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Abstract
Three-level clustered data commonly occur in social and behavioral research and are prominently 
analyzed using multilevel modeling. The influence of the clustering on estimation results is 
assessed with the intraclass correlation coefficients (ICCs), which indicate the fraction of variance 
in the outcome located at each higher level. However, ICCs are prone to bias due to high 
requirements regarding the overall sample size and the sample size at each data level. In Monte 
Carlo simulations, we investigate how these sample characteristics influence the bias of the ICCs 
and statistical power of the variance components using robust ML-estimation. Results reveal 
considerable underestimation on Level-3 and the importance of the Level-3 sample size in 
combination with the ICC sizes. Based on our results, we derive concise sampling 
recommendations and discuss limits to our inferences.
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In the behavioral research and related fields, researchers increasingly employ multilevel 
modeling on three-levels to analyze clustered data. These data structures consist of meas­
urement objects at Level-1, which are nested within higher-order Level-2 subclusters, 
which are nested in Level-3 clusters, such as patients within therapists within clinics 
(e.g., Firth et al., 2019).
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Common estimates of the influence of the clustering are the intraclass correlation 
coefficients (ICCs), which depict the fraction of variance in the criterion located at 
Level-2 (ICC2) or Level-3 (ICC3). They thus indicate the extent to which the criterion is 
shaped by superordinate clusters, which may reveal, e.g., at which level(s) predictors or 
random effects should be included to reduce unexplained variance, or they inform the 
sampling procedure, ensuring high estimation quality in cluster-randomized experiments 
(Hedges & Hedberg, 2013). ICCs further indicate the degree to which standard errors are 
biased in standard regression analysis (two-level models: e.g., Kreft & de Leeuw, 1988; 
three-level models: e.g., Cunningham & Johnson, 2016). Therefore, ensuring that a nested 
structure is accurately characterized is a central issue, and reporting ICCs is a standard 
analysis step in multilevel modeling (see Hox et al., 2017).

However, research has shown that unbiased estimation and sufficient power in multi­
level models depend on an interplay of adequate sample sizes on each level, the effect 
sizes, and the levels at which the predictors are modelled (more recently Cox & Kelcey, 
2019; Kerkhoff & Nussbeck, 2019; LaHuis et al., 2020). To our knowledge, no study has 
systematically investigated required sample sizes to ensure sufficient estimation quality 
of the ICCs in three-level models. In this study, we shed light on this relationship and 
derive sampling recommendations for a wide range of ICC sizes. We limit our analyses 
to models with continuous responses, since the computation of ICCs in multilevel models 
with discrete and continuous responses differ (Goldstein et al., 2002; Leckie et al., 2020), 
resulting in limited comparability of estimation results and interpretation of the ICC 
sizes.

Variance Decomposition in the Linear Three-Level Model
The linear three-level model with Level-1 units i nested within Level-2 subclusters j 
nested within Level-3 clusters k decomposes the values of the criterion Y ijk as follows:

Y ijk = γ000 + v00k + u0jk + eijk (1)

The coefficient γ000 is the grand mean of Y, v00k~N(0, σv0
2 ) is a random variable reflecting 

the cluster-specific deviations from the mean, u0jk~N(0, σu0
2 ) is the random variable of 

subcluster-specific deviations from the respective cluster mean, and eijk~N(0, σe2) is the 
random variable of deviations of the Level-1 unit values from the respective subcluster 
mean. The total variance of Y is given by σY2 = σv0

2 + σu0
2 + σe2. The ICCs express the 

fraction of variance at the respective level in relation to the total variance:

Level 3: ICC3 =
σv0

2

σv0
2 + σu0

2 + σe2
(2)
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Level 2: ICC2 =
σu0

2

σv0
2 + σu0

2 + σe2
(3)

For the ICC2, an alternative approach is to include both higher-level variances in the 
enumerator (σv0

2 + σu0
2 ). The value then expresses how strongly any two Level-1 units 

from the same subcluster correlate (Hox et al., 2017). Typical ICC values are most 
comprehensively reported for educational research, ranging from 0.1 to 0.3 (Dong et al., 
2016; Hedges & Hedberg, 2013), and research has demonstrated that even small ICCs can 
result in meaningful bias if the clustering is ignored (Lai & Kwok, 2015).

Assessing Estimation Quality of the Variance Components
When using Monte Carlo (MC) simulations to investigate estimation quality in multilevel 
models across many generated samples, the most common measures of estimation quali­
ty are the parameter estimation bias (PEB) to evaluate the accuracy of point estimates, 
and measures of significance to evaluate statistical power.

Parameter Estimation Bias (PEB)

The PEB reflects the percentage of over- or underestimation of a population parameter. 
We refer to this commonly reported PEB (e.g., Muthén & Muthén, 2002) as relative PEB. 
For a population parameter θ, estimated by θi in i = 1, …, n replications, it is defined as

rPEBθ = ∑1 ≤ i ≤ n
θi − θ

θ
n

(4)

We argue that the relative PEB alone is not sufficient for evaluating bias: By design, 
under- and overestimation balance out when computing the relative bias across replica­
tions. This can result in a relative PEB close to zero, although each replication might 
be either over- or underestimated. The magnitude of bias for a single sample can more 
precisely be approximated by the absolute PEB, given by:

aPEBθ = ∑1 ≤ i ≤ n
θi − θ

θ
n

(5)

For the absolute PEB, only the strength of the bias is averaged across replications, and 
the direction of bias for each sample is ignored. Together, the relative and absolute PEB 
reflect the expected strength and overall direction of bias.

Statistical Power

Statistical power of a parameter in the context of simulation studies is the rate of 
replications with a statistically significant point estimate. However, the commonly used 
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Wald-test (Wald, 1943) is unreliable for variance components (Berkhof & Snijders, 2001; 
Molenberghs & Verbeke, 2004; Raudenbush & Bryk, 2002).

An alternative procedure to test statistical significance of parameters in multilevel 
models is the χ2-test-based comparison between the full model and a nested model where 
the parameter of interest is constrained to be zero (Hox et al., 2017). Based on the 
scaled χ2-test statistic (Satorra & Bentler, 1994), the modified test statistic T d proposed by 
Satorra and Bentler (2010, henceforth: SB-test) is computed using the unscaled maximum 
likelihood χ2-values of the nested (T0) and full (T1) models, the respective scaled χ2-test 
statistics of T 0 and T 1, with degrees of freedom r0 and r1, and scaling correction factors 
c 0 = T0/T 0 and c 1 = T1/T 1:

T d ≔ T 0 * c 0 − T 1 * c 1
cd

,   witℎ   cd = r0 * c 0 − r1 * c 1
r0 − r1

(6)

The score is compared to a χ2-distribution with r0 − r1 degrees of freedom. As an alter­
native, the likelihood-ratio test (LRT) follows the same procedural logic but uses the 
log-likelihood to compute the test statistic (see Herzog et al., 2007, for an overview). To 
assess the statistical significance of the Level-2 (Level-3) variance, the empty model (Eq. 
1) is compared to a nested model where the Level-2 (Level-3) variance is constrained 
to be zero (Greven et al., 2008) using a one-sided test, since significantly negative 
variance values are inadmissible (Berkhof & Snijders, 2001). However, this approach has 
drawbacks. Particularly, both the LRT and SB-test can result in inadmissible, negative 
test-values, requiring a more complex approach using an auxiliary model (Bryant & 
Satorra, 2012; Satorra & Bentler, 2010). Further, the distribution of the test statistic has 
been shown to more closely follow a χ2-mixture distribution, but nevertheless, research 
suggests that χ2-based tests for the variances still produce sufficiently accurate results 
(Dominicus et al., 2006; LaHuis & Ferguson, 2009).

Sampling Recommendations
Despite its importance as a measure of cluster influences, there are no comprehensive 
recommendations for unbiased estimation of the ICC values, and only few studies report 
on the estimation quality of the variance components. In Kerkhoff and Nussbeck (2019), 
a small Level-3 intercept variance is heavily overestimated in samples with up to 55 
clusters with 5 or 15 units per cluster. For ten or less sampled Level-3 clusters, McNeish 
and Wentzel (2017) found that the Level-2 variance is underestimated by up to 5% and 
the Level-3 variance is underestimated by 30% or more. Although these studies do not 
provide information regarding accurate estimation of the ICCs, they demonstrate that the 
estimation of variances is not trivial in three-level models, and that substantial bias can 
occur if the sampling process is not optimized.
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Aim of This Study
By means of extensive Monte Carlo simulations, we evaluate how estimation bias and 
statistical power relate to the overall sample size, the allocation of units on each level, 
and the ICC sizes. We are particularly interested in minimum required samples sizes and 
advantageous sampling-strategies for overall sound estimation.

Method

Simulation Setup
For the simulations, we used the empty three-level model (Eq. 1), with γ000 = 0 and 
Y ijk~N(0, σY2). In total, we generated 1,125 simulation conditions: 5 (n3 = 5, 10, 50, 100, or 
200) × 5 (n2 = 2, 5, 10, 20, or 30) × 5 (n1 = 2, 5, 10, 20, or 30) × 3 (σv0

2  = 0.1, 0.2, or 0.6) × 
3 (σu0

2  = 0.1, 0.2, or 0.6) × 1 (σe2 = 1). The combinations of variances yielded nine different 
combinations of ICC3 and ICC2, calculated as in Eq. 2 and 3 (see Table 1). We chose ICC 
values and sample sizes based on empirical findings in the social and behavioral research 
(e.g., Dong et al., 2016; Kerkhoff & Nussbeck, 2019).

Table 1

Variance Sizes, Resulting ICC Combinations, and Notation

σv0
2 σu0

2 ICC3/ICC2 Notation

0.1 0.1 .083/.083 S/S

0.1 0.2 .077/.154 S/M

0.1 0.6 .059/.353 S/L

0.2 0.1 .154/.077 M/S

0.2 0.2 .143/.143 M/M

0.2 0.6 .111/.333 M/L

0.6 0.1 .353/.059 L/S

0.6 0.2 .333/.111 L/M

0.6 0.6 .273/.273 L/L

Note. σv0
2  = Level-3 variance, σu0

2  = Level-2 variance, Level-1 residual variance σe2 = 1 in all conditions; ICC = 
Intraclass correlation coefficients for Level-3 (ICC3) and Level-2 (ICC2).

For every condition, we generated 1,000 samples. For each sample, we fitted the empty 
model using robust maximum likelihood estimation with the expectation maximization 
algorithm and 500 admissible iterations. Data generation and model estimation was done 
in Mplus Version 8 (Muthén & Muthén, 1998-2017), and results were imported to R 6.3.1 
(R Core Team, 2019) using the MplusAutomation package (Hallquist & Wiley, 2018) for 
subsequent analyses.
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We refer to the total number of observations in a condition (n3 × n2 × n1) as NOBS. 
We further refer to the specific combination of n3, n2, and n1 in a condition as “allocation” 
and abbreviate the allocation by n3-size/n2-size/n1-size. For example, 100/20/5 subsumes 
samples with 100 clusters, each with 20 subclusters, which in turn contain 5 Level-1 
units. 100/5/• comprises all conditions with 100 clusters, each with 5 subclusters and any 
number of Level-1 units. ICC sizes are summarized where appropriate by L = large (ICC 
= .273, .333, or .353), M = medium (ICC = .111, .143, or .154), and S = small (ICC = .059, 
.077, or .083). ICC sizes of a condition are abbreviated by ICC3-size/ICC2-size (see Table 
1).

Outcome Measures
We report convergence rates, but computed coefficients only across runs that converged 
normally. To explore the influence of sample sizes on bias (rPEB and aPEB for ICC2 and 
ICC3), we ran four analyses of variance, and report the partial omega-squared (ωP2) effect 
size. We further computed the median estimate, the upper and lower quartiles, and the 
relative and absolute PEB of the ICCs and the Level-1 variance. We considered -0.10 
< rPEB < 0.10 as sufficiently unbiased (see Flora & Curran, 2004; Muthén & Muthén, 
2002). There are no established thresholds to indicate absolute unbiasedness, so we 
considered aPEB < 0.15 to be unbiased, since we argue that in practice, less than 15% 
over- or underestimation of an ICC does not considerably change statistical inferences. 
We further calculated the rate of biased runs, which is the percentage of replications in 
a condition with at least 15% over- or underestimation, as an indicator for the risk of 
producing a biased estimate.

For the Level-2 and Level-3 variance components, we assessed statistical power by 
the rate of significant one-sided SB-tests as in Eq. 61. We considered a power of 80% or 
higher as sufficient (see Cohen, 1992; Muthén & Muthén, 2002).

Results
First, since Level-1 residuals were estimated accurately in most conditions (relative 
unbiasedness in NOBS > 50, absolute unbiasedness in NOBS > 100), we do not provide 
detailed information about the estimation quality on Level-1. Complete results are tabu­
lated in the supplementary dataset.

Out of the 1,125 conditions, 299 conditions (all n3 ≤ 10, 26.58% of all conditions) 
produced at least one replication that did not converge normally. Moreover, convergence 
problems occurred more frequently for conditions with small ICC3 (see also Table 2).

1) While we initially computed both LRTs and SB-tests, we chose not to report results for the LRT, since the rate of 
inadmissible test values was considerably higher.
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Results Across Allocations
Median estimates, quartiles of ICC estimates, PEB and power across all sampling condi­
tions are presented in Table 3. Results show that the ICC3 tended to be underestimated, 
while the ICC2 tended to be overestimated. Analyses of variance (Table 4) show that on 
Level-3, the number of clusters was most influential on both, relative and absolute PEB. 
On Level-2, relative bias was mostly influenced by the total sample size, while absolute 
bias was mostly influenced by the number of clusters.

Table 2

Sampling Conditions With a Convergence Rate of 95% or Less

n3/n2/n1 ICC3/ICC2

5/2/2 All

5/2/5 All

5/2/10 S/• M/• L/S

5/2/20 S/• M/• L/L

5/2/30 S/• M/M M/L

5/5/2 S/• M/•

5/5/5 S/• M/M M/L

5/5/10 S/• M/L

5/5/20 S/M S/L M/L

5/5/30 S/M S/L M/L

5/10/2 S/• M/M M/L

5/10/5 S/M S/L

5/10/10 S/L M/L

5/10/20 S/L M/L

5/10/30 S/L

5/20/2 S/L

10/2/2 S/• M/S

10/2/5 S/S M/S

Note. ICC = Intraclass correlation coefficients for Level-3 
(ICC3) and Level-2 (ICC2). n1, n2, n3 indicate the number of 
clusters (n3), subclusters per cluster (n2), and Level-1 units per 
subcluster (n1). S, M, L indicate small, medium, and large ICC 
sizes, respectively.

Kerkhoff & Nussbeck 11

Methodology
2022, Vol. 18(1), 5–23
https://doi.org/10.5964/meth.7265

https://www.psychopen.eu/


Table 3

Estimates and Bias of the ICCs and Power of the Variances Across Sampling Conditions

ICC

Level-3 Level-2

ICC3 estimate rPEBICC3 aPEBICC3

Power 
of σv0

2 ICC2 estimate rPEBICC2 aPEBICC2

Power 
of σu0

2

Mdn [Q1; Q3] Mdn Mdn Mdn Mdn [Q1; Q3] Mdn Mdn Mdn
.059 .058 [.053; .059] -.016 .420 .865 .060 [.059; .065] .021 .201 1.000

.077 .075 [.067; .076] -.024 .275 .992 .078 [.077; .080] .013 .166 1.000

.083 .081 [.072; .082] -.026 .240 .982 .084 [.084; .085] .008 .163 1.000

.111 .109 [.097; .110] -.020 .273 1.000 .113 [.112; .118] .016 .155 1.000

.143 .139 [.123; .141] -.028 .183 1.000 .144 [.143; .146] .007 .125 1.000

.154 .150 [.131; .152] -.026 .163 1.000 .154 [.154; .155] .004 .120 1.000

.273 .266 [.233; .270] -.026 .145 1.000 .275 [.274; .285] .009 .107 1.000

.333 .325 [.288; .330] -.024 .117 1.000 .334 [.333; .336] .002 .081 1.000

.353 .345 [.308; .349] -.023 .111 1.000 .353 [.350; .354] .001 .073 1.000

Note. rPEBθ = relative PEB of θ; aPEBθ = absolute PEB of θ; Mdn = median; Q1 = lower quartile; Q3 = upper 
quartile; ICC = Intraclass correlation coefficients for Level-3 (ICC3) and Level-2 (ICC2); σv0

2  = Level-3 variance; 
σu0

2  = Level-2 variance.

Table 4

Effect Sizes (Partial ω2) Resulting From Analyses of Variance in Relative and Absolute Bias of the ICCs.

Factor df

Level-3 Level-2

rPEBICC3 aPEBICC3 rPEBICC2 aPEBICC2

ωp2 ωp2 ωp2 ωp2

Population σv0
2 2 .043 .427 .072 .042

Population σu0
2 2 .033 .198 .087 .363

n3 4 .462 .814 .074 .651

n2 4 .074 .508 -.002 .565

n1 4 .002 .106 .093 .526

NOBS 34 .098 .177 .142 .456

Note. rPEBθ = relative PEB of θ; aPEBθ = absolute PEB of θ; ωp2 = partial omega squared; ICC = Intraclass 
correlation coefficients for Level-3 (ICC3) and Level-2 (ICC2); σv0

2  = Level-3 variance; σu0
2  = Level-2 variance. n1, 

n2, n3 indicate the number of clusters (n3), subclusters per cluster (n2), and Level-1 units per subcluster (n1). 
NOBS = total number of observations. Residual df = 1074.
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Figure 1

Conditions With Sufficient Power, Relative Unbiasedness, and Absolute Unbiasedness

Note. Each square represents a condition, ordered by n3 (grouped columns), n2 (grouped rows), n1 (single 
columns within an n3 group), and ICC sizes (single rows within an n2 group). Shaded diagonals show the rate of 
runs with at least 15% under- or overestimation of the ICC3 (upper diagonal) and ICC2 (lower diagonal). White 
squares indicate that the condition did not yield unbiased estimates or sufficient power at all levels.
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In total, 384 conditions (34.13%) resulted in sufficient power and relative and absolute 
unbiasedness on all levels. These conditions can be identified in Figure 1 as squares with 
gray areas, where the shades of the triangles indicate the rate of biased runs for the ICC3 

(upper triangle) and ICC2 (lower triangle). For example, in 200/2/2, only the condition 
with large ICCs was estimated with sufficient power and without bias, yet both ICCs 
were still biased in more than 30% of replications in this condition. Conditions with 5 or 
10 clusters did not result in accurate estimation across levels. Overall, conditions with at 
least 200/20/2 or 100/20/5 resulted in sufficient estimation quality across levels.

Estimation of Variance Components
In Figure 2, we present the median, upper and lower quartiles for σv0

2  (upper plot) and 
σu0

2  (lower plot) across allocations. We do not provide information for conditions with 
more than 10,000 observations because estimation quality did not further improve for 
larger samples. Since statistical power of all variance sizes was sufficient for a variety of 
conditions, we do not plot power results, but report requirements for sufficient power in 
conjunction with Table 5. Comprehensive estimation results are tabulated in columns 13 
to 24 in the supplementary dataset.

Level-3 Variance Component

In general, σv0
2  was consistently underestimated in most conditions, and estimates fluc­

tuated strongly across replications for the smallest samples. Within conditions with 
varying allocations but equal NOBS (gray areas in Figure 2), conditions with large n3 

produced less biased estimates and less fluctuations. Sufficient power for the estimation 
of Level-3 variances was ensured in most conditions with 7,500 or more observations 
and some conditions with smaller samples, such as 10/30/•, 50/10/•, or 100/5/•. Sufficient 
power for medium and large Level-3 variance components was obtained with at least 
2,500 observations, and conditions •/30/5, 10/20/•, 50/5/•, •/20/10, or 10/10/5 (see Table 5).

Level-2 Variance Component

Estimates of σu0
2  tended to be underestimated for less than 1,250 observations and, similar 

to Level-3 findings, estimates fluctuated more heavily across replications with small 
samples (especially NOBS ≤ 1000). Power was sufficient for most allocations with at 
least 500 observations and some conditions with less observations, such as 10/•/20. For 
medium and large Level-2 variances, power was sufficient for conditions with at least 
500 observations, or allocations with at least •/5/10, •/10/5, or n1 ≥ 20 (see Table 5).
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Intraclass Correlation Coefficients
Allocations to achieve unbiasedness for the ICCs are presented in Table 5. Results for rel­
ative and absolute bias are plotted in Figure 3 (Level-3) and Figure 4 (Level-2). Conditions 
with large NOBS did not result in meaningfully biased estimates and are not presented. 
Comprehensive bias results are tabulated in columns 25 to 33 in the supplementary 
dataset.

Results for the ICC3

In most conditions with n3 ≥ 100 and minimum sample sizes of 200/20/• or 100/30/•, we 
found less than 15% absolute bias. For medium and large ICC3 sizes, sampling less Level-2 
units (200/10/• and 100/20/•) or emphasizing the number of Level-3 units (200/5/5) also 
resulted in absolute unbiasedness. Further, conditions with n3 = 50, even conditions with 
large NOBS, such as 50/30/30, were considerably biased for small and most medium sized 

Figure 2

Median Estimates, Upper and Lower Quartiles of Higher-Level Variances Across Allocations

Note. Plotted are medians, upper and lower quartiles of σv0
2  (upper plot) and σu0

2  (lower plot) estimates across 
sample size conditions with up to 10,000 observations. Lines represent the median estimates, colored ribbons 
encompass upper and lower quartiles. Colors represent large (blue: σv0

2 , σu0
2 = 0.6), medium (yellow: σv0

2 , σu0
2 = 0.2), 

and small (green: σv0
2 , σu0

2 = 0.1) population variance sizes. On the x-axis, numbers in parentheses indicate the 
overall number of observations in this and—if applicable—the following conditions. Shaded areas mark multiple 
conditions with the same number of observations but differing allocations. Values for each variance 
component’s population parameter have been averaged (e.g., estimates for σv0

2  = 0.1 are average scores across 
σu0

2  = 0.1, 0.2 and 0.6)
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ICC3. Notably, bias of the ICC3 was higher in conditions where the complementing ICC2 

was large rather than medium or small.

Results for the ICC2

ICC2 relative bias remained within 10% over-/underestimation for a variety of allocations, 
such as small n3 (e.g., 10/5/10, 10/10/5) or small n2 and n1 (e.g., 200/2/2, 50/2/5, 50/5/2). 
Absolute unbiasedness was achieved in most conditions with at least 5,000 observations 
(e.g., 10/30/20, 50/10/10, 100/5/10, 200/5/5). For medium or large ICC2, conditions with 
smaller NOBS, such as 100/5/5 or 50/5/10 also resulted in absolute unbiasedness.

Figure 3

Absolute and Relative PEB for the ICC3 Across Allocations

Note. Plotted are the relative (upper plot) and absolute (lower plot) PEB of the ICC3 in conditions with up to 
60,000 observations. ICC3 sizes are differentiated by color (green = small, yellow = medium, blue = large), ICC2 
sizes are differentiated by line type (dotted = small, line = medium, dashed = large). Areas are colored to 
facilitate readability. On the x-axis, numbers in parentheses show the number of observations in this and—if 
applicable—the following conditions. Shaded areas mark multiple conditions with the same number of 
observations but differing allocations.
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Figure 4

Absolute and Relative PEB for the ICC2 Across Allocations

Note. Plotted are the relative (upper plot) and absolute (lower plot) PEB of the ICC2 in conditions with up to 
10,000 observations. ICC2 sizes are differentiated by color (green = small, yellow = medium, blue = large), ICC3 
sizes are differentiated by line type (dotted = small, line = medium, dashed = large). Areas are colored to 
facilitate readability. On the x-axis, numbers in parentheses show the number of observations in this and—if 
applicable—the following conditions. Shaded areas mark multiple conditions with the same number of 
observations but differing allocations.
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Discussion
Our findings extend our knowledge on the estimation quality in three-level modeling by 
showing that moderate to large samples and an advantageous allocation are needed for 
overall good estimation quality of the ICCs, and that the size of the ICCs and the number 
of available clusters greatly influences required sample sizes.

The Role of the Sampling-Strategies
Results demonstrate that required n2/n1 depend on the available number of clusters and 
ICC scores (see Table 5). Consequently, even large samples may result in biased estimates 
if allocations are suboptimal. Although the number of clusters (n3) is most important to 
ensure estimation quality, statistical power and relative unbiasedness on Level-2 can be 
achieved even with a small number of clusters. Specifically, to achieve sufficient power, 
it is advantageous to sample n1 ≥ 5 to increase power at Level-2, and n2 ≥ 5 to increase 
power at Level-3.

Interestingly, we found that the variance components are consistently underestima­
ted. Since σv0

2  is more strongly underestimated than σu0
2 , the resulting ICC2 is consistently 

overestimated, while the ICC3 is underestimated, which can result in misinterpretation 
of the three-level structure. Similar patterns of underestimation are visible in previous 
research (McNeish & Wentzel, 2017) but have, to our knowledge, not yet been systemati­
cally investigated.

Further, convergence rates for the smallest samples are considerably low. Research 
suggests that restricted maximum likelihood (REML) may improve convergence and 
reduce bias in small samples (McNeish & Wentzel, 2017). However, additional analyses 
(not reported) show mixed results for our data: Since REML is not implemented in 
Mplus, we compared convergence rates and ICC bias resulting from REML and regular 
maximum likelihood (ML) estimation in R using the lme4-package (Bates et al., 2015) 
for the allocations listed in Table 2 (all ICC-sizes, i.e., 162 conditions). We considered all 
issues resulting in non-computable ICC values as convergence issues. Across conditions, 
REML estimation improved convergence rates by Mdn = 3.75 percentage points. REML 
performed better for medium and large ICC2 (MdnML = -0.44, MdnREML = -0.33, for ICC2 

≥ .143), but worse for small ICC2 (MdnML = 1.28, MdnREML = 1.68, for ICC2 ≤ .111). For 
the ICC3, differences between estimation methods were small (MdnML = 0.04, MdnREML = 
0.01). Absolute bias was comparably high for both ICCs and estimation methods.

The Role of ICC-Sizes
Results show that smaller variance components require considerably larger samples for 
sufficient estimation quality. For example, small ICCs require at least twice (four times) 
as many observations as medium (large) ICCs for a given number of clusters for absolute 
unbiasedness. Similarly, in samples with 5 or 10 clusters, required n2/n1 sample sizes to 
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achieve sufficient power are at least two times (four times) higher for small variance 
components compared to medium (large) components.

Interestingly, the bias of an ICC estimate is higher if the ICC at the other level is 
larger. As an example, the ICC3 in M/L was more heavily biased than in M/M or M/S. 
In additional simulations, we tested if this is a direct consequence of the simulation 
setup, since, for example, the ICC3 was slightly smaller in S/L (ICC3 = .059) than S/M 
and S/S (ICC3 = .077, .083, respectively). These additional analyses (100 replications each 
for n3 = 50, 100; n2 = 5, 10; n1 = 5, 10; ICC2 = .077, .143, .333, ICC3 = .143) indicated, 
however, that this pattern is still present if the ICC3 size does not vary for different 
ICC2 sizes. Furthermore, this pattern is similar for statistical power, where small Level-3 
variances required larger samples for sufficient power if the respective Level-2 variance 
was large. This pattern remains unexplained and requires more detailed research on the 
relationship between Level-3 and Level-2 bias.

Evaluation of Estimation Quality Indicators
Most importantly, our results demonstrate that relative unbiasedness of a simulation 
condition does not imply that a sample generated from this condition produces unbiased 
estimates, as indicated by the rate of biased runs and the absolute PEB.

Further, our inferences regarding statistical power are based on the one-sided SB-test. 
Our findings may therefore not be directly compared to previous research, since there is 
no single established coefficient assessing the power of variance estimates in multilevel 
research. Hence, approaches incorporating auxiliary models for the SB- or LRT-test 
or differing test distributions might suggest different sampling requirements, and we 
suggest that future studies include and compare different power measures in their simu­
lations.

Concluding Recommendations
As a rule of thumb, overall estimation quality is achieved if samples ensure absolute 
unbiasedness of Level-3 estimates. If there is no information about ICC sizes, large 
samples with an emphasis on the number of clusters, such as 200/10/5, or 100/20/5, are 
recommended. If both ICCs are at least of medium size, required sample sizes reduce to 
e.g., 100/20/2 or 200/5/5. Achieving sufficient estimation quality with 50 clusters is still 
possible with at least n2 = 10 in populations with large ICC sizes.

In conclusion, our findings reveal that correctly characterizing a three-level structure 
through ICC estimates requires an advantageous sampling-strategy, where the number 
of achievable clusters determines the required numbers of subclusters and Level-1 units. 
Particular attention must be paid to the ICC3, which will most likely be slightly un­
derestimated, even with moderate sample sizes. Researchers should take advantage of 
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previously reported ICC sizes in their domain to identify a most likely adequate sampling 
strategy for a feasible overall sample size.
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