Bp = βp (9)

σ Bp σ q′ 1
2 + 0.5 = σ q′ 1

2 = σ 1
4

1 − q′2
n = σ 1

4
1 − n1 − n2

n1 + n2
2

n1 + n2
(10)

where βp is the true population PBS value of Bp, and n1 and n2 are defined in Equation 
5. Given Equation 10, the 1 − α ⋅ 100% (e.g., 1 − α ⋅ 100% = 95%, where α is the level of 
significance) analytic-z, symmetrical CI surrounding βp can be constructed as

Bp ± z 1 − α
2 ⋅ σ Bp , (11)

where z is the inverse of the cdf that converts the probability value of 1 − α
2  to a critical 

z cutoff score. For the 95% analytic-z CI, the lower and upper limits ≈ Bp ± 1.96 ⋅ σ Bp . 
Further, researchers often use the inverse cumulative t distribution with degrees of 
freedom (df) equal to n – 2 for estimating the SE. Hence, the 1 − α ⋅ 100% analytic-t, 
symmetrical CI surrounding βp can be constructed as

Bp ± t 1 − α
2 ⋅ σ Bp , (12)

where t is the inverse of the cdf that converts the probability value of 1 − α
2  to a critical 

t cut-off score based on df = n − 2.
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Simulation

Design
Distribution (∅)

Five distributions were evaluated (Figure 1). First, the X and Y scores follow BLNC that 
is assumed for the estimation of Pearson’s correlation r in Equation 1. This distribution 
expects to produce an accurate r estimation, which can appropriately be converted to 
CLr in Equation 1. The proposed Bp is also expected to be accurate. The remaining distri­
butions include four types of common symmetrical distributions in behavioral research—
PBS-normal distribution, t distribution (with df = 18), uniform distribution, and beta 
distribution (with alpha = beta = 0.5)—that adhere to the PBS function for generating the 
PBS-based X and Y scores. Figure 1 includes all these five different bivariate distributions, 
and rows 2 – 5 show that researchers may easily miss that the x and y are indeed 
(PBS-based) related if they obtain and evaluate r in their data-analytic plan.

Sample size (n)

Six levels of sample sizes—20, 50, 100, 300, 500, and 1000—were evaluated, which compre­
hensively cover a small to large sample size in behavioral research.

Population PBS (βp)
Nine levels of βp — .50, .55, .60, .65, .70, .75, .80, .85, and .90 — were examined. These 
values are comprehensive in covering most levels of ES in practice.

These factors are combined to produce a design with 5 × 6 × 9 = 270 conditions. Each 
condition was replicated 1,000 times to evaluate the accuracy of Bp. For the bootstrap 
CIs, 2,000 samples were resampled with replacement to generate the BSI-z, BSI-t, BPI, 
and BCaI. The simulation was conducted in RStudio (2020), and the code is presented in 
Supplementary Materials below.

Data Generation Procedure
For the first type of distribution (BLNC), X scores were generated from a normal distribu­
tion, N(0, 12). The linear-related Y scores were generated from

Y = ρX + eY (13)

where ρ is the population Pearson’s correlation r converted from the population PBS, βp
through Equation 1, and eY  is the error score generated from a N(0, 1 − ρ2). Given this 
method, X and Y are expected to be linearly correlated with a level of ρ.

For the remaining distributions, the simulation was executed in the R package 
(truncdist; Nadarajah, & Kotz, 2006) that can generate truncated data for most commonly 
found probability distributions. This means that when a generated X score is above (or 
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below) the mean of all the other X scores, the package can generate a Y score that is 
above (or below) the true population mean of a probability distribution (i.e., PBS-normal 
distribution, t distribution, uniform distribution, and beta distribution). Specifically, a 
sample Bp was first generated from a binominal distribution, B(n, βp), to allow sampling 

Figure 1

Scatterplots for 200 Simulated (x, y) Points That Come From BLNC, PBS-Normal, PBS-t, PBS-Uniform, and PBS-
Beta Distributions

Note. βp is the population probability-of-bivariate-superiority (PBS) value. BLNC refers to the bivariate linear, 
normal, and continuous distribution, PBS-normal is the PBS-based normal distribution, PBS-t is the PBS-based t 
distribution, PBS-uniform is the PBS-based uniform distribution, and PBS-beta is the PBS-based beta 
distribution.
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distributions of the PBS values. Second, the X scores were generated from one of the four 
symmetrical distributions: PBS-normality, N(0, 12); t distribution, t(18); uniform distribu­
tion, U(− 12/2, 12/2); and beta distribution, Beta(0.5, 0.5). Third, when a generated X 
score was above (or below) the mean of all other X scores, there is a Bp likelihood (based 
on the binomially generated Bp) that a simulated Y score would be above (or below) 
the criterion or population mean (i.e., 0 for PBS-normality, 0 for t distribution, 0 for 
uniform distribution, and 0.5 for beta distribution, respectively) of a truncated probability 
distribution. Consequently, the generated Y scores followed normality, t distribution, 
uniform distribution, and beta distribution, and there was a Bp likelihood that when the 
X score was above (or below) the mean of all other X scores, the Y score would also be 
above (or below) the mean of all other Y scores. Once the data were simulated, the 6 CIs 
were constructed for comparisons.

Evaluation Criteria
Bias

Bias is used to evaluate the performance of the point estimates for the true PBS (βp), i.e., 
bias = Bp  − βp, where Bp is the mean of the 1,000 replicated Bp estimates, respectively.

Coverage Probability (CP)

Coverage probability is defined as the likelihood that the 95% CIs surrounding the Bp
could span the true associated value (i.e., βp) across 1,000 replications. That is,

CP = i = 1
1,000 # l i < βp ∧ u i > βp /1,000 (14)

where # l i < βp ∧ u i > βp  is the count function that count the number of times that 
the lower limit is smaller than βp and the upper limit is larger than βp. For the 95% CI, 
the expected CP should ideally be .95. To allow sampling error for CP, Chan and Chan 
(2004) suggested that a 95% CI should be regarded as acceptable, when the associated CP 
is within the range of [.925, .975].

Width of the CI

The width is defined as the difference between the upper and lower limits of a CI. A 
narrower (or wider) CI means that the method can produce a more (or less) precise 
boundary surrounding the Bp estimate, but this CI should also maintain a good CP in 
order to be regarded as an appropriate method. This is because an overly precise CI tends 
to decrease the likelihood that the CI could span the true parameter value, whereas an 
overly wide CI would, in theory, result in a CP close to 100%, but this could be too wide 
without any practical inferences.
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Type 1 Error and Power

When βp = .50 (i.e., lack of effect), Type 1 error is used to evaluate the chance that a 
constructed 95% CI does not span this true value across replicated samples, leading to an 
error in making a statistical inference. Of the 1,000 replications, the nominal number of 
the CIs that does not span the value of .50 should be as close as possible to 50 (or 5% of 
the 1,000 replicated samples). When βp > .50, Power is used to evaluate the chance that 
a constructed 95% CI does not span the value of .50 across the replicated samples, which 
yields a significant result and correct decision.

Simulation Results

Bias
When the assumption of BLNC was met, Bp produced good results (see Table 1). The 
biases ranged from -.0069 to .0042 with a mean of .0001, meaning that Bp is highly 
accurate in quantifying the level of PBS for data that follows the conventional BLNC 
distribution. When data followed the PBS-based distributions, Bp performed equally well. 
For PBS-normal, the biases ranged from -.0428 to .0023 with a mean of -.0103 (range 
= [-.0428, .0023], mean = -.0103). For PBS-t, range = (-.0435, .0005), and mean = -.0112. 
For PBS-uniform, range = (-.0306, .0032), and mean = -.0080. For PBS-beta, range = 
(-.0243, .0012), and mean = -.0056.

Table 1

Biases of Bp When Data Followed 5 Types of Distributions: BLNC, PBS-Normal, PBS-t, PBS-Uniform, and PBS-Beta

Bias BLNC PBS-normal PBS-t PBS-uniform PBS-beta Overall

M .0001 -.0103 -.0112 -.0080 -.0056 -.0070

SD .0018 .0099 .0104 .0076 .0056 .0087

Min -.0069 -.0428 -.0435 -.0306 -.0243 -.0435

Max .0042 .0023 .0005 .0032 .0012 .0042

Note. BLNC = the bivariate linear, normal, and continuous distribution; PBS-normal = the PBS-based normal 
distribution; PBS-t = the PBS-based t distribution; PBS-uniform = the PBS-based uniform distribution; PBS-beta 
= the PBS-based beta distribution.

CP, Width, Type 1 Error and Power
Of the six methods, the BSI-z and BSI-t have the largest chance of spanning the true pa­
rameter value (see Table 2). The CPs ranged from .9440 to .9940 with a mean of .9668 for 
BSI-z, and they ranged from .9460 to .9980 with a mean of .9695 for BSI-t. On the other 
hand, a CI that produces an overly large CP (i.e., CP > .95) does not necessarily mean 
that this CI is the most accurate. The over-coverage of the true parameter value is in part 
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due to the unnecessarily wide and imprecise CI that can always span the true parameter 
value, which in turn leads to inaccurate Type 1 error and Power. In this case, the widths 
of the BSI-z ranged from .0399 to .5130 with a mean of .2029, and the widths of the BSI-t 
ranged from .0399 to .5499 with a mean of .2104, which are the widest relative to all the 
other methods. The means of the Type 1 error rates were .0380 and .0359 for BSI-z and 
BSI-t, respectively, which are smaller than the nominal value of .05, meaning that both 
methods are overly conservative in rejecting the null hypothesis. However, the means 
of the Power rates were .7895 and .7819 for BSI-z and BSI-t, respectively, and they were 
higher (or lower) than the means of the power rates produced by the BPI and BCaI (or 
analytic-z and analytic-t).

Table 2

Performance of the 6 Different CIs: Analytic-z, Analytic-t, BSI-z, BSI-t, BPI, and BCaI

Performance Analytic-z Analytic-t BSI-z BSI-t BPI BCaI

CP
M .9326 .9371 .9668 .9695 .9458 .9278

SD .0219 .0195 .0100 .0115 .0410 .0218

Min .8120 .8670 .9440 .9460 .7550 .8130

Max .9640 .9700 .9940 .9980 1.0000 .9650

% within [.925, .975] .7593 .8111 .7926 .6741 .6370 .6926

Width
M .1695 .1755 .2029 .2104 .2009 .1978

SD .1151 .1241 .1465 .1581 .1433 .1436

Min .0372 .0372 .0399 .0399 .0399 .0401

Max .4274 .4581 .5130 .5499 .5064 .4986

Type 1 Error
M .0547 .0547 .0380 .0359 .0225 .0509

SD .0101 .0101 .0075 .0093 .0127 .0072

Min .0360 .0360 .0230 .0150 .0010 .0320

Max .0740 .0740 .0500 .0490 .0460 .0660

Power
M .8108 .8108 .7895 .7819 .7378 .7361

SD .2967 .2967 .3151 .3228 .3631 .3548

Min .0580 .0580 .0380 .0320 .0040 .0280

Max 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Note. M = mean; SD = standard deviation; BSI-z = bootstrap standard interval based on the analytic-z SE 
approach: BSI-t = bootstrap standard interval based on the analytic-t SE approach; BPI = bootstrap percentile 
interval; BCaI = bootstrap bias-corrected and accelerated interval; % within [.925, .975] = the percentage of the 
estimated coverage probabilities that fell within [.925, .975] across the 270 simulation conditions; CP = coverage 
probability.
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For the two percentile-based bootstrap CIs, BCaI has the best protected Type 1 error 
rates, which ranged from .0320 to .0660, with a mean of .0509: very close to the nominal 
value of .05. On the other hand, the Power of BCaI was found to be the smallest (mean 
= .7361) relative to all other methods. This finding is understandable because a better 
protected Type 1 error rate tends to decrease the Power in detecting a significant result. 
Of the 270 conditions, 187 (or 69.26%) of the CPs fell within the criterion of [.925, .975], 
but the mean of the CPs was the smallest (.9278) relative to all the other methods. 
Comparatively, another percentile-based CI (BPI) is more conservative than BCaI, when 
a researcher is making an inferential-statistical decision. Here, the mean Type 1 error 
rate was .0225, and the mean Power rate was .7378; both values were small relative to the 
other methods. Of the 270 conditions, 172 (or 63.70%) of the CPs fell within the criterion 
of [.925, .975], although the mean CP (.9458) was the closest to the nominal value of .95.

Regarding the two analytic approaches, both the analytic-z and analytic-t methods 
produced the largest means of the Power rates (.8108), and their means of the Type 
1 error rates (.0547) were slightly larger than the nominal value of .05, meaning that 
both methods are slightly liberal in detecting a significant result. The widths of the CI 
were the narrowest (or the most precise) relative to the other methods. That is, the 
widths ranged from .0372 to .4274 with a mean of .1695 for the analytic-z. The use of 
the t distribution in constructing the analytic-t made the widths slightly wider than 
the analytic-z, and they ranged from .0372 to .4581 with a mean of .1755. The wider 
analytic-t approach improved the performance of the CPs. Of the 270 conditions, 219 (or 
81.11%) produced a CP within the criterion of [.925, .975], which is the largest among all 
the other methods. For the analytic-z method, 205 (or 75.93%) conditions resulted in a CP 
that fell within the criterion of [.925, .975].

Effects of Sample Sizes on CP, Width, Type 1 Error, and Power
Given that sample size is the only factor that researchers can plan and control in practice, 
this section examines the effects of different sample size levels on the 6 CIs1 (see Table 3).

1) There was no obvious difference regarding the effects of the data distributions and true βp values on the CP and 
width, and hence, these effects are not explained. Moreover, data distribution did not influence the Type 1 error and 
Power rates of the CIs, and thus the explanation for these effects are excluded. On the other hand, different levels of 
sample sizes and βp values were found to affect the performance of the 6 CIs, and hence, their influences are further 
discussed in the following sections.
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Table 3

Effects of Different Sample Sizes on the Coverage Probability, Confidence Width, Type 1 Error, and Power of the 6 
Different CIs

Performance / n Analytic-z Analytic-t BSI-z BSI-t BPI BCaI

CP
20 .9180 .9336 .9744 .9835 .9700 .8899

50 .9314 .9381 .9724 .9755 .9634 .9261

100 .9364 .9386 .9675 .9699 .9466 .9267

300 .9374 .9381 .9650 .9656 .9374 .9396

500 .9364 .9380 .9621 .9625 .9318 .9417

1000 .9358 .9362 .9596 .9597 .9256 .9427

Width
20 .3746 .4015 .4774 .5118 .4672 .4684

50 .2415 .2478 .2880 .2955 .2863 .2795

100 .1712 .1734 .1978 .2003 .1974 .1917

300 .0989 .0993 .1104 .1109 .1105 .1073

500 .0765 .0767 .0845 .0847 .0847 .0823

1000 .0541 .0541 .0590 .0591 .0592 .0576

Type 1 Error
20 .0404 .0404 .0302 .0246 .0046 .0544

50 .0668 .0668 .0332 .0298 .0120 .0494

100 .0536 .0536 .0370 .0344 .0180 .0492

300 .0560 .0560 .0396 .0392 .0294 .0492

500 .0578 .0578 .0434 .0432 .0334 .0534

1000 .0534 .0534 .0446 .0444 .0374 .0500

Power
20 .0678 .0678 .0500 .0370 .0092 .0350

50 .1282 .1282 .0764 .0680 .0320 .0548

100 .1784 .1784 .1372 .1320 .0866 .1104

300 .4146 .4146 .3696 .3674 .3194 .3280

500 .6000 .6000 .5604 .5592 .5174 .5252

1000 .8834 .8834 .8696 .8690 .8540 .8502

Note. n = sample size; BSI-z = bootstrap standard interval based on the analytic-z SE approach; BSI-t = bootstrap 
standard interval based on the analytic-t SE approach; BPI = bootstrap percentile interval; BCaI = bootstrap 
bias-corrected and accelerated interval; CP = coverage probability.

First, when sample size was increased, the CPs obtained from the 6 CIs tended to 
be closer to the nominal value of .95. Specifically, the analytic-z, analytic-t, and BCaI 
started from a smaller mean CP (.9180, .9336, and .8899, respectively) when n = 20, 
and it increased to a value closer to .95 (.9358, .9362, and .9427, respectively) when 
n = 1,000. Comparatively, the BSI-z, BSI-t, and BPI began with a larger mean CP 
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(i.e., .9744, .9835, and .9700, respectively) when n = 20, and it decreased to a value closer 
to .95 (i.e., .9596, .9597, and .9256, respectively) when n = 1,000. It is noteworthy that the 
mean CP yielded by the BPI always decreased when n increased.

Second, the mean widths of the 6 CIs became narrower when n increased. The 
differences of the mean widths of the 6 CIs were the most obvious when n = 20, with the 
narrowest mean width of .3746 for the analytic-z, and the widest mean width of .5118 for 
the BSI-t. However, the mean widths yielded by all the 6 CIs, which ranged from .0541 
to .0592, became highly similar when n = 1,000.

Third, BCaI always led to the best protected mean Type 1 error rates (ranging 
from .0492 to .0544), and the analytic-z and analytic-t produced reasonable mean error 
rates (both ranged from .0404 to .0668). All these 3 methods tended to produce a mean 
error rate close to .05 when n increased. The remaining methods (BSI-z, BSI-t, and BPI) 
had a conservative mean Type 1 error rate (.0302, .0246, and .0046) when n = 20, and it 
became slightly closer to .05 (.0446, .0444, and .0374) when n = 1,000.

Fourth, when n increased, the mean Power rates also increased for the 6 CIs. When n 
was small, there were noticeable differences in the mean Power rates (e.g., .1282 for the 
analytic-z or analytic-t and .0320 for the BPI when n = 50), but all the mean Power rates 
were larger than 85% when n = 1,000.

Effects of the βp Values on Power
The only influential factor remaining lies in the effect of different βp values on the Power 
rates of the 6 Cis (see Table 4). As expected, when βp increased from .55 to .90, the 
mean Power rates of the 6 CIs increased accordingly. The most powerful methods were 
the analytic-z and analytic-t, and they shared the same Power rates, which increased 
from .3787 (when βp = .55) to .9917 (when βp = .90). The percentile-based BPI and BCa 
were relatively the least powerful. For BPI, the Power rates ranged from .3013 to .9460 
with a mean of .7378. For BCaI, the Power rates ranged from .3173 to .9377 with a mean 
of .7361. For the remaining bootstrap-analytic approaches, the range of the Power rates 
was [.3439, .9863] with a mean of .7895 for BSI-z, whereas the range was [.3388, .9825] 
with a mean of .7819 for BSI-t. Generally, increasing the βp values tends to produce a 
similar and comparable increase in the Power rate for all the 6 methods, and their slight 
differences depend upon whether they have a more conservative (or liberal) Type 1 error 
rate at the baseline when βp = .50.

In sum, when a study sample is small (n = 20), the analytic-t appears to be the most 
appropriate CI with a good CP, large Power, reasonable Type 1 error, and generally 
narrow and precise width of the CI. When a study sample is large (n = 1,000), a scenario 
in which many inferential statistics may be overly sensitive and powerful in signalling a 
significant result leading to an inflated Type 1 error, the BCa is the most desirable choice 
because of its highly protected mean Type 1 error and reasonable Power rates. It also has 
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a good mean CP and moderate width of CI for maintaining a good balance between Type 
1 error and Power.

Real-World Example
On the basis of sensation-seeking theories, Kalichman and Rompa (1995) developed 
a scale, called the Sexual Compulsivity Scale (SCS), which measures whether people 
possess higher levels of sexual compulsivity or oriented thinking in their daily lives. The 
SCS is a 10-item inventory and participants respond on a 4-point Likert scale (from 1 “not 
at all like me” to 4 “very much like me”). Sample questions include “I find myself thinking 
about sex while at work,” and “my desire to have sex has disrupted my daily life.” The 
SCS has been used and validated in many studies (e.g., Gaither, Sellbom, & Meier, 2003; 
Humphreys & Brousseau, 2010; Milhausen, Graham, Sanders, Yarber, & Maitland, 2010).

There is an open-access database that provides a raw SCS data-set for research purpo­
ses (the data used for the current analysis is available in the Supplementary Materials). 
This database saved n = 3,375 valid respondents (with 1 missing value), who provided 
their self-report scores on SCS. A common research question associated with this data set 
involves whether or not respondent’s age is related to sexual compulsivity. Researchers 
typically compute a total score of the 10 items to reflect the level of sexual compulsivity, 
and this variable is approximated as a continuous variable with a score ranging from 4 to 
40. Age is measured in terms of years, which is also a continuous variable. The conven­
tional Pearson’s correlation showed that r = .0037, 95% CI [-.0300, .0374], meaning that 
only .00137% (r2 = .0000137) of variance of sexual compulsivity can be accounted for by 

Table 4

Effects of the βp Levels on the Power of the 6 CIs

βp Analytic-z Analytic-t BSI-z BSI-t BPI BCaI

.55 .3787 .3787 .3439 .3388 .3031 .3173

.60 .6402 .6402 .6047 .5975 .5580 .5643

.65 .7740 .7740 .7402 .7302 .6811 .6833

.70 .8601 .8601 .8340 .8233 .7718 .7701

.75 .9146 .9146 .8986 .8885 .8390 .8310

.80 .9509 .9509 .9407 .9328 .8849 .8774

.85 .9761 .9761 .9678 .9612 .9183 .9074

.90 .9917 .9917 .9863 .9825 .9460 .9377

Note. βp = the true population probability-of-bivariate-superiority (PBS) value; BSI-z = bootstrap standard 
interval based on the analytic-z SE approach; BSI-t = bootstrap standard interval based on the analytic-t SE 
approach; BPI = bootstrap percentile interval; BCaI = bootstrap bias-corrected and accelerated interval.
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age. The 95% CI also spans the value of 0, meaning that the correlation is not significant 
at the .05 level. Comparatively, if a researcher examines the relationship based on PBS 
(see dataset in Supplementary Materials), then the result will be interpreted differently 
with Bp = .5170, and the 95% BCaI [.5001, .5342] (or the 95% analytic-t CI [.5001, .5339]). 
Note that although the Bp value is not large (.5170), this effect is significant at the .05 
level, and the 95% CI does not span the value of .50. One can thus interpret the result 
as being a 51.7% likelihood that when a person is older than the mean age of all other 
participants (31.02 years), the person will also have a sexual compulsivity higher than the 
mean sexual compulsivity score (23.45 in SCS) of all other participants.

Conclusion and Discussion
A lack of bivariate linear correlation does not imply a lack of bivariate relationship. 
Most behavioral researchers examine a research hypothesis that is based on linear rela­
tionships between variables. They typically specify and choose a linear-based statistical 
model (e.g., Pearson’s correlation), despite the fact that there are many other types of 
bivariate relationships (e.g., curvilinearity; Li, 2018b). Dunlap (1994) is arguably one of 
the pioneer studies which attempted to develop a method to evaluate the level of PBS 
instead of bivariate linearity. Yet, Dunlap’s approach neither extends the concept of 
bivariate relationship beyond linearity nor provides a SE and CI algorithm for estimating 
the associated sampling error and precision. Li and Waisman (2019) mathematically de­
rived an algorithm for estimating PBS (Bp) between two continuous variables, but did not 
provide the mathematical details for developing an analytic method for the SE and CI. 
Given that many behavioral researchers would prefer a PBS-based interpretation (Brooks 
et al., 2014), and PBS-based relationships have tremendous potential for explaining many 
bivariate relationships that may have been missed in previous research, this study is an 
important piece of work that fills in this research gap.

The present study is a crucial development in extending and promoting the use of 
PBS in practice. Researchers are increasingly aware of the importance and usefulness of 
PBS in examining relationships between variables. Conceptually, both r and PBS can be 
used to measure and quantify the level of bivariate relationships that may exist in two 
variables. Pearson’s correlation is arguably the most widely employed statistical measure 
because of its simple, easy-to-understand concept that linearity is the underlying explan­
ation for why two variables covary together. In addition to r, there are indeed many oth­
er alternative methods for detecting nonlinear bivariate relationships, but these methods 
have their own limitations. For instance, Reshef et al. (2011) proposed a new correlational 
estimate (maximal information coefficient [MIC]) that can potentially detect 27 different 
types of bivariate relationships (e.g., linear, cubic, parabolic). One potential weakness to 
this approach is that MIC is too generic in identifying any particular type of relationship, 
and researchers may find it difficult to interpret the value of MIC because, for example, 
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a value of MIC = 0.5 could refer to very different meanings or sizes of an effect for 
any of the 27 types of relationships. Moreover, as aptly noted by a reviewer of this 
study, the Power of the MIC in detecting any particular type of relationship may suffer. 
PBS, on the other hand, was proposed to answer a slightly different question that many 
psychological researchers address. That is, researchers should test models for detecting 
ordinal relationships because many variables used in psychological research are indeed 
ordinal-scale (e.g., 5-point Likert scale). When researchers analyze ordinal data with 
(inappropriate) metric models, Liddell and Kruschke (2018) found that there will be an 
increase in Type 1 error and a loss of Power. PBS is a measure that is not only easier to 
be interpreted than r, but it also assesses an ordinal relation between x and y without 
depending upon the unnecessary linearity assumption.

Most publication manuals in psychology (e.g., American Psychological Association, 
2010) require that researchers report the CI and interpret the significance level in addi­
tion to a point estimate of a statistical measure. This study extends early studies (e.g., 
Blomqvist, 1950) to develop a mathematical foundation for the PBS estimate (Bp) and 
an analytic method for estimating the associated SE, and comparing both the analytic 
and bootstrap approaches to the CI constructions for Bp. The present study provides an 
important mathematical proof for estimating the sampling error and precision for Bp, 
so that this area of research can further be tested and used by theoretical and applied 
researchers. Moreover, this proof also clearly shows that PBS can be conceptualized as an 
independent statistical model, which does not need to be converted from r based on the 
assumption of BLNC in Dunlap (1994).

Our simulation results show that each of the 6 CI methods behave in a manner that 
may serve for different research purposes. If a researcher prefers to use a method that 
encompasses many potential study effects, perhaps in the early stages of exploratory re­
search, then the researcher can use the analytic-t CI because it has the highest Power in 
signalling a significant Bp result with a slightly liberal Type 1 error rate (i.e., mean Type 
1 error rate = .0547 in the current simulation). On the other hand, when a researcher is 
interested in confirming a study effect that was found and published by other researchers 
in earlier studies, the BCaI method is the most desirable because it has the most accurate 
Type 1 error rate (i.e., mean Type 1 error rate = .0509 in the current simulation), a 
criterion that should be stringently protected in the later stages of a research study. 
Another criterion for choosing between the analytic and bootstrap CIs is the sample size 
in a study. As shown in the simulation, the BCaI tends to behave well in terms of Type 1 
error, Power, CP, and width with a large sample (e.g., n = 1,000), whereas the analytic-t CI 
possesses good CP, Power, precise confidence width, and reasonable (and slightly liberal) 
Type 1 error with a small sample (e.g., n = 20).

In the real-world example, the results led to different conceptual understandings 
of the pattern of relationships based on r and Bp. The correlation between age and 
sexual compulsivity was .0037 (which is close to 0), implying that linearity should not 
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be the underlying pattern or shape that governs the association between age and sexual 
compulsivity. On the other hand, if one uses Bp to conceptualize their association, there 
is a 51.7% likelihood that a person who is older than the mean age of all other partici­
pants (31.02 years), will also have a sexual compulsivity higher than the mean sexual 
compulsivity level (23.45 in SCS) of all other participants. Furthermore, one would have 
a different statistical inference if one uses the CI for r (non-significant result) and the CI 
for Bp (significant result).

In terms of theory, this study provides the details of the necessary mathematical 
proof (Equations 3 - 12) for the point estimate, SE and CI for Bp, as well as the code 
for future researchers who are interested in investigating PBS-based relationships. One 
future direction involves generalizing PBS to complex relationships (e.g., the conditional 
effect of X on Y controlling for covariates, interaction, mediation, and moderation) that 
are frequently found in behavioral research. The current mathematical proof lays a 
foundation for theoretical researchers to extend and develop PBS. Another direction is 
examining additional factors that could influence the behavior of Bp as well as its SE 
and CI. As in other simulations, the present study cannot include all different factors 
and examine their impact on a statistical method. For example, the numbers of a xi, yi
points and c xi, yi  points should be similar (i.e., symmetric distribution) as assumed in 
the classical theory of likelihood-based relationships in Blomqvist (1950). Future research 
could examine whether Bp is robust to asymmetric distributions (e.g., ln μ, σ2 ) for X 
and Y, with the expected population means of X and Y (e.g., e μ + σ2/2 ) serving as the 
corresponding cut-off criteria that govern PBS between X and Y.
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