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Abstract
Modeling growth across repeated measures of individuals and evaluating predictors of growth can 
reveal developmental patterns and factors that affect those patterns. When growth follows a 
sigmoidal shape, the Logistic, Gompertz, and Richards nonlinear growth curves are plausible. 
These functions have parameters that specifically control the starting point, total growth, overall 
rate of change, and point of greatest growth. Variability in growth parameters across individuals 
can be explained by covariates in a mixed model framework. The purpose of this tutorial is to 
provide analysts a brief introduction to these growth curves and demonstrate their application. The 
'saemix' package in R is used to fit models to simulated data to answer specific research questions. 
Enough code is provided in-text to describe how to execute the analyses with the complete code 
and data provided in Supplementary Materials.
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Modeling growth trajectories is often of interest in the behavioral and social sciences. 
Nonlinear mixed effects growth models (NLMEGMs) allow for variation in the rate of 
growth for an individual across time, such that an individual’s growth may be character
ized by periods of slower growth and periods of accelerated growth. While accurate 
modeling of the trajectory of within-individual growth is critical, answering questions 
about why individuals’ growth patterns vary from one another can provide insight into 
the characteristics associated with tempered or delayed development. NLMEGMs in a 
mixed model (also, multilevel or hierarchical modeling, Boedeker, 2017; Raudenbush & 
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Bryk, 2002) framework allow for variability in the parameters of the nonlinear model 
to be explained by individual characteristics. Given the applicability of NLMEGMs to 
the study of development, we provide a tutorial on how to fit nonlinear growth models 
in R (R Core Team, 2021). We briefly describe three nonlinear growth curves (Logistic, 
Gompertz, Richards), provide an overview of the saemix (Comets et al., 2017; Version 
2.4) package that can be used for fitting NLMEGMs, and demonstrate the estimation of 
NLMEGMs to answer specific research questions in the context of educational research.

Nonlinear Mixed Effects Growth Models
Nonlinear mixed effects growth models allow for the modeling of non-linear within-per
son change and between person differences in change (Grimm & Ram, 2009). A common 
nonlinear trajectory is S shaped (sigmoidal) and allows for a point of inflection at which 
rapid early growth reaches its highest rate of change and after which the rate of growth 
decreases, ultimately coming to a plateau. NLMEGMs allow the analyst to model growth, 
estimating parameters that have substantively meaningful interpretations, and provide 
opportunity for the evaluation of characteristics that may differentiate growth patterns 
across people. Figure 1 provides a graphical illustration of the Logistic, Gompertz, and 
Richards curves.

Figure 1

Gompertz, Logistic, and Richards Curves
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Alternative methods of fitting curvilinear growth exist besides the Logistic, Gompertz, 
and Richards curves. Including polynomial terms (e.g., quadratic, cubic) for time can 
accomplish this. However, the parameters of the Logistic, Gompertz, and Richards curves 
allow for a more nuanced understanding of individual growth and the factors that may 
be associated with individual differences in growth. The researcher can ask substantively 
meaningful questions about specific aspects of growth that may not be possible with use 
of polynomial terms. Therefore, we focus on the Logistic, Gompertz, and Richards curves, 
describing each in terms of growth in student academic achievement.

Multilevel Framework
Within the multilevel framework, growth parameters can be estimated to have fixed and 
random effects. If a growth parameter is constrained to be equal across all individuals, 
then the fixed effect is the estimated value of this single parameter for all individuals. 
If a growth parameter is allowed to vary across individuals, then a fixed and random 
effect are estimated for the growth parameter. The fixed effect is essentially the weighted 
average of the individual parameter estimates and the random effect contains a variance 
that estimates individual variability about the fixed effect. Variability in a parameter can 
then be explained by adding predictors to the model for each parameter.

Latent growth modeling is an alternative framework for estimating non-linear 
growth. Each framework has its benefits and challenges (Ghisletta & Lindenberger, 2004; 
Grimm & Ram, 2009). For example, the latent growth modeling framework provides fit 
indices and the ability to model multiple dependent variables simultaneously; however, 
the statistical programs required for doing so are costly and certain constraints on the 
data, such as equally spaced time intervals of measurement, are required.

The focus of the present paper is within the multilevel modeling framework given 
1) modeling longitudinal growth and evaluating predictors of this growth can be done 
in a straightforward manner in the multilevel modeling framework and 2) open-source 
programs exist for doing so.

Logistic
The Logistic growth curve is defined as

Yit = LwrAsyi +
T tlGrw tℎi

1 + e−Apprcℎi t − T imingi
+ uit, uit ~ N 0,σ2 (1)

where LwrAsyi is the lower asymptote for student i, T tlGrw tℎi is the total change for 
student i over the period of time, Apprcℎi is the rate of approach to the upper asymptote 
at the point of inflection for student i, T imingi is the time that the rate of change is 
greatest (i.e., the point of inflection), and uit is a residual for student i at time t. The 
Logistic curve is symmetric about the point of inflection. Each of these parameters is 
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substantively meaningful. The LwrAsy  is the starting point of an individual, indicating 
where the student begins in achievement. Larger values of TtlGrwth indicate that a 
student has a greater total growth over time. The rate of approach parameter represents 
the rate of change across all time points, characterizing growth overall where larger 
values indicate quicker growth, once started, to the upper limit. Larger values of the 
timing parameter indicate that accelerated growth toward the upper limit occurs later in 
time.

Note that the parameters are allowed to vary across individuals (they each have 
an i subscript) and therefore have random effects with variances that are estimated. In 
models, this is specified as

T tlGrw tℎi = γT tlGrw tℎ + rT tlGrw tℎ, i rT tlGrw tℎ, i ~ N 0, τT tlGrw tℎ2

Apprcℎi = γApprcℎ + rApprcℎ, i rApprcℎ, i ~ N 0, τApprcℎ2

T imingi = γT iming + rT iming, i rT iming, i ~ N 0, τT iming2

LwrAsyi = γLwrAsy + rLwrAsy , i rLwrAsy , i ~ N 0, τLwrAsy2

(2)

Various modifications are possible. The researcher can evaluate predictors of each 
growth parameter. To do so, a predictor is added, for example, in the equation with 
TtlGrwth as outcome. A gamma coefficient accompanies the additional predictor and is 
evaluated. The interpretation of such a coefficient is demonstrated in a later example. 
The correlation between varying parameters can be constrained to zero or be estimated 
as an additional parameter. For example, constraining the relationship between TtlGrwth 
and Timing to zero implies that the total change of an individual (TtlGrwth) is unrelated 
to the point of inflection (Timing) of that individual’s growth. If this relationship is 
instead freely estimated then the analyst may find, for example, that students who 
have greater overall growth reach a point of inflection earlier in time. Also, any of the 
parameters could be constrained to be equal across all cases. For example, if LwrAsyi
were assumed to be equal across all individuals then the i subscript would be dropped 
and no random effect (r term) would be estimated. The decision to constrain a parameter 
to equality across individuals would need to be defended by the researcher.

Gompertz
The Gompertz curve allows for asymmetric growth before and after the point of inflec
tion. In an educational context, this would allow for a sharp increase as students enter 
school and then a more tempered approach to a maximum. The Gompertz function is

Yit = LwrAsyi + T tlGrw tℎie−e
−Apprcℎi t − T imingi + uit, uit ~ N 0,σ2 (3)
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where parameters are as defined above. The parameters, as described for the Logistic 
curve, can be specified with random effects. These equations are identical to the Logistic 
specification and therefore are not reiterated here. Figure 2 illustrates the Gompertz 
curve with different parameter specifications.

Figure 2

The Gompertz Curve is Plotted With Different Values for a = T tlGrw tℎ, b = Apprcℎ, c = T iming, and d =LwrAsy

Richards
The Richards curve is more complex than either the Logistic or the Gompertz curve 
because the asymmetry is controlled by an additional parameter in the model. The 
functional form of the Richards curve is

Yit = LwrAsyi +
T tlGrw tℎi

1 + si · e−Apprcℎi t − T imingi
1
si
+ uit, uit ~ N 0,σ2

(4)

where parameters are as previously defined and s is the symmetry parameter. The s 
parameter controls the amount of asymmetry in the slope of the curve before and after 
the point of inflection. A s equal to 1 simplifies to the Logistic, such that half of the 
change occurs prior to the point of inflection and half occurs after. A value of s less 
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than 1 indicates that less than half of the total change occurs prior to the point of 
inflection, approaching a Gompertz curve as s approaches 0. The s parameter greater 
than 1 indicates that more than half of the total change occurs prior to the point of 
inflection. As with the Logistic and Gompertz curves the growth model parameters can 
be allowed to vary across individuals with specification of random effects.

Applications in Education
Cameron et al. (2015) compared different growth trajectories of students in mathematics 
and reading achievement using large-scale educational datasets. Linear, quadratic, cubic, 
unstructured, Logistic, Gompertz, and Richards specifications were fit to the data and 
compared. Ultimately, the Gompertz model provided the best fit to the observed growth 
pattern. Using the Gompertz function to model growth, variability in three parameters of 
the model were then explained by sociodemographic characteristics of students. Anthony 
and Ogg (2020) extended this work by modeling science achievement growth with the 
Gompertz function and explaining variability in its parameters with components of 
executive functioning and learning related behaviors. These applications highlight the 
relevance of nonlinear growth modeling to estimating trajectories of growth in educa
tion.

Fitting NLMEGMs

Software
There are several programs for fitting NLMEGMs. Stegman et al. (2018) review four 
R packages including nlme (Pinheiro et al., 2017), lme4 (Bates et al., 2015), saemix, 
and brms (Buerkner, 2016). Comets et al. (2017) made additional comparisons of nlme 
and lme4 to saemix. Generally, saemix was found to converge to a solution more 
frequently than nlme and lmer (Comets et al, 2017) but may require longer processing 
time (Stegman et al., 2018). The brms package utilizes a Bayesian framework that 
allows incorporation of prior knowledge; however, such information may not be readily 
available for fitting NLMEGMs. NLMEGMs can also be fit using Mplus and SAS, as dem
onstrated by Grimm and Ram (2009). The saemix package was selected for demonstra
tion because 1) R is free and open source, providing up-to-date advancements without 
financial burden and 2) saemix was found to perform better regarding convergence 
than rival R packages.

saemix
The stochastic approximation expectation maximization algorithm uses Markov Chain 
Monte Carlo processes to determine the likelihood and the model parameters that 
maximize it in an iterative fashion (see Comets et al., 2017 for details). As a result, 
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model convergence can be evaluated using plots. The algorithm functions in such a 
way that the possible parameter space is explored to a point after which the iterations 
quickly converge to a final solution. Plots of these iterations can be used to evaluate 
convergence.

Comets et al. (2017) provide detailed documentation for conducting an analysis using 
saemix. We provide a brief overview here and, in our examples, explain details of how 
each specification changes to accommodate answering each research question. Prior to 
running an analysis, the package requires one function and two objects be specified: 1) 
the nonlinear growth function, 2) an saemix data object, and 3) an saemix model 
object. The nonlinear growth function is the mathematical formula of the nonlinear 
growth trajectory with parameters to be estimated. Once this object is specified, there 
is no need to modify it unless the nonlinear growth function is changed (e.g., from 
Gompertz to Logistic). The program requires a saemix data object rather than a 
standard data frame. A standard data frame contains variables of different scales as 
would be needed in modeling applications; the saemix data object in addition contains 
information specific for applications using saemix, such as designating which variable 
is the outcome, which are covariates, and what variable indicates the individual for 
whom repeated measures are available (an ID variable). The saemix data object should 
be oriented in long-format, with repeated measures for the same individual recorded in 
subsequent rows. After specifying the saemix data object, the saemix model object 
contains information concerning starting values, which of the growth parameters are 
to be explained by covariates, and whether variances and covariances of the growth 
parameters are to be estimated.

Starting Values
The starting values selected can have an impact on model estimates (Grimm & Ram, 
2009). Good starting values provide the iterative estimation procedure with values that 
are close to the true value, enabling the algorithm to arrive at an accurate solution 
more quickly. One proposed method for determining starting values is to first fit a 
simplified version of the final model. The estimated values of growth parameters from 
the simpler model could then be used as starting values in the more complex model. 
Another possibility is to simply plot the data and, with knowledge of each parameter’s 
meaning, make an educated guess of the value for each parameter.

Model Comparisons
Like other mixed models fit with maximum likelihood, model comparisons can be made 
using Akaike information criterion (AIC; Akaike, 1973), Bayesian information criterion 
(BIC; Schwarz, 1978), and a nested models likelihood ratio test (LRT). AIC and BIC are 
penalized likelihood values, such that the likelihood is increased for each additional 
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parameter estimated in the model. The model with the lower AIC and BIC is deemed the 
better fitting of two rival models. The LRT is used to evaluate the increase in fit when 
models are nested, producing a p-value, the null hypothesis of which is equal fit. Such 
nested models occur when covariates have been added to a model and the goal is to 
evaluate if the addition of covariates yields statistically significant improvement in model 
fit. Rejecting the null hypothesis indicates that the more complex model is preferred.

Diagnostics
The normalized prediction distribution error (NPDE) was developed for assessing non
linear mixed models. Comets et al. (2008) describe in detail the procedure for calculating 
NPDE but we provide here some guidance for evaluating the distribution of NPDE. If 
the model fits the data well, then the distribution of NPDE will be standard normal. 
Plots standard in evaluating ordinary least squares (OLS) residuals can be used, including 
Q-Q plots to evaluate normality of the NPDE and plots of predicted values versus NPDE 
values. Criteria are generally the same as for OLS regression; plots should indicate that 
the NPDE are normally distributed homogeneously across predicted values.

Example
We demonstrate the use of saemix for fitting NLMEGMs to a simulated dataset with 
100 students, each with six measures of math achievement and two covariates. The two 
covariates are socioeconomic status (SES), a standardized measure with M = 0 and SD = 
1, characterizing the economic resources of the student’s family, and Sex, a dichotomous 
indicator where 0 = male and 1 = female, both of which are measured only at the first 
time point. For SES, higher scores indicate higher SES. Ultimately, the Gompertz model 
is retained for analyses; therefore, we provide in text the code for fitting the Gompertz 
model. Online Supplementary Materials contain full code and data. We constrain the 
LwrAsy  parameter to be equivalent across individuals to demonstrate how the code 
differs for parameters that are allowed to vary and those that are not. Using the fictitious 
data, we answer four research questions:

RQ1: Which of the Logistic, Gompertz, or Richards curves models best the growth in 
achievement?
RQ2: Does Sex have an association with the total growth, rate of approach to the 
upper asymptote, or point of inflection of the curve found optimal in answering the 
first research question?
RQ3: Does adding SES to the model in addition to Sex as a predictor of total growth, 
rate of approach to the upper asymptote, or point of inflection improve model fit? If 
so, how do SES and Sex relate to achievement growth?

Boedeker 257

Methodology
2021, Vol. 17(4), 250–270
https://doi.org/10.5964/meth.7061

https://www.psychopen.eu/


RQ4: Does Sex moderate the association between SES and total growth, rate of 
approach to the upper asymptote, or point of inflection?

For RQ1, we compare the fit of the three unconditional NLMEGMs, use the NPDE to 
evaluate Gompertz model fit, interpret model parameters, and display relevant output 
and plots. For RQ2, a conditional model is fit wherein the growth parameters allowed to 
vary are predicted by the dichotomous Sex variable. To answer RQ3, SES is added as a 
predictor. RQ4 requires evaluation of an interaction between Sex and SES; this is done by 
multiplying the SES and Sex of each child and adding this product as a third variable in 
the model. Model comparisons are needed throughout to evaluate model improvement; 
therefore, likelihood ratio tests are conducted and comparisons using AIC and BIC are 
made. There are limitations to our demonstration. First, the data are simulated; therefore, 
any data cleaning that would need to occur with actual data is not conducted. Second, 
diagnostics of model fit should be conducted at each step though we only demonstrate 
this with the unconditional model.

Fitting a NLMEGM Using saemix
The Gompertz growth model is ultimately retained; therefore, the in-text example will 
demonstrate specification of the Gompertz growth model. Initial specifications of the 
Logistic and Richards functions needed for answering the first research question are 
available in Supplementary Materials. The Gompertz function is specified with the lower 
asymptote constrained to be equal across cases and the remaining three parameters 
allowed to randomly vary. As mentioned previously, constraining the lower asymptote 
to be equal across cases is for demonstration purposes. We do not universally propose 
constraining the lower asymptote to be equal across cases; rather, such a decision should 
be made and defended by the researcher. Additionally, we do not specify any predictor of 
the lower asymptote throughout; this is similarly done for demonstration purposes. The 
following function sets up the Gompertz model.

gompertz.model <- function(psi,id,x) {
  
 t <- x[,1]
 TtlGrwth <- psi[id,1]
 Apprch <- psi[id,2]
 Timing <- psi[id,3]
 LwrAsy <- psi[id,4]
 ypred <- LwrAsy+TtlGrwth*exp(-exp(-Apprch*(t-Timing)))

 return(ypred)
}

The psi, id, and x components of the function are derived from the model and data 
objects that follow for each analysis. Note that the ypred line is the formula for the four 
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parameter Gompertz function, as previously defined. The following options are specified 
as a list:

NLMEGM.options <- list(seed=1234, displayProgress=FALSE)

Setting the seed allows for reproducibility. The estimation of model parameters is an 
iterative process; to see the iterations graphically and check convergence of the solution, 
displayProgress = TRUE is specified. We set it to false here to simplify the 
discussion of output but provide a plot of the result if set to TRUE for the unconditional 
Gompertz model.

RQ1: Comparing Gompertz, Logistic and Richards Curves
To answer RQ1 we must fit unconditional models using the data in the data file title 
NLMEGMExData. To fit the unconditional growth model, we specify the following data 
object:

GompertzData.RQ1 <- saemixData(name.data = NLMEGMExData, header = TRUE,
name.group = c("ID"), name.predictors = c("time"), name.response = c("Achievement"),
name.X = "time")

We specify the data file and that it contains variable names (header = TRUE). There 
are multiple observations of achievement for each student; therefore, we specify the 
variable used to group observations into students as name.group = c(“ID”). The 
predictor (time) and outcome (Achievement) are provided next. The final entry 
name.x = “time” specifies the variable on the x-axis for diagnostic plots.

After creating the data object, the model object is specified:

GompertzModel.RQ1 <- saemixModel(model=gompertz.model,
description = 'Gompertz', psi0=c(TtlGrwth=0,Apprch=0,Timing=0,LwrAsy=0),
covariance.model = matrix(c(1,1,1,0,1,1,1,0,1,1,1,0,0,0,0,0), ncol = 4, byrow = TRUE),
transform.par=c(0,0,0,0))

The model uses the previously created gompertz.model function. The psi0 vector 
provides starting values for each of the four growth parameters. Starting values of 0 were 
used and found to be adequate. As previously mentioned, other starting values could 
be used and were required for fitting the Richards curve. In the covariance.model 
matrix, a 1 on the main diagonal indicates that the variance for that parameter should be 
estimated and a 1 in the off diagonal entries indicates that the covariance between the 
two should be estimated. A 0 in either spot indicates the value is fixed to zero. Because 
there are four parameters, this is a 4X4 matrix. The LwrAsy parameter is constrained to 
equality across individuals; therefore, a variance and any covariance that would include 
LwrAsy is not estimated. The transform.par code allows the user to change the 
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distribution of each parameter. A 0 indicates a normal distribution but other options are 
log-normal, probit, and logit.

To conduct the analysis:

GompertzFit.RQ1 <- saemix(GompertzModel.RQ1,GompertzData.RQ1, NLMEGM.options)

Abbreviated output is provided below. Note that the section Fixed effects pro
vides the point estimates and standard errors for each of the four parameters as well as 
the within student residual standard deviation (a.). The CV(%) column is the coefficient 
of variation and is equal to 100*(SE/Estimate). The section Variance of random 
effects provides estimates of variances and covariances. Recall, the LwrAsy was 
constrained such that its variance was zero and therefore is not reported. Correlations 
between parameters that were allowed to vary are reported in the section Correla-
tion matrix of random effects. Finally, the estimated -2*log-likelihood, AIC, 
and BIC values are displayed.

------------------------------------
----  Results  ----
Fixed effects
 Parameter Estimate   SE      CV(%)
 TtlGrwth   5.220    0.055    1.1
 Apprch     1.760    0.072    4.1
 Timing     1.987    0.020    1.0
 LwrAsy    -0.066    0.015    22.7
 a.         0.192    0.008    4.0

Variance of random effects
 Parameter          Estimate   SE     CV(%)
 omega2.TtlGrwth      0.236   0.039    16
 omega2.Apprch        0.405   0.072    18
 omega2.Timing        0.034   0.006    16
 cov.TtlGrwth.Apprch  0.234   0.043    18
 cov.TtlGrwth.Timing -0.012   0.010   -87
 cov.Apprch.Timing    0.002   0.014   648

Statistical criteria

Correlation matrix of random effects
                omega2.TtlGrwth  omega2.Apprch  omega2.Timing
omega2.TtlGrwth     1.0000          0.756         -0.133
omega2.Apprch       0.756           1.0000          0.019
omega2.Timing      -0.133           0.019           1.0000

Likelihood computed by linearisation
  -2LL= 359.088
  AIC= 381.088
  BIC= 409.745
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Model Comparisons
Recall, to answer RQ1 the results for the Logistic, Gompertz, and Richards growth models 
are compared. Information criterion values are useful for this purpose, and in Table 1 the 
-2*log-likelihood, AIC, and BIC values are shown for all three NLMEGM specifications. 
Looking within each column of Table 1, the Gompertz specification is superior to the 
Logistic and Richards specifications. Figure 3 shows the observed data overlayed by 
each of the fitted growth models. Notably, the Gompertz and Richards specifications 
have nearly identical curves; however, the Gompertz curve has one fewer parameter in 
its model. Given the visual fit of the Gompertz model and the values in Table 1, the 
Gompertz model is retained. Further investigation of the diagnostic fit of the Gompertz 
model to the data is possible by evaluating model convergence and NPDE.

Table 1

Model Comparison Results

Model -2LL AIC BIC

Logistic 417.525 439.525 468.182

Gompertz 359.088 381.088 409.745

Richards 359.141 383.141 414.403

Note. -2LL = -2*Log-Likelihood; AIC = Akaike Information Criterion; BIC = Bayesian Information Criterion.

Model Convergence
Each parameter estimate is derived iteratively; the plot of these iterations is used to 
evaluate convergence. See Figure 4 for this application with the Gompertz growth model. 
There is a plot for each of the estimated growth parameters, the growth parameter 
variances, and the within student residual variance. A solution that converges will yield 
plots in which the parameter space is initially explored (the estimated values can bounce 
around substantially) but produces in the later portion of the plot a stable estimate. In 
this application, the solution converges well.

Diagnostics

Several diagnostic plots of model fit are available. First, simple plots of individual predic
tions overlayed on the observed values provides an indication of model fit. Such plots are 
presented in Figure 5.

Four plots that utilize the NPDE are evaluated (see Figure 6). Recall, NPDE that is 
normally distributed with a mean of 0 and variance of 1 indicates good fit (see the Q-Q 
plot and histogram of NPDE values in the upper left and right of Figure 6). Additionally, 
the distribution of NPDE values across time (lower left plot of Figure 6) and across the 

Boedeker 261

Methodology
2021, Vol. 17(4), 250–270
https://doi.org/10.5964/meth.7061

https://www.psychopen.eu/


predicted values (lower right plot of Figure 6) should be normal with a mean of zero and 
variance of one to indicate good model fit to the data.

Interpretation of Parameter Estimates

Though not necessary for answering the first research question, we review the param
eter estimates in the Fixed effects section. The Total Growth parameter is esti
mated to be 5.220, indicating approximately 5 units of average total growth in math 
achievement over the 6 years. The Rate of Approach parameter is estimated to be 1.760. 
This estimate is an aggregate across all time points and therefore provides a holistic 
description of the rate of growth. The Timing parameter is the time of most rapid 
change, on average, for all participants. Here, the estimate of Timing was 1.987. Year 
0 was the first observed value of the outcome, therefore students on average reached 
their greatest acceleration between the second and third achievement measurements. The 

Figure 3

Overlay of Gompertz, Logistic, and Richards Curves on the Simulated Data
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Lower Asymptote was constrained to be equal and estimated to be -0.066, indicating that 
the initial achievement measure was estimated to be -0.066 units for all students.

The Variance of random effects section provides the estimates of growth 
parameter variances across students. Larger variances indicate that differences in growth 
parameters exist across students that may be explained by student characteristics. Small
er variances indicate that students generally have similar estimated parameter values.

Three growth parameters were allowed to vary and correlate with one another. 
The Correlation matrix of random effects section can provide interesting 

Figure 4

Evaluation of Convergence
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insights into the relationships between these paramters. For example, if the Total Growth 
parameter is negatively correlated with Timing and positively correlated with Rate of 
Approach, then students who grow the most tend to grow at a faster rate and change 
earlier than their peers. This was found in Cameron et al. (2015) when evaluating growth 
in reading achievement. In our fictitious example, such a relationship is not strongly 
supported because the correlation between Total Growth and Timing is only -0.133.

The remaining three research questions require variations of the code presented 
above. For each research question, the specific variation is provided in text with full code 
in Supplementary Materials.

Figure 5

Gompertz Curve Trajectory Laid Over 4 Cases
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RQ2: Conditional Growth Model (Sex Only)
Altering Code

The saemixData command now includes Sex as a covariate:

name.covariates = c("Sex").

To include Sex as a predictor of the Total Growth, Rate of Approach, and Timing 
parameters the following line to the saemixModel command is added:

covariate.model = matrix(c(1,1,1,0), ncol = 4, byrow = TRUE)

The above line of code indicates that the Sex covariate is a predictor of the TtlGrwth, 
Apprch, and Timing but not LwrAsy.

Results

Overall improvement in model fit after adding Sex was statistically significant 
(χ2 3 = 32.416, p < .001) and yielded improved AIC (ΔAIC = 25.058) and BIC 

Figure 6

Plot for Evaluating the Fit of the Unconditional Gompertz Curve to the Simulated Data
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(ΔBIC = 17.242). Sex was a statistically significant predictor of total growth (coef = 
0.467, SE = 0.095, p < .001) and the rate of approach (coef = 0.697, SE = 0.125, p < .001); 
however, Sex was not a statistically significantly predictor of the timing parameter (coef 
= 0.015, SE = 0.041, p = .353). These findings indicate that Females and Males do not differ 
statistically on their point of inflection but Females have greater total growth and are 
increasing at a faster rate at the point of inflection than Males.

RQ3: Conditional Growth Model (Sex and SES)
Altering Code

The saemixData command now includes Sex and SES as covariates:

name.covariates = c("Sex", "SES")

The command for creating the model object must be changed to include Sex as a 
predictor of the T tlGrw tℎ, Apprcℎ, and T iming parameters. This is done within the sae-
mixModel command:

covariate.model = matrix(c(1,1,1,0,1,1,1,0), ncol = 4, byrow = TRUE)

where the first set of four values (1,1,1,0) correspond to Sex as a predictor of the 
four parameters (TtlGrwth, Apprch, Timing, LwrAsy) and the second set of 
four values correspond to SES as a predictor of the four parameters.

Results

Overall improvement in model fit after adding SES to the model with Sex only as a pre
dictor was statistically significant (χ2 3 = 59.481, p < .001) and yielded improved AIC 
(ΔAIC = 52.924) and BIC (ΔBIC = 45.109). The coefficient results for Sex are consistent 
with the previous model whereas SES is a statistically significant predictor of Total 
Growth and Rate of Approach but not Timing (see Table 2). Such a result indicates that 
students of higher SES tend to have greater total growth and faster growth, but do not 
differ in timing of the point of inflection when compared to lower SES peers.

Table 2

Predictors of Gompertz Model Parameters

Predictor Total growth Rate of approach Timing

Sex 0.416 (0.079)*** 0.676 (0.107)*** 0.016 (0.040)

SES 0.253 (0.038)*** 0.328 (0.053)*** -0.012 (0.020)

Note. SES = socioeconomic status.
***p < .001.
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RQ4: Conditional Growth Model (Moderation)
A test of moderation allows the investigator to determine if the relationship between a 
predictor and outcome is dependent on the value of a third variable. Moderation analyses 
can be used to determine for whom relationships hold or treatments are most effective. 
In growth modeling, moderation can be used to determine if, for example, the positive 
association between SES and the Total Growth parameter is equivalent for males and fe
males or if for one sex the relationship is stronger. Next, the potential moderating role of 
Sex on the relationship between SES and Gompertz function parameters is investigated.

Altering Code

The saemixData command now includes Sex, SES, and the interaction of Sex and SES 
as covariates:

name.covariates = c("Sex", "SES","SexSESmod")

The command for creating the model object must be changed to include the interaction 
of Sex and SES as a predictor of Total Growth, Rate of Approach, and Timing. This is 
done within the saemixModel command:

covariate.model = matrix(c(1,1,1,0,1,1,1,0,1,1,1,0), ncol = 4, byrow = TRUE)

Note that the first set of four values (1,1,1,0) correspond to Sex as a predictor of 
the four parameters, the second set of four values correspond to SES as a predictor of 
the four parameters, and the third set of four values correspond to the interaction of Sex 
and SES as a predictor of the Gompertz model parameters. If the analyst only wanted to 
determine if Sex moderated the relationship between SES and Total Growth and not for 
the remaining two growth parameters, then the covariate.model command would 
be altered so that the third set of 1s and 0 is 1, 0, 0, 0, indicating that the moderator is 
evaluated only for the first growth parameter, Total Growth.

Results

Overall improvement in model fit after adding the interaction of Sex and SES 
to the previous model with Sex and SES as predictors was statistically signifi
cant (χ2 3 = 22.232, p < .001) and yielded improved AIC (ΔAIC = 15.77 and BIC 
(ΔBIC = 7.955). The interaction of Sex and SES is statistically significant for Total 
Growth and Rate of Approach but not for Timing (see Table 3). Such a result indicates 
that the relationship between SES and Total Growth is moderated by Sex, where the 
relationship between SES and Total Growth is stronger for females than for males. A 
similar result was found for the Rate of Approach. The relationship between SES and the 
Timing parameter does not differ statistically significantly for males and females.
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Table 3

Moderation Results

Predictor Total growth Rate of approach Timing

Sex 0.414 (0.077)*** 0.676 (0.100) *** 0.015 (0.041)

SES 0.114 (0.064)* 0.137 (0.065)* -0.009 (0.033)

Sex x SES 0.216 (0.079)** 0.362 (0.097)*** -0.001 (0.041)

Note. SES = socioeconomic status.
*p < .05. **p < .01. ***p < .001.

Conclusions
NLMEGMs allow for the modeling of sigmoidal growth trajectories that resemble re
al-world phenomena. The parameters of NLMEGMs translate into easily understandable 
attributes of growth. Further extending the model to include predictors of these growth 
parameters can address specific hypotheses such as the existence of relationships be
tween individual characteristics and growth or the effect of policy implementation on 
one or more attributes of growth. In this paper three non-linear growth trajectories were 
discussed and their accompanying parameters. This was followed by an example of how 
to use a specific package (saemix) to model non-linear growth trajectories and answer 
research questions. The goal was to provide a broad illustration of NLMEGMs and their 
application to an applied audience in a replicable manner; however, the presentation did 
not cover all aspects of non-linear growth nor all possible specifications within saemix.

An initial concern for the analyst when planning to model non-linear growth trajec
tories is the framework in which the modeling should be conducted. Non-linear growth 
models can be fit as multilevel models or as latent growth models. The multilevel 
modeling framework was demonstrated here because other demonstrations require use 
of costly programs (e.g., SAS in Grimm & Ram, 2009) and multilevel modeling is an 
accessible framework for testing multilevel hypotheses. Given limitations (Ghisletta & 
Lindenberger, 2004; Grimm & Ram, 2009) within each framework, the analyst must 
consider the hypotheses to be tested and the resources available to determine which 
framework to employ.

The demonstration utilized saemix, a freely available R package. Compared to other 
R packages (i.e., nlmer, lme4), saemix was found to have better convergence rates 
although may take longer to converge to a final solution (Comets et al., 2017; Stegman 
et al., 2018). Other for purchase software could be used to fit NLMEGMs, including SAS 
(see Grimm & Ram, 2009 for a demonstration using SAS). Though the example provided 
a demonstration of a broadly applicable set of analyses, the user is encouraged to under
stand well the program (saemix or otherwise) used in estimating NLMEGMs. Some 
specifications in saemix that were not discussed that could be altered were different 
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specifications of the error distribution and comparisons of alternative log-likelihoods. 
Some aspects of saemix are fixed and unalterable, such as the assumption that random 
effects are multivariate normally distributed.

The reader is encouraged to consider modeling non-linear growth trajectories to 
answer substantive questions about change over time. Extending beyond polynomial 
terms, sigmoidal trajectories may fit one’s data more effectively while providing the 
opportunity to test interesting hypotheses about components of growth. This paper 
contributes to the NLMEGMs literature by providing an accessible introduction to the 
models with a reproducible example.
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