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Abstract
The analysis of change within subjects over time is an ever more important research topic. Besides 
modelling the individual trajectories, a related aim is to identify clusters of subjects within these 
trajectories. Various methods for analyzing these longitudinal trajectories have been proposed. In 
this paper we investigate the performance of three different methods under various conditions in a 
Monte Carlo study. The first method is based on the non-parametric k-means algorithm. The 
second is a latent class mixture model, and the third a method based on the analysis of change 
indices. All methods are available in R. Results show that the k-means method performs 
consistently well in recovering the known clustering structure. The mixture model method 
performs reasonably well, but the change indices method has problems with smaller data sets.
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The analysis of change in individuals and the development in time of groups of indi­
viduals is important in many research fields. With the emergence, or rather increased 
popularity of intensive longitudinal designs such as the Experience Sampling Method 
(ESM) (Bolger & Laurenceau, 2013; Hektner et al., 2007), statistical methods to analyze 
change over time have also become popular. Longitudinal data analysis concerns the 
analysis of change over time and despite differences between methods such as time 
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series or repeated measures, generally all such methods hold that the analysis of change 
over time is the analysis of the trajectory of growth.

Longitudinal data may be derived from experimental or observational studies. In 
longitudinal experiments differential between-subjects effects over time are usually the 
primary focus, and the level or the shape of the trajectory is often secondary. In obser­
vational studies the level or shape of the trajectory is often central to the analyses 
and comparisons between realistic groups (e.g. men versus women, educational level) 
of secondary importance. Another type of question is about differences between groups 
that were not defined beforehand, but are derived from the data (Muthén & Muthén, 
2000). Such groups are called latent classes or clusters. A latent cluster consists of a 
homogeneous group of individuals and the grouping in longitudinal analyses can be 
based on shared levels and shapes of trajectories.

To analyze change a construct must be measured repeatedly, which will yield a set 
of trajectories, one for each subject. Other than in more general multivariate data, the 
repeated measures in longitudinal data have a dependence among measurements due to 
the ordering in time and therefore traditional regression techniques cannot be applied, 
since they assume independent observations. Another aspect in methods popular in the 
social sciences such as ESM is that this type of longitudinal data also differs from time 
series data because instead of a few random processes uniformly sampled over time, the 
more general longitudinal data consists of a large number of independent trajectories 
that are potentially irregularly sampled over time. Although it is possible to aggregate 
the individual change over time to a mean change over time, it is also possible to analyze 
the differential trajectories of growth between individuals in order to, for example, 
identify subgroups for which an intervention is successful.

With such longitudinal data the research questions are about within-subjects change 
such as: what is the individual and general level of change in the construct of interest, 
and what pattern or shape does this change have? But questions can also concern the 
between-subjects differences in change, such as: do some (groups of) individuals have 
a different level or pattern of change. The patterns of change can be captured in a 
functional form (parametric), usually a linear or quadratic pattern, but non-parametric 
patterns that describe the trajectories are also possible. When questions about the level 
and patterns of change are answered, the next level of interest lies in predicting these 
change levels or patterns by covariates. Vermunt (2010) provides an overview of various 
approaches and proposes a three-step approach that combines the clustering of growth 
trajectories via model-based methods and applying the predicted cluster-memberships as 
a dependent variable in a multinomial logistic analysis.

One way to analyze growth trajectories is to cluster them into partitions that reflect 
different trajectories of growth within a population (Muthén & Muthén, 2000). Several 
techniques have been developed for the clustering of longitudinal data, each with their 
strengths and weaknesses (Magidson & Vermunt, 2002), but so far it hasn’t become clear 
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which technique should be preferred in a given context (Den Teuling et al., 2021; Martin 
& von Oertzen, 2015; Twisk & Hoekstra, 2012). The focus of such longitudinal clustering 
techniques is very similar to that of regular clustering techniques. If the research aim is 
to find groups or clusters in the longitudinal data, the aim of using a clustering method is 
to find between-person differences in within-person changes over time. There are many 
ways to obtain these clusters. Modeling the heterogeneity in growth trajectories is often 
more interesting than fitting a single model for the whole sample. Models that derive 
clusters or classes from the data are called latent class models.

Given the increased focus on intensive longitudinal design there is to be expected 
that researchers used to standard statistical software packages shift their attention to 
more flexible platforms for such data analysis such as the statistical programming lan­
guage R (R-Core-Team, 2020). R has become very popular in various scientific fields 
(Lai et al., 2019) and due to being an open source platform can be adapted quickly to 
innovations in statistical methods. A global community of contributors constantly add to 
or improve statistical packages which are distributed through CRAN (Comprehensive R 
Archive Network, https://cran.r-project.org/). As such several packages have been devel­
oped and distributed that provide a library of functions specific to longitudinal cluster 
analysis. For applied researchers facing a longitudinal clustering situation, information 
on the quality and possibilities of different packages for their research problem may be 
very helpful.

In this article we will focus on three popular methods for longitudinal cluster analysis 
that are available in R (Version 4.1.0), reflecting different methods for clustering longitu­
dinal data. These methods are: (1) the k-means method (kml); (2) the trajectory-method 
(traj); and (3) the latent-class mixed-model method (lcmm). These methods will be descri­
bed below.

Longitudinal Clustering Methods
Generally statistical models that yield as outcomes an overall fit line and a distribution 
of fitted lines in longitudinal data are called latent growth models (LGM) in the context 
of Structural Equation Modeling (SEM). A fundamental concept in SEM is the modelling 
of factors that are latent which means they are not directly observed but are inferred 
through a mathematical model from observed variables. Often this relates to latent varia­
bles as a kind of (factor analytically) weighted average of several measured responses. In 
LGM however, the latent variables often refer to the intercept (ic) and the slope (sl) of the 
fitted linear growth pattern, see e.g. Berlin et al. (2014). But other growth patterns can 
also be modelled.

Another variant of this type of model is the Growth Mixture Model (GMM), where 
the term mixture refers to it being a mixture of (latent) growth models. GMM is a 
framework within the multilevel modeling (MLM) literature, which approaches growth 
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through the separation of variance into fixed and random effects. In longitudinal data 
a fixed effect assumes that the model intercept is time-invariant, and a random effect 
allows for testing whether the intercept is likely not time-invariant, i.e. suggests growth. 
Despite the different approaches to longitudinal data between LGM and GMM, from a 
comparison of the basic equations underlying both models, it can be seen that these two 
types of models are in their basic form essentially the same, see e.g. Hox et al. (2018) and 
Singer and Willett (2003), where the latent variables in SEM are analogous to the random 
effects in GMM.

The latent class growth model (LCGM) and GMM are closely related, where LCGM 
is a special type of GMM (e.g. Berlin et al., 2014). For each individual a probability is 
computed that indicates to which cluster (or class) an individual belongs. These clusters 
are not directly observed and are therefore considered latent in the LCGM, inferred 
through patterns in the data. With these latent clusters the variance and covariance 
estimates for the growth factors within each cluster are assumed to be fixed at zero. 
Because of this explicitly modelled assumption, all individual growth trajectories within 
a cluster are homogeneous. This assumption can be relaxed, however (Jung & Wickrama, 
2008). The model that allows for variation within clusters is known under various names, 
among which GMM. An excellent overview of the differences between the model-based 
methods is given by van der Nest et al. (2020).

K-Means for Longitudinal Data: The kml Method
The first method to explore is the k-means for longitudinal data (kml) method from 
the kml R-package (Genolini et al., 2016, 2015) that is based on the k-means algorithm 
adapted for longitudinal trajectories. Like ‘classic’ k-means the k-means for longitudinal 
data is a partitional clustering method in which k clusters are specified, and an algorithm 
tries to partition the data in such a way that it minimizes within-cluster variance. At 
setup a user specifies the number of clusters to be identified in the data, which are the k 
in k-means. K-means is an algorithm which alternates between two steps. The initial step 
in the algorithm is to randomly assign each observation to a cluster in a given (fixed) 
number of clusters. The algorithm then optimizes the clustering solution by alternating 
between the two steps. In the first step, the centers of each cluster are computed. The 
second step consists in assigning each observation to its “nearest cluster.” The alternation 
of the two steps is repeated until no further changes occur in the clusters or until the 
maximum number of iterations is reached (the default is 200). However, since k-means 
algorithms may converge to a local minimum, several starting values (the default is 
20) are automatically applied in the kml method in order to increase the probability of 
obtaining a globally optimal solution. In order to determine the distance between an 
observation and a cluster center, the k-means algorithm uses a distance metric, such as 
the Euclidean distance or the Manhattan distance. There is no fundamental difference 
between classic k-means and longitudinal k-means, because no restrictions (e.g. linear 
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growth) on the trajectories are imposed. In longitudinal k-means the time points serve 
as the variables in classic k-means. The overall distance between two subjects takes 
the distances at all time points equally into account. However, some of the imputation 
methods available in this package are based on the longitudinal character of the data.

The kml R-package (Version 2.4.1) offers eight quality criteria, which help to select 
the most plausible number of clusters. These criteria are computed such that higher 
scores refer to relatively better solutions. It is up to the researcher to determine the 
number of clusters, based on both these criteria and the substantive knowledge of the 
longitudinal process. The kml method also offers eleven different imputation methods, 
which are helpful since substantial dropout in social sciences research is a common phe­
nomenon. Furthermore, kml provides various types of distances (such as the Euclidean, 
which is the default, or the Manhattan) as criteria for assigning subjects to clusters, but 
distance functions can also be defined by the user. The choice of the initial configuration 
of the clusters may be important because a “good” start speeds up the computation 
and may lead to a better solution. There are various strategies available to set the 
initialization, see Genolini et al. (2015). In this study we have used the kml function with 
all the default options.

The traj Method
The second non-parametric method, implemented in the R-package traj (Version 1.2) 
(Leffondré et al., 2004; Sylvestre et al., 2006; Sylvestre & Vatnik, 2014), is a stepwise 
method that consists of three steps. In the first step 24 change indices are computed from 
the data, which form a new matrix of N subjects by 24 indices. These indices are statisti­
cal measures that according to Leffondré et al. (2004, p. 1050) “assess different aspects 
of the longitudinal pattern of change in an individual, that can discriminate between 
stable–unstable, increasing–decreasing, linear–nonlinear, and monotonic–nonmonotonic 
patterns, patterns, as well as identifying patients who tend to have abrupt changes.” 
The indices are divided into four classes: elementary measures of change, measures of 
nonlinearity and inconsistency of change, measures sensitive to nonmonotonicity and 
to abrupt short-term fluctuations, and measures contrasting early versus later change. 
If two indices in this matrix correlate highly (> .95) with each other one of them is 
removed. The remainder of this matrix with change indices is analyzed by a principal 
component analysis to obtain a subset of the indices that describe the most important 
features of the trajectories. This subset is subsequently used in the third step to cluster 
the trajectories, using k-means clustering. So, the third step is a classic k-means, however 
not on the data themselves but on derivatives of the data as explained in step one 
(change indices) and two (PCA). Also, in this kml step various distances used to obtain 
the cluster solution can be chosen (the default is the Euclidean), and also the maximum 
number of iterations, the number of starting configurations (the default is 50), and the 
initialization of the starting configuration. Either a fixed number of clusters can be 
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specified or the program suggests the optimal number of clusters based on up to 30 
different quality criteria (Leffondré et al., 2004). In this study all default options were 
taken for the second and third step. The first step has no choices to be made by the user.

The lcmm Method
The third method is the lcmm method (Proust-Lima et al., 2017, 2020). This is a model-
based method that estimates the longitudinal growth patterns and the latent clusters 
using linear mixed model theory (Jung & Wickrama, 2008; van der Nest et al., 2020). 
This method comes under various names, such as growth mixture model (GMM), and 
belongs to a broader class of longitudinal growth models, for a recent overview, see 
van der Nest et al. (2020). The package used here is able to analyze a wide range of 
models, but for the purpose of this study we have focused on latent class mixture models 
or GMM for Gaussian longitudinal outcomes. The latent class mixture model (lcmm) 
assumes that the population is heterogeneous and composed of a fixed number of latent 
clusters of subjects characterized by their trajectories. The trajectories are modelled by a 
cluster-specific linear mixed model. The estimation in this method is based on maximum 
likelihood and goodness-of-fit measures for the estimated models are available. Models 
with different numbers of clusters (latent clusters) can thus be compared by inspecting 
the goodness-of-fit indices. This model is highly flexible since the fixed effect and the 
distribution of the random effects can be specified for each cluster. Predictors can be 
added to the model to find latent clusters and to find the parameters to optimally predict 
the trajectory of the dependent variable. The predictors in both steps may be different 
ones. Like the other methods, the result may depend on the starting values provided to 
the algorithm.

In this study the function ‘hlme’ from the lcmm package (Version 1.9.5) was used, 
where the variable time, indicating the time points, is used as a predictor for the fixed 
and the random part across the subjects. Since some clusters are define by quadratic 
growth, also the quadratic term of time has been added to fixed and random part of the 
model. No covariates were specified to predict latent cluster membership. The linear link 
function (default) is used here for Gaussian outcomes. No a-priori starting values for the 
clusters were given. The maximum number of iterations used was 100, the default value. 
For all other parameters the default values were taken, see Proust-Lima et al. (2020).

This Study: Research Question
We have given a very brief overview of three packages for longitudinal cluster analysis 
in R. There is little knowledge about how these three methods perform relative to each 
other and which method might be preferred by researchers interested in longitudinal 
clustering of their data. As such the aim of this study is to compare the quality of 
clustering solutions between these three methods in R, in order to identify the strengths 
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and weaknesses of each method and help practitioners in making an informed choice 
among these methods.

In order to compare the methods our research question is: do the three methods, 
namely kml, traj and lcmm, differ in their ability of recovering clustering solutions 
depending on (a) the amount of (longitudinal) time points, (b) the number of participants, 
(c) the number of clusters, and (d) the homogeneity of the clusters, i.e. within-cluster 
variance (error).

This study is not the first one that compares different longitudinal clustering meth­
ods. For instance, Twisk and Hoekstra (2012) compared five methods, including k-means 
and model-based models. The methods were compared on two real data sets (one of them 
was manipulated) and also the optimal number of clusters was a point of interest. They 
found that latent class growth analysis (LCGA) performed the best when classifying 
linear growth trajectories, but neither k-means nor one of the latent class methods were 
good at classifying trajectories that were both linear and quadratic. Similarly, Feldman et 
al. (2009) compared latent class methods, but did not compare the performance of these 
methods to other types of cluster analyses. The study by Martin and von Oertzen (2015) 
did compare k-means with model-based approaches in a Monte Carlo (MC) simulation. 
They expected that model-based methods would underperform relative to other methods 
in small sample sizes (N < 500). They not only evaluated the performance of models 
with the optimal number of clusters, but also how the models compared in choosing 
the number of clusters. Overall, they concluded that mixture-models outperformed other 
methods, including k-means. But only linear trends were evaluated and as such it is 
unclear how these methods would compare in classifying more complex growth patterns. 
A recent study by Den Teuling et al. (2021) addresses some of the limitations in these ear­
lier studies. They compared longitudinal k-means to various mixture models, including a 
combination of k-means and a mixed-effect model. Specifically, they expanded on previ­
ous studies by simulating group trajectories that smoothly and slowly change over time 
instead of linear growth. In their simulations growth mixture modeling (GMM) and the 
two-step clustering approach (combined k-means and GMM) significantly outperformed 
the other methods across all scenarios, both in terms of group assignment and estimation 
of the group trajectories. Our study contributes to the existing literature by comparing 
longitudinal k-means and model-based clustering to a method that has not received 
much attention, namely the traj-method. In addition, we also evaluate the performance 
of these methods when classifying not only linear or slightly curved growth trajectories, 
but quadratic trajectories as well.
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Method

Design of the Monte Carlo Study
In order to test the different longitudinal clustering methods data were simulated using 
a Monte Carlo method. The data generating procedure was to first define the number of 
clusters (M) that characterize the type of longitudinal change to be modelled into the da­
ta. Either three or six clusters (M = 3, 6) with distinct longitudinal patterns (trajectories) 
were specified. The three trajectories can be described as (1) stable low; (2) linear growth; 
(3) quadratic: first decline, then increase. For the generation of six clusters the following 
three trajectories were added to the previous three: (4) stable high; (5) linear decline; (6) 
quadratic: first increase, then decline.

More specifically, these are the trajectories of the six clusters

(Ci, i = 1, .., 6)

• stable low:

C1 = 0t + 2

• linear growth:

C2 = 0.5t

• quadratic decline and increase:

C3 = (t − tmax/2 )2

• stable high:

C4 = 0t + 4

• linear decline:

C5 = − 0.5t + 5.5

• quadratic increase and decline:

C6 = 5 − 5 C3
max C3

Where t means the fictitious time point starting at 1 for the first measurement and tmax
stands for the maximum number of time points.
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The Monte Carlo simulation subsequently varied the data sets on a fixed number of 
repeated measurements or time points (T = 5, 10), and the number of simulated subjects 
(N = 25, 50). So the N refers to the number of subjects at each time point in each cluster, 
yielding a total of data points in each data set of T × M × N. For all time points and 
subjects error (E) was added to the data, taken from a normal distribution with either 
M = 0 and SD = 0.5 (E = ~N 0, 0.5 ) for the low measurement error condition, or E =
~N 0, 1  for the high measurement error condition to simulate differences in cluster 
homogeneity.

The total number of cells in the simulated design were 2 (clusters) x 2 (time points) x 
2 (subjects) x 2 (levels of error) = 16. For each method a new series of Monte Carlo simu­
lated datasets were constructed, bringing the total number of cells in the design when 
also accounting for the clustering methods to 48. The number of replicated data sets per 
cell was N = 500. The default of 20 random starting values was used for the kml method 
for each analysis. The R-package MonteCarlo (Leschinski, 2019) (Version 1.0.6) was used 
for this study, which simplifies Monte Carlo simulation studies by automatically setting 
up loops to run over parameter grids. R code for generating the data sets and running the 
Monte Carlo simulations is provided as Supplementary Materials.

In Figure 1 two simulated data sets are shown, both with six clusters (trajectories), 
N = 50, and E = N 0, 1 .

Figure 1

Examples of Simulated Data With T = 5 (Top Panel) and T = 10 (Bottom Panel)
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Dependent Variables
The Adjusted Rand Index

The Rand index (Rand, 1971) has been proposed as an objective measure for correspond­
ence between two cluster partitions. This index was later adjusted for chance by Hubert 
and Arabie (1985). The adjusted Rand index (ARI ) is defined as:

ARI =
∑ij

nij
2 − ∑i

ni .
2 ∑j

n . j
2

n
2

1
2 ∑i

ni .
2 + ∑j

n . j
2 − ∑i

ni .
2 ∑j

n . j
2

n
2

Here, n is the total number of subjects to be clustered, nij refers to the number of subjects 
in the itℎ and jtℎ cluster of respectively the true data and the computed result. The “dot 
notation” refers to column and row sums. The index has an upper bound of 1, which 
implies perfect correspondence between the two partitions, and 0 when the index equals 
its expected value when the clusters are independent. If the solution is worse than the 
expected values than the index can become negative.

The Calinski-Harabasz Index

The Calinski-Harabasz index (CH ) (Calinski & Harabasz, 1974) is a measure for internal 
cluster validity. The index can be used when the true clustering is unknown and the 
validation of the cluster solution is made by using quantities inherent to the data. The 
CH  (also known as variance ratio criterion) measures of how similar an object is to its 
own cluster compared to other clusters. Here similarity within a cluster is based on the 
distances from the data points in a cluster to its cluster centroid and between cluster 
separation is based on the distance of the cluster centroids from the global centroid.

For a given number of clusters, K , the CH  is defined as:

CH = ∑k = 1
K nk(ck − c)2

K − 1 /∑k = 1
K ∑k = 1

nk (yi − ck)2
N − K

where, nk and ck are the number of data points and the cluster centroid of the ktℎ cluster, 
respectively, c is the overall centroid, and N  is the total number of data points.

Higher values of CH  indicate better cluster solutions, which implies that the clusters 
are well separated from each other. The lower bound of this statistic is 0, but there it has 
no upper bound, which depends on the data. In order to better compare the CH  statistic 
across the three methods it was standardized, denoted as CHs, to fall in the interval 0, 1
using a logistic transformation:
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CHs = 2 1
1 + e −1/λ *cℎi − 0.5

Here, the factor λ is defined by

λ =
σy

N − K

where σy is the standard deviation of the dependent variable (across all subjects and time 
points).

The Variability of the ARI Index

A fourth measure to compare the methods on is the variability of the ARI  index, which 
is the standard deviation of the ARI  across the replications. This measure may provide an 
indication of the robustness of the method. For methods with similar means of the ARI
index, the one that shows less variability is probably preferred.

Results
The results of the Monte Carlo study for the four indices are presented in the tables 
below.

The Adjusted Rand Index
First, the recovery of the true clustering using the ARI  is given. The results with respect 
to the ARI  for the three cluster methods are given in Table 1.

The kml method has the highest ARI  value in all conditions. However, in most 
conditions the lcmm method yields only slightly lower or similar results. Only in one 
condition (Error level = 0.5, Clusters = 3, Time points = 5, Subjects = 25) there appears a 
substantial difference between these methods, in favor of the kml method. With 10 time 
points kml almost perfectly recovers the target clustering. The traj method has lower ARI
values than the other two methods in all conditions. Only with 6 clusters, 10 time points 
and little error traj yields good results.

With respect to the number of cluster, in particular the traj method benefits from 
more clusters. For the other two methods the results are mixed: in some conditions 
there is hardly any effect of the number of clusters, in some conditions the ARI  is even 
somewhat smaller with six clusters compared to three. The number of subjects has little 
effect on the traj method. For the other methods 50 subjects yields similar or larger ARI
values than 25 subjects.
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Table 1

Mean Adjusted Rand Index for the Three Methods

Condition Method 

Error = 0.5 Error = 1.0

Cluster = 3 Cluster = 6 Cluster = 3 Cluster = 6

T = 5, S = 25 kml 0.929 0.893 0.521 0.575

traj 0.483 0.540 0.220 0.272

lcmm 0.574 0.852 0.416 0.572

T = 5, S = 50 kml 0.939 0.908 0.568 0.612

traj 0.490 0.547 0.237 0.267

lcmm 0.901 0.886 0.473 0.613

T = 10, S = 25 kml 1.000 1.000 0.960 0.958

traj 0.678 0.891 0.228 0.444

lcmm 0.962 0.916 0.946 0.897

T = 10, S = 50 kml 1.000 1.000 0.970 0.971

traj 0.684 0.907 0.243 0.439

lcmm 0.978 0.986 0.970 0.946

Note. Based on 500 replications.

The number of time points has a consistent effect on the ARI . With 10 time points 
the results are always better than with 5 time points. Likewise, the larger error level 
decreases the ARI  values in all conditions.

The Calinski-Harabasz Index
Next, the CH  and standardized CHs indices are given. The results for the Calinski-Hara­
basz index for the three methods are given in Table 2.

The results of the CH  cannot be compared between different numbers of clusters, 
time points and subjects, because its value depends on the data. Within each condition 
the three methods can be compared and these results are consistent with the ARI  results. 
The kml method performs best, closely followed by the lcmm method in most conditions, 
whereas the traj method yields lower values. As expected, with increasing random error 
this index clearly decreases in all conditions.

The results for the standardized Calinski-Harabasz Index for the three methods are 
given in Table 3.
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Table 2

Mean Calinski-Harabasz Index for the Three Methods

Condition Method

Error = 0.5 Error = 1.0

Cluster = 3 Cluster = 6 Cluster = 3 Cluster = 6

T = 5, S = 25 kml 101.540 272.537 32.774 79.731

traj 49.804 63.464 13.176 30.711

lcmm 69.031 249.348 26.306 77.025

T = 5, S = 50 kml 203.608 546.643 61.941 155.336

traj 97.800 126.975 26.648 59.197

lcmm 192.796 519.823 52.909 150.584

T = 10, S = 25 kml 152.579 252.779 39.510 64.078

traj 76.515 171.461 9.131 28.938

lcmm 144.360 202.191 38.413 59.935

T = 10, S = 50 kml 304.657 503.114 77.968 127.321

traj 158.189 356.767 17.899 56.819

lcmm 294.111 487.246 77.279 123.306

Note. Based on 500 replications.

Table 3

Standardized Mean Calinski-Harabasz Index for the Three Methods

Condition Method

Error = 0.5 Error = 1.0

Cluster = 3 Cluster = 6 Cluster = 3 Cluster = 6

T = 5, S = 25 kml 0.321 0.595 0.087 0.175

traj 0.161 0.159 0.035 0.068

lcmm 0.220 0.550 0.070 0.169

T = 5, S = 50 kml 0.322 0.598 0.083 0.171

traj 0.159 0.159 0.036 0.065

lcmm 0.305 0.573 0.071 0.165

T = 10, S = 25 kml 0.215 0.319 0.048 0.073

traj 0.109 0.220 0.011 0.033

lcmm 0.204 0.256 0.047 0.068

T = 10, S = 50 kml 0.215 0.318 0.048 0.072

traj 0.112 0.228 0.011 0.032

lcmm 0.207 0.308 0.047 0.070

Note. Based on 500 replications.

The results for the CHs obviously yields the same pattern as the CH  when comparing 
the three methods. For this index the number of clusters has an effect in the sense that 
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the six clusters conditions yield better results than three clusters. The number of subjects 
seems to have no effect on this index. The standardized CH  index is almost always 
smaller for 10 time points compared to 5 time points.

The Standard Deviations of the ARI Across Replications
The results for the standard deviation of the ARI values across replications for the three 
methods are given in Table 4.

Table 4

Variability of the ARI Index for the Three Methods

Condition Method

Error = 0.5 Error = 1.0

Cluster = 3 Cluster = 6 Cluster = 3 Cluster = 6

T = 5, S = 25 kml 0.058 0.072 0.117 0.057

traj 0.170 0.071 0.126 0.090

lcmm 0.380 0.108 0.191 0.086

T = 5, S = 50 kml 0.039 0.060 0.086 0.049

traj 0.142 0.065 0.087 0.090

lcmm 0.133 0.080 0.178 0.057

T = 10, S = 25 kml 0.002 0.000 0.045 0.049

traj 0.327 0.079 0.167 0.071

lcmm 0.135 0.135 0.103 0.128

T = 10, S = 50 kml 0.000 0.000 0.027 0.026

traj 0.354 0.058 0.152 0.049

lcmm 0.094 0.066 0.041 0.077

Note. Based on 500 replications.

The variability across the replications is smallest for the klm method in all conditions. 
With ten time points and little error the results are almost perfectly stable for this 
method. The other two methods show mixed results, which depend on the condition. The 
variability of the traj method is in almost all conditions larger with 3 clusters than with 6 
clusters. Furthermore, there does not seem to be a clear pattern.

Discussion
This study compared three different methods for longitudinal cluster analysis and fo­
cused on three corresponding R-packages that are available on the R-repository CRAN. 
Studies have compared model-based longitudinal clustering methods (Hsu et al., 2018; 
Sijbrandij et al., 2019), but to our knowledge a comparison between model-based and 
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non-model-based methods has not been done. In our analysis of simulated datasets we 
found that longitudinal k-means consistently either outperforms the other methods or 
performs at least as well, regards of number of time points, clusters, measurement error 
or participants, in terms of clustering accuracy (ARI), clustering separation (CH), and 
stability (SDARI). Unsurprisingly, in all methods higher measurement error and less time 
points yielded worse clustering solutions than low error and more time points. Number 
of participants however did not seem to impact the quality of clustering separation. 
The model-based longitudinal clustering method lcmm resembled the performance of 
the longitudinal k-means method in many instances, especially with 10 points. However, 
with 5 time-points and 3 clusters kml decidedly outperforms lcmm in terms of clustering 
accuracy. In all conditions the traj method performs worse than lcmm or kml. The 
accuracy-gap between traj and both kml and lcmm closes somewhat with six clusters 
compared to three. The traj method demonstrates good results only with a high number 
of clusters and time points, together with low measurement error.

Our findings imply that longitudinal k-means is a surprisingly strong method that 
can complement latent class mixed modeling methods such as lcmm. Longitudinal k-
means is a relatively easy, and computationally less complex approach, which consistent­
ly performs well and sometimes even better than lcmm. Researchers might favor more 
theory driven approaches to growth modeling for their finer control over the clustering 
of growth patterns, but the more data-driven approach in longitudinal k-means seems 
to offer researchers a very good starting point at the least, and might be a better choice 
when the amount of expected growth patterns and the number of repeated measure­
ments is low. Even though traj performs well with a high number of growth patterns and 
repeated measurements, our findings would imply that kml and lcmm are better methods 
in general, even though it remains unclear if there are specific conditions in which traj 
might excel.

In our Monte Carlo approach, the number of clusters to be found was set equal to 
the number of clusters that were generated. Our study can be regarded as a comparison 
between methods in a best-case scenario: when the number of clusters in the analyses 
match the number of clusters in the population. The limitation of our approach is that 
it is unclear how well the methods and packages perform when used to explore an 
unknown number of clusters. It would be worthwhile to evaluate the performance of 
these methods and packages when used to recover the number of clusters. This has 
already been addressed in other studies (Den Teuling et al., 2021; Twisk & Hoekstra, 
2012), and appears to be a challenging issue. Moreover, not only statistical considerations 
play a role in deciding on the right number of clusters, but also knowledge of the 
substantive research field (Ram & Grimm, 2009).

In similar vein the sample sizes in our Monte Carlo simulation were small (N = 75 
to N = 300). We chose this sample size to reflect common scenarios in which people are 
followed for 5 or 10 measurement moments. In longitudinal studies t is often used as a 
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trade-off for N, such that observations are regularly regarded as sufficient with regards 
to the required power of the study. We have explored a large sample size for our MC 
conditions, which confirmed the results, in the sense that kml and lcmm profit from the 
larger samples and traj does not. Unfortunately, determining the sample size needed to 
adequately power each method for any given clustering-characteristic in a population is 
not straightforward. A study by Martin and von Oertzen (2015) provides an indication 
that even in small sample sizes such as in our study our clustering techniques might 
perform adequately. But Martin and von Oertzen (2015) consider N = 150 a small sample 
size which is still considerably higher than the minimum sample sizes in our study. 
Considering that latent variable models are generally considered to be techniques which 
require large sample sizes the question is whether sample size impacts all compared 
methods in our study equally, or whether latent techniques, such as lcmm might particu­
larly underperform. This appears to be the case in the present study in the condition 
with the smallest number of data points and little error. We also explored a larger sample 
size, in which the results were in line with the findings from the smaller sample sizes.

The Calinsky-Harabasz index as used in this study is not optimal for comparing 
methods. The CH-index’s strength lies in the process of finding the optimal number 
of clusters. As such the CH-index is more useful for within-dataset comparisons rather 
than between method-comparisons across different data sets. We still opted to include 
the CH-index because researchers applying clustering methods to their data are using 
CH-index, and we wanted to explore how the CH-index performs, even when applied to 
the best-case scenario with the true number of clusters. To allow for between method 
comparisons we standardized the CH-index between 0 and 1. In future studies it would 
be worthwhile to explore the performance of the different methods when using the 
CH-index in choosing the number of clusters. In this study the CH-index results in 
conclusions which are congruent with the other measures of fit, adding support to our 
finding that both kml and lcmm perform well and outperform traj.

One of our study’s strengths is the use of simulated data, which carries the advantage 
that the underlying clustering structure is known. It is unclear, however, whether real 
data and the impact of problems in real data, such as uni- and multivariate outliers and 
noncentrality of residuals would significantly alter this study’s conclusions. By varying 
the measurement error in the simulated data this study has attempted to reflect the noise 
in growth patterns in real data. However, in empirical longitudinal data noise levels may 
sometimes be larger or other sources of bias may influence the results, such as selective 
drop-out.

The present study did not concern the question of measurement invariance (De 
Roover, 2021) and its impact on the measurement of growth. However, further research 
is needed to address these issues. Our study did also not address how the three methods 
performed when model assumptions were violated, such as assumptions of normality 
or homoscedasticity, or when clusters are of unequal sizes and degree of measurement 
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error. As such, this study can be seen as a first step under optimal conditions. The 
next step could be to explore the robustness of these methods and whether our findings 
persist under divergent conditions.

The present study was limited to the freely available and open source R-packages, 
but besides the R-environment there is more software that can used for longitudinal 
clustering. For instance, MPLUS (Muthén & Muthén, 2017), which is a highly specialized 
program, by which models like lcmm can be tested. Another well-known program for 
analyzing longitudinal trajectories is the SAS procedure TRAJ (Jones et al., 2001), which 
is also model-based.
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