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Abstract
A balanced ANOVA design provides an unambiguous interpretation of the F-tests, and has more 
power than an unbalanced design. In earlier literature, multiple imputation was proposed to create 
balance in unbalanced designs, as an alternative to Type-III sum of squares. In the current 
simulation study we studied four pooled statistics for multiple imputation, namely D₀, D₁, D₂, and 
D₃ in unbalanced data, and compared them with Type-III sum of squares. Statistics D₁ and D₂ 
generally performed best regarding Type-I error rates, and had power rates closest to that of Type-
III sum of squares. Additionally, for the interaction, D₁ produced power rates higher than Type-III 
sum of squares. For multiply imputed datasets D₁ and D₂ may be the best methods for pooling the 
results in multiply imputed datasets, and for unbalanced data, D₁ might be a good alternative to 
Type-III sum of squares regarding the interaction.
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In an experiment where two-way analysis of variance is the intended analysis, unfore­
seen circumstances may occur which may cause the design to be unbalanced. Unbal­
anced data may also occur in non-experimental research when group sizes are unequal 
by themselves. One important consequence of imbalance is that due to the resulting mul­
ticollinearity F-tests in ANOVA have less power than in balanced designs (e.g., Shaw & 
Mitchell-Olds, 1993, p. 1643). One of the most widely used methods for calculating F-tests 
in unbalanced data is Type-III sum of squares. This method has several advantages over 
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other types of sum of squares, such as Type-I and Type-II. For example, in Type-III sum 
of squares, the F-values are not influenced by the order in which each effect is entered in 
the ANOVA, as in Type-I sum of squares. For a discussion of the advantages of Type-III 
sum of squares over the other types, see Maxwell & Delaney (2004). However, despite 
these advantages, the power of the F-tests in Type-III sum of squares is still lower than in 
balanced designs.

According to Schafer (1997, p. 21) an unbalanced design can be considered a miss­
ing-data problem by imagining a number of additional cases with missing data on the 
outcome variable, which in the appropriate conditions would result in a balanced design 
(also, see Shaw & Mitchell-Olds, 1993, p. 1640, and Winer, Brown, & Michels, 1991, pp. 
479-481). Considering an unbalanced design a missing-data problem creates new ways 
to handle the problems that come with unbalanced designs by using methods for deal­
ing with missing data. Shaw and Mitchell-Olds (1993, p. 1641) discuss imputation (i.e., 
estimation) of the missing data to balance the design. They point out that imputation 
will give unbiased parameter estimates of the ANOVA model, but biased significance 
tests. This bias is caused by the fact that the imputed values are treated as observed 
values, and do not incorporate uncertainty of the missing values in the analysis (e.g., 
Schafer, 1997, p. 2). Thus, a method for estimating the missing values is needed that 
does take this uncertainty into account. One such method is multiple imputation (Rubin, 
2004; Van Buuren, 2012). In multiple imputation, 1) missing values are estimated multiple 
times (M), resulting in M different complete versions of the incomplete dataset. Next, 2) 
these complete datasets are analyzed using the statistical analysis of interest, resulting 
in M outcomes of the same analysis, and 3) the results are combined into one pooled 
analysis, such that the uncertainty about the missing values is taken into account. For 
this pooling, formulas are used which will henceforth be called combination rules.

For balancing unbalanced data, multiple imputation may be used as follows. First, by 
adding a number of additional cases to specific groups such that all groups have equal 
size, the dataset is now balanced where in some cells cases have missing data on the 
outcome variable. These missing data are then multiply imputed using factors A and B as 
categorical predictors of the missing data on the outcome variable. Procedures for how to 
generate multiply imputed values for the missing data are described in, for example, Van 
Buuren (2012, Chapter 3) and Raghunathan, Lepkowski, Van Hoewyk, and Solenberger 
(2001).

Once multiply imputed datasets have been obtained, the ANOVAs can be applied 
to these datasets, and the results can be combined using specific combination rules. 
However, Van Ginkel and Kroonenberg (2014) argue that the M F-tests of an effect in 
ANOVA in M multiply imputed datasets cannot be combined directly, because for the 
combination rules that are suited for ANOVA (to be discussed shortly) one needs M sets 
of regression coefficients and M covariance matrices of these regression coefficients. See, 
Rubin (2004, pp. 79-81) and Van Ginkel (2019) who show how to calculate a pooled F-sta­
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tistic testing several regression coefficients for significance simultaneously for multiply 
imputed datasets.

However, one can reformulate the two-way ANOVA model as a regression model, 
so that the combination rules can be applied to the regression coefficients. Van Ginkel 
and Kroonenberg (2014) show that this can be done by recoding the categorical variables 
and their interaction into effect-coded variables, and using these effect-coded variables 
as predictors in the regression model (also, see Winer et al., 1991, pp. 959-963). Once 
estimates of the regression coefficients and their covariances have been obtained for each 
of the M imputed datasets, the results may be combined.

For pooling the results of two-way ANOVA Rubin (2004) discusses four methods that 
may be good candidates. Schafer (1997) called three of these methods D1, D2, and D3. The 
fourth method was not given a name, probably because Schafer noted some problems of 
this method, which made him set it aside altogether. However, for the current application 
of these combination rules, the statistic that was not given a name may still be useful, for 
reasons discussed later on. Because the method with no name was chronologically the 
first method in Schafer’s book, we will call this statistic D0. Each of these methods are 
discussed next.

Statistic D₀
Let Qm be a vector of length p, containing p parameter estimates of a statistical model, 
and let Um be a covariance matrix of the p parameter estimates, in imputed dataset m. A 
pooled set of parameter estimates across M imputed datasets is computed as:

Q = 1
M m = 1

M
Qm .

(1)

The pooled covariance matrix has two components, namely a within-imputation cova­
riance matrix U, and a between-imputation covariance matrix B:

U = 1
M m = 1

M
Um,

(2)

B = 1
M m = 1

M
Qm − Q Qm − Q ′ . (3)

The total covariance matrix of the estimate Q is computed as

T = U + 1 + M−1 B . (4)

To test all p parameter estimates in Q, statistic D0 (Rubin, 2004, pp. 77-78) is computed as:
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D0 = Q′T−1Q/p, (5)

which has an approximate F-distribution with p model degrees of freedom, and 
1 + p−1 ν/2 error degrees of freedom, where an approximation for ν by Reiter (2007) 

may be used. The formula for ν is rather long and complex, so we will not give it here. 
For computational details, see Reiter (2007).

A pooled F-test for the effect of factor A may be computed by filling in the pooled 
regression coefficients of the effect coded variables that together form factor A in Qm
in Equation 1 and Equation 3, filling in the covariances of these coefficients in Equation 
2, and use the resulting Q, U and B in Equation 4 and Equation 5. Similarly, F-tests for 
factor B and the interaction may be computed. Computational details on how to obtain 
the covariance matrix Um for the effects of factors A, B and the interaction are given in 
Van Ginkel and Kroonenberg (2014).

Statistic D₁
Because B is a noisy estimate of the between-imputation variance and does not even 
have full rank if M < p, Schafer (1997, p. 113) advises against using statistic D0. Rather 
than using T as an estimate for the total covariance matrix, a more stable total covariance 
matrix is:

T = 1 + r1 U (6)

r1 = 1 + M−1 tr BU−1 /p

where r1 is the relative increase in variance due to nonresponse. The resulting F-value 
testing all elements in vector Q for significance simultaneously is:

D1 = Q′T−1Q/p, (7)

which, under the assumption that r1 is equal across all elements of Q, has an approximate 
F-distribution with p numerator degrees of freedom, and ν denominator degrees of 
freedom.

Despite the assumption of equal r1 across all elements of Q, Li, Raghunathan and 
Rubin (1991b) showed that violation of this assumption does not substantially influence 
the Type-I error rate of D1. Because of this finding, and because of the disadvantages 
of statistic D0, D1  has been widely implemented in different statistical packages, such 
as SAS (SAS, 2013; Yuan, 2011), Stata (StataCorp, 2017), the miceadds package in R 
(Robitzsch, Grund, & Henke, 2017), and an SPSS (IBM SPSS, 2017) macro by Van Ginkel 
(2010). Using the procedure outlined by Van Ginkel and Kroonenberg (2014), Grund et al. 
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(2016) showed that D1 generally produces Type-I error rates close to the theoretical α in 
both one-way and two-way ANOVAs.

Statistic D₂
Define

dW,m = Qm′Um
−1Qm (8)

as the Wald statistic of imputed dataset m,

dW = 1
M m = 1

M
dW,m

(9)

as the average Wald statistic across imputed datasets, and

r2 = 1 + M−1 1
M − 1 m = 1

M
dW,m − dW

2 (10)

as an alternative estimate of the relative increase in variance due to nonresponse. Statis­
tic D2 is given by:

D2 =
dWp−1 − M + 1 M − 1 −1r2

1 + r2
(11)

As a reference distribution for D2 an F-distribution with p numerator degrees of freedom 
and ν2 = p− 3

m m − 1 1 + r2−1 2
 denominator degrees of freedom is used. Applied to two­

way ANOVA, significance tests for factors A, B, and the interaction can be obtained by 
substituting the relevant coefficients for Qm, and by substituting the covariance matrices 
of the relevant coefficients for Um, and substitute these quantities in Equation 8.

An advantage of D2 is that it is easier to compute than D0 and D1 as it can be 
calculated from M separate Wald statistics alone and no separate combining of the 
covariance matrices is needed (Schafer, 1997, p. 115). Li, Meng, Raghunathan, and Rubin 
(1991a) however, show that D2 occasionally produces Type-I error rates as high as 8% 
when using α = .05. Li et al. (1991a) therefore argue that D2 only be used as a rough 
guide. However, Grund et al. (2016) found Type-I error rates for D2 that were closer to 
the theoretical 5% than found by Li et al. (1991a). Thus, how well D2 performs regarding 
Type-I error rates in which situations, remains unclear.
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Statistic D₃
Statistic D3 (Meng & Rubin, 1992) is a combined likelihood-ratio test of M likelihood-ratio 
statistics from M imputed datasets. Define dL, m as a likelihood-ratio test of imputed 
dataset m, and

d L = 1
M m = 1

M
dL, m

(12)

as the average dL, m across imputed datasets. Next, define dL, m*  as a likelihood-ratio test of 
imputed dataset m but now evaluated at the average parameter estimates of the model 
across M imputed datasets. The average dL, m*  is computed as

dL = 1
M m = 1

M
dL, m*

(13)

Statistic D3 is computed as

D3 =
d L

p 1 + r3
(14)

r3 = M + 1
p M − 1 d L − dL

The reference distribution that is used for D3 is an F-distribution with p numerator 
degrees of freedom and a denominator degrees of freedom given by:

ν3 = 4 + t − 4 1 + 1 − 2t−1 r3−1 2  if t = p M − 1 > 4
ν3 = t 1 + p−1 1 + r3−1 2/2  otherwise.

(15)

For a specific effect in the model (factor A, factor B, interaction) D3 is computed by 
letting dL, m and dL, m*  be the likelihood-ratio tests that test the full model against the full 
model, minus the terms that together form the specific effect.

Goal of the Current Study
Several authors (Schafer, 1997; Shaw & Mitchell-Olds, 1993; Winer et al., 1991) have 
pointed out that unbalanced designs can be considered a missing-data problem. Shaw 
and Mitchell-Olds (1993) discussed imputation as a possible solution for imbalance and 
at the same time noted some problems of the imputation approach regarding p-values. 
However, they did not mention the use of multiple imputation to overcome the problems 
of single imputation in unbalanced designs. Although Schafer (1997) never explicitly 
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suggested to balance an unbalanced design using multiple imputation, the suggestion 
implicitly followed from the fact that Schafer’s book is about multiple imputation. Van 
Ginkel and Kroonenberg (2014, p. 79) made the suggestion explicit, and used it in an em­
pirical data example (pp. 87-88). The reasoning behind their suggestion was that balanced 
designs generally have more power than unbalanced designs, and that consequently 
multiple imputation in unbalanced designs could increase power.

However, Van Ginkel and Kroonenberg (2014) did not carry out any simulations to 
back up this claim. Additionally, one aspect that Van Ginkel and Kroonenberg did not 
include in their reasoning is that multiple imputation does not actually add information 
that could increase power. Indeed multiple imputation simulates additional cases, but 
imputing M values of the outcome variable for each additional case creates additional 
variation in the parameter estimates of the ANOVA model as well, represented by 
covariance matrix B or the relative increase in variance due to nonresponse (r1, r2, and 
r3). The statistics D0 to D3 include these quantities in their calculation such it lowers 
their power, which may consequently undo the increased power as a result of creating 
additional cases. Also, Van Buuren (2012, p. 48) and Von Hippel (2007) argue that when 
missing data only occur on the outcome variable, analyzing only the complete cases 
may be preferred over multiple imputation. Since unbalanced data can be considered a 
situation with missings on only the outcome variable, and that Type-III sum of squares 
in this context is equivalent to analyzing only complete cases, it would follow that in 
unbalanced data Type-III sum of squares is preferred over multiple imputation.

In short, both valid arguments for balancing unbalanced data using multiple imputa­
tion prior to two-way ANOVA, and simulation studies that confirm its usefulness seem 
to be lacking. However, the fact that this suggestion has been made in the literature or 
even just the fact that unbalanced data are often described as a missing-data problem and 
that multiple imputation is a highly recommended procedures for dealing with missing 
data, calls for a simulation study to investigate the usefulness of this suggestion. In the 
current paper we will carry out such a simulation study. Consequently, the first research 
question is whether there is some benefit in using multiple imputation for balancing an 
unbalanced design prior to a two-way ANOVA after all.

Furthermore, Grund et al. (2016) already investigated statistics D1, D2, and D3 in a 
wide variety of situations. In their study they found that in most situations all statistics 
produced Type-I error rates close to the theoretical 5%. However, in more extreme 
situations (e.g., small sample size, high percentages of missing data), D2, and D3 were 
somewhat conservative and had lower power than D1. Based on this study, D1 is the 
preferred statistic for combining the results of multiply imputed data in ANOVA.

However, the question is to what extent the results by Grund et al. (2016) generalize 
to a situation where unbalanced data are balanced using multiple imputation. D1 showed 
the most promising results but has one potential weak point, and which may especially 
be problematic in unbalanced data: it assumes that the fraction of missing information 
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is equal across the p parameter estimates in Q. Unequal fractions of missing information 
across parameter estimates in Q are inherently related to unbalanced designs as each 
regression coefficient of an effect-coded variable of a specific factor represents a specific 
group of this factor. Unequal group sizes imply that for smaller groups more additional 
values of the dependent variable have to be multiply imputed than for larger groups, 
resulting in unequal fractions of missing information across parameter estimates.

In a situation which inherently has unequal fractions of missing information across 
parameter estimates, a statistic assuming equal fractions of missing information across 
parameter estimates (D1) is not the most convenient choice, especially when an alterna­
tive version of this statistic exists (D0) that does not make this assumption (when p = 
1, or when the fractions of missing information across parameter estimates are equal, 
both statistics are equivalent). Given that D1 generally gives the best results regarding 
power and Type-I error rates, and that D0 is equivalent to D1 but without the assumption 
of equal fractions of missingness across parameters, D0 might be the ideal candidate for 
calculating pooled F-tests in unbalanced data when imbalance is handled using multiple 
imputation. Although Schafer (1997) and Li et al. (1991b) advised against the use of D0, 
the argument against its use was mainly that for small M it may not perform well. 
However, this problem may easily be resolved by increasing M.

Furthermore, although Li et al. (1991b) showed that violation of equal fractions of 
missing information is not necessarily problematic for D1, in their study the unequal 
fractions of missing information randomly varied across parameters of the simulation 
model and across replicated datasets. However, in unbalanced data unequal fractions of 
missing information may not always randomly vary across parameters. For example, in 
a field experiment it may be more difficult to collect data for one experimental condition 
than for the other, or in a clinical trial more people may drop out in one condition 
than in the other. Also, in non-experimental studies some categorical variables may 
have unequal groups in the population, for example, ethnicity. When drawing a random 
sample from this population, the different ethnic groups will have unequal sizes in the 
sample as well.

When fractions of missing information randomly vary across parameters, the frac­
tions of missing information may not be equal within one replication, but the average 
fractions of missing information across replicated datasets are. Consequently, the nega­
tive effect of unequal fractions of missing information may cancel itself out across repli­
cations. However, in situations where the differences in fractions of missing information 
across parameters do not vary across replicated datasets, a statistic might be needed that 
allows for different fractions of missing data across parameter estimates.

Thus, a second research question is how the different pooling statistics from Grund 
et al. (2016) will behave in unbalanced data where the unequal fractions of missing 
information do not vary across replications, now also including statistic D0. To this 
end, rejection rates of statistics D0 to D3 were studied along with the rejection rates 
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for Type-III sum of squares under the null- and alternative hypothesis. For comparison, 
rejection rates were also studied for balanced data with the same total sample size.

In the next section, the setup of the simulation study is described. In the section 
that follows, results of the simulation study are shown. Finally, in the discussion section 
conclusions will be drawn about the usefulness of multiple imputation for balancing 
unbalanced designs, and implications for which statistic to use will be discussed.

Method
Data were simulated according to a two-way ANOVA model in the form of a regression 
model with effect coded predictors. Some of the properties of the data were held constant 
while some were varied (discussed next). The properties that were varied resulted in 
several design cells. Within each design cell 2500 replications were drawn (based on 
studies by Harel, 2009, and Van Ginkel, 2019).

The simulations were programmed in R (R Core Team, 2018). Multiple imputation 
was performed using Fully Conditional Specification (FCS; e.g., Van Buuren, 2012) in 
the mice package (Van Buuren & Groothuis-Oudshoorn, 2011). For continuous variables 
there are two different versions of FCS, namely regression imputation (FCS-R; e.g., 
Little & Schenker, 1995, p. 60; Van Buuren, 2012, p. 13) and Predictive Mean Matching 
(FCS-PMM; Rubin, 1986; Van Buuren, 2012, pp. 68-74). The default method in mice is 
FCS-PMM because it generally preserves distributional shapes better when data are not 
normally distributed than FCS-R (Marshall, Altman, & Holder, 2010; Marshall, Altman, 
Royston, & Holder, 2010). However, for imputing an outcome variable with a normally 
distributed error (as in our simulation model) FCS-R may be a better alternative as 
it explicitly imputes values according to a normal linear model. Thus, the method for 
multiple imputation was FCS-R. For the imputation of outcome variable Y, factors A and 
B plus their interaction were used as predictors. Type-III sum of squares were computed 
using the car package (Fox & Weisberg, 2019). Statistic D3 was calculated using the 
mitml package (Grund et al., 2016). The other statistics D0, D1, and D2 were programmed 
by the first author.

Like in many other simulation studies, decisions regarding properties of the simula­
tion design were to some extent arbitrary. However, prior to running the simulations, 
some test runs were done to see what properties would make the effects of imbalance 
and the differences between the different statistics most clearly visible, and which were 
also likely to occur in practice. The properties of the simulation design that are going to 
be discussed next, are mostly the result of these test runs.
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Fixed Design Characteristics
The number of levels of factor A was I = 2. The error term of the ANOVA model was 
normally distributed with με = 0 and σε = 18.37.

Independent Variables
Number of Levels of Factor B

The number of levels of factor B was J = 3, 4, 5.

Parameters of the Two-Way ANOVA Model

For each J, two sets of parameters of the two-way ANOVA model were studied: one in 
which there were no effects of factor A, factor B, and the interaction in the population 
(the null model), and one in which there were effects (the alternative model).

For J = 3 the two sets of parameter estimates were:
β = β0, β1 A , β2 B , β3 B , β4 AB , β5 AB  = (27,0,0,0,0,0) and
β = β0, β1 A , β2 B , β3 B , β4 AB , β5 AB  = (27,-1.5,-3,0,1,-0.5).

For J = 4 the two sets were:
β = β0, β1 A , β2 B , β3 B , β4 B , β5 AB , β6 AB , β7 AB  = (27,0,0,0,0,0,0,0) and
β = β0, β1 A , β2 B , β3 B , β4 B , β5 AB , β6 AB , β7 AB  = (27,-1.5,-3,-1,1,1,0,-0.5).

Finally, for J = 5 the two sets were:
β = β0, β1 A , β2 B , β3 B , β4 B , β5 B , β6 AB , β7 AB , β8 AB , β9 AB  = (27,0,0,0,0,0,0,0,0,0) and
β = β0, β1 A , β2 B , β3 B , β4 B , β5 B , β6 AB , β7 AB , β8 AB , β9 AB  = 
(27,-1.5,-3,-1,0,1,1,0.25,-0.25,-0.5).

Sample Size

Small, medium, and large sample sizes were studied. Because J also affects the number of 
design cells of the two-way ANOVA, sample size also partly depended on the size of J. 
For small N, the average cell size was 10, for medium N it was 20, and for large samples 
it was 30. Given these average cell sizes, sample sizes were N = 60, 120, 180 for J = 3, N = 
80, 160, 240 for J = 4, and N = 100, 200, 300 for J = 5.

Degree and Structure of Imbalance

Four different degrees of imbalance were simulated, along with balanced data, for com­
parison. The degree of imbalance was varied as follows: for a specific design cell the 
cell size was either increased or decreased by each time adding the same number to, 
or subtracting the same number from the original cell size in the balanced case. The 
increasing and decreasing of cell sizes was done such that the total sample size remained 
the same.

Additionally, to study whether it mattered which cells increased or decreased in size, 
an additional situation of imbalance was created where the cell sizes of the most severe 
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case of imbalance were randomly redistributed across design cells. The cell sizes for each 
degree of imbalance are displayed for small N in Table 1. For medium and large N the 
entries must be multiplied with 2 and 3 respectively.

Table 1

Cell Sizes for Different Degrees of Imbalance Under a Small Sample Size

Cell size Balanced

Imbalance

Small Medium Severe Extra severe
Extra severe, order 

shuffled

No. levels factor B: 3
n11 10 8 6 4 2 18

n12 10 10 10 10 10 10

n13 10 12 14 16 18 2

n21 10 11 12 13 14 6

n22 10 10 10 10 10 10

n23 10 9 8 7 6 14

No. levels factor B: 4
n11 10 8 6 4 2 10

n12 10 10 10 10 10 18

n13 10 10 10 10 10 10

n14 10 12 14 16 18 2

n21 10 11 12 13 14 10

n22 10 10 10 10 10 6

n23 10 10 10 10 10 10

n24 10 9 8 7 6 14

No. levels factor B: 5
n11 10 8 6 4 2 10

n12 10 10 10 10 10 18

n13 10 10 10 10 10 10

n14 10 10 10 10 10 10

n15 10 12 14 16 18 2

n21 10 11 12 13 14 10

n22 10 10 10 10 10 6

n23 10 10 10 10 10 10

n24 10 10 10 10 10 10

n25 10 9 8 7 6 14
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Method for Handling Imbalance

Nine methods for handling imbalance were used: Type-III sum of squares, and two 
versions of each of the statistics D0, D1, D2, and  D3. Because D0 is argued to be sensitive 
to a small number of imputations, two different sizes of M were studied within each of 
the statistics, namely M = 5 and M = 100. This defines the eight procedures based on 
multiple imputation: D0,M = 5, D0,M = 100, D1,M = 5, D1,M = 100, D2,M = 5, D2,M = 100, D3,M = 5, and 
D3,M = 100.

Dependent Variables
For each of the F-tests in the two-way ANOVA, the number of times the null hypothesis 
was rejected was studied, denoted the rejection rate. As already noted, when p = 1, D0
and D1 are equivalent. Thus, for factor A, methods D0,M = 5, and D0,M = 100 will not be 
displayed.

Results
To get a rough impression of how close the Type-I error rates were to α = .05 under the 
null hypothesis, it was tested whether the empirical rejection rates differed significantly 
from 0.05, using an Agresti and Coull (1998) confidence interval. Under the alternative 
hypothesis, it was tested whether the empirical rejection rates of the multiple-imputation 
methods differed significantly from the rejection rates of Type-III, assuming that the 
latter represent the “real” power. A method based on multiple imputation may be consid­
ered successful when under the null hypothesis it gives rejection rates not significantly 
different from 0.05, and when under the alternative hypothesis it gives rejection rates 
significantly higher than the rejection rates of Type-III. To avoid redundancy in discus­
sing the results, we will mainly focus on the results of factor B and less on the results of 
factor A and the interaction.

Eighteen tables were needed to report all the results. Because results showed similar 
patterns across different J and different N, results of the remaining independent variables 
are only reported for J = 3 and a small N. Results for J > 3 and larger N are provided 
in Supplementary Materials. Table 2 shows the results for all levels of imbalance, all 
methods for handling imbalance, and all effects in the ANOVA, under the null model. 
Table 3 shows the results for all levels of imbalance, all methods for handling imbalance, 
and all effects in the ANOVA, under the alternative model.
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Table 2

Rejection Rates for Each Effect Under the Null Model, a Small Sample Size, Three Levels of Factor B, for Different 
Methods for Handling Imbalance, and Different Degrees of Imbalance

Method Balanced

Imbalance

Small Medium Severe Extra severe
Extra severe, order 

shuffled

Effect A
Type-III .052 .049 .051 .054 .055 .055

D1,M = 5 .049 .056 .059a .061a .058

D1,M = 100 .051 .051 .054 .054 .053

D2,M = 5 .047 .052 .052 .052 .054

D2,M = 100 .052 .053 .056 .060a .058

D3,M = 5 .045 .034a .027a .019a .016a

D3,M = 100 .044 .036a .024a .006a .005a

Effect B
Type-III .047 .049 .054 .049 .048 .048

D0,M = 5 .054 .062a .067a .077a .082a

D0,M = 100 .053 .059a .053 .053 .053

D1,M = 5 .051 .046 .054 .050 .054

D1,M = 100 .053 .058 .051 .052 .053

D2,M = 5 .050 .055 .058 .054 .057

D2,M = 100 .055 .060a .054 .050 .051

D3,M = 5 .042 .034a .026a .024a .023a

D3,M = 100 .048 .042 .026a .014a .018a

Effect A × B
Type-III .058 .048 .054 .056 .045 .045

D0,M = 5 .055 .057 .070a .083a .084a

D0,M = 100 .056 .054 .058 .050 .048

D1,M = 5 .047 .049 .048 .053 .052

D1,M = 100 .057 .055 .056 .050 .052

D2,M = 5 .048 .050 .052 .056 .055

D2,M = 100 .058 .056 .059a .046 .048

D3,M = 5 .041a .031a .028a .021a .022a

D3,M = 100 .048 .037a .031a .012a .015a

aSignificantly different from theoretical significance level of α = .05.

van Ginkel & Kroonenberg 51

Methodology
2021, Vol.17(1), 39–57
https://doi.org/10.5964/meth.6085

https://www.psychopen.eu/


Table 3

Rejection Rates for Each Effects Under the Alternative Model, a Small Sample Size, Three Levels of Factor B, for 
Different Methods for Handling Imbalance, and Different Degrees of Imbalance

Method Balanced

Imbalance

Small Medium Severe Extra severe
Extra severe, order 

shuffled

Effect A
Type-III .764 .742 .722 .686 .549 .549

D1,M = 5 .728 .666a .585a .415a .406a

D1,M = 100 .748 .728 .680 .543 .541

D2,M = 5 .715a .636a .547a .388a .370a

D2,M = 100 .751 .731 .687 .558 .556

D3,M = 5 .698a .546a .370a .140a .142a

D3,M = 100 .732 .671a .555a .261a .253a

Effect B
Type-III .976 .972 .957 .922 .826 .836

D0,M = 5 .966 .934a .870a .729a .745a

D0,M = 100 .976 .960 .925 .829 .838

D1,M = 5 .963a .926a .850a .645a .665a

D1,M = 100 .974 .964 .934a .830 .837

D2,M = 5 .944a .843a .687a .426a .426a

D2,M = 100 .976 .961 .924 .807a .818a

D3,M = 5 .947a .861a .706a .384a .398a

D3,M = 100 .972 .945a .886a .643a .642a

Effect A × B
Type-III .179 .176 .162 .150 .101 .148

D0,M = 5 .174 .157 .160 .131a .173a

D0,M = 100 .189 .175 .152 .111 .157

D1,M = 5 .165 .144a .126a .102 .095a

D1,M = 100 .192 .183a .169a .137a .120a

D2,M = 5 .150a .125a .115a .075a .117a

D2,M = 100 .192 .177 .149 .098 .164a

D3,M = 5 .146a .106a .077a .050a .042a

D3,M = 100 .180 .151 .107a .049a .036a

aSignificantly different from Type-III, assuming Type-III is the “true” power.
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Under the null hypothesis (Table 2), methods D3,M = 5, and D3,M = 100 tend to underestimate 
the Type-I error rate for factor B somewhat, which becomes worse as the degree of 
imbalance increases. This undercoverage is worst for D3,M = 100. Method D0,M = 5  tends 
to overestimate the Type-I error rate, which becomes worse as the degree of imbalance 
increases. Type-III, D1,M = 5, D1,M = 100, D0,M = 100,  D2,M = 5, and D2,M = 100 produce Type-I 
error rates that do not differ significantly from 5% in most cases.

All methods based on M = 5 and method D3,M = 100 have lower power than Type-III 
sum of squares (Table 3). The difference in power between these methods and Type-III 
sum of squares becomes larger as the degree of imbalance increases. Methods D0,M = 100
and D2,M = 100 generally have power values close to that of Type-III sum of squares. 
Like methods D0,M = 100 and D2,M = 100, method D1,M = 100 has power values similar to that 
of Type-III sum for the main effects. However, for the interaction effect, D1,M = 100 has 
significantly higher power than Type-III sum of squares.

Finally, when the order of the cell sizes is shuffled, we only see changes in results for 
the interaction in the alternative model (Table 2): For methods D1,M = 5 and D1,M = 100 the 
power drops below the power level of Type-III sum of squares; for D2,M = 100 it raises up 
to a higher level than that of Type-III sum of squares.

Discussion
Van Ginkel and Kroonenberg (2014) suggested multiple imputation to increase the power 
of a two-way ANOVA in unbalanced designs compared to Type-III sum of squares. In 
the current study it was studied whether multiple imputation would indeed do this. For 
the main effects, methods D0,M = 100, D1,M = 100 and D2,M = 100 had power similar to those of 
Type-III sum of squares, but not higher power than Type-III sum of squares. However, for 
the interaction effect, method D1,M = 100 had higher power than Type-III sum of squares 
for all degrees of imbalance, except when the order of cell sizes was shuffled. In the latter 
case, only method D2,M = 100 had higher power than Type-III sum of squares. The other 
methods based on multiple imputation had lower power than Type-III sum of squares in 
all situations. Additionally, D0,M = 5 overestimated the Type-I error rate.

The main conclusion of this study is that there may be some benefit in doing multiple 
imputation for handling unbalanced data in two-way ANOVA after all. When using the 
appropriate statistics (D1 and D2) with a large number of imputations (M = 100), the 
test for the interaction may have higher power than Type-III sum of squares. However, 
the specific structure of imbalance (i.e. which cells have a high number of observations 
and which ones have a small number of observations) also seems to matter. Under all 
four degrees of imbalance D1,M = 100 was the methods that had highest power for the 
interaction. However, when the sizes of the cells were shuffled, D2,M = 100 had the highest 
power. Thus, it remains unclear how and when multiple imputation leads to higher 
power rates for the interaction in unbalanced two-way ANOVA.
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Although there seems to be some benefit in multiple imputation over Type-III sum 
of squares, it may be wondered whether this benefit outweighs the costs. Multiple 
imputation is more work, the benefit seems to only concern the interaction, and it is not 
even entirely clear when it has higher power rates than Type-III sum of squares.

However, although the benefit of multiple imputation over Type-III sum of squares is 
relatively small, the results of this study are still important for other reasons. Previously 
it was only assumed that it was better to use D1 than D0 because D0 used a noisy estimate 
of the total covariance matrix in its computation, which would especially be problematic 
for small M, but never demonstrated. The current study showed that for M = 5, D0 indeed 
performed poorly regarding Type-I error rates (overestimation of the Type-I error rate).

Furthermore, Li et al. (1991b) showed that D1 was robust to violation of the assump­
tion of equal fractions of missing information across parameter estimates when the 
unequal fractions randomly varied across replications. The current study showed that 
this result also seems to hold when the unequal fractions were fixed across replications. 
Thus, based on the current results there does not seem to be a need for a version of D1
that allows for unequal fractions of missing information, but which performs poorly for 
small M (D0).

As for statistics D2 and D3, although Li et al. (1991a) showed that D2 could sometimes 
be too liberal, both Grund et al. (2016) and the current study show satisfactory Type-I 
error rates of this method. Additionally, the current study also shows that the power of 
D2 is comparable to that of Type-III sum of squares when M = 100. Considering these 
results and the fact that D2 is relatively easy to compute, it may be a good candidate for 
pooling F-tests from ANOVA in multiply imputed data. However, as long as it is not clear 
when D2 may overestimate the Type-I error rate, we must be cautious concluding that D2
is generally the best alternative for pooling the results of ANOVA in multiply imputed 
data.

The results of D3 were disappointing: in unbalanced data this method (severely) 
underestimated the Type-I error rates. Additionally, of all statistics, D3 generally had 
the lowest power. An additional disadvantage of D3 is that is not easily computed as 
it requires the likelihood of imputed dataset m evaluated at the average set of model 
parameters. The latter makes the implementation in software packages complex. Consid­
ering the disappointing results for D3 and its complex implementation, this statistic is not 
the most convenient method for pooling results of ANOVA.

The results of the current study imply that software packages do not need to replace 
D1 with D0, not even in case of unequal fractions of missing information that are 
inherently related to the parameters in question. While it was previously shown that 
D1 produces accurate Type-I error rates when fractions of missing information are on 
average equal across replications (Li et al, 1991b), the current study shows that D1 also 
produces accurate Type-I error rates for unequal average fractions of missing informa­
tion across replications.
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In conclusion, it may be a bit premature to conclude that multiple imputation is a 
good alternative to Type-III sum of squares in unbalanced data, given the extra amount 
of work and the fact that its benefits only seem to show in the interaction. Finally, 
as most other studies have already indicated, we recommend using either D1 or D2 in 
multiply imputed data, with a slight preference of D1.
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