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Abstract
Although the literature on the a priori procedure, designed to help researchers determine the 
sample sizes they should use in their substantive research, is expanding rapidly, there are two 
important limitations. First, there is a need to expand to new popular distributions, log-normal and 
gamma distributions, and the present work provides those expansions. Second, there is a need to 
test the consequences of wrong distributional assumptions; for example, assuming a log-normal 
distribution when the population follows a gamma distribution, or the reverse. The present work 
addresses the limitations with respect to estimating population means, and it includes computer 
simulations, links to free and user-friendly programs that researchers can utilize for their own 
research, and two examples involving real data sets for illustrations of our main results.

Keywords
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Although the a priori procedure (APP) can be used post-data, it was designed to be 
used pre-data to determine the sample sizes researchers should collect to simultaneously 
consider two issues: precision and confidence. The precision issue concerns how close 
sample statistics are to their corresponding population parameters and the confidence is
sue concerns the probability of meeting the precision criterion. For example, a researcher 
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might be interested in having 95% confidence of obtaining a sample mean difference that 
is within one-tenth of a standard deviation of the population mean difference, and an 
APP equation could provide that answer. APP equations have been devised for a number 
of purposes such as estimating a single population mean under normality or under skew 
normality (Trafimow, Wang, & Wang, 2019; Trafimow, Wang, & Wang, 2020), estimating 
population mean differences for matched or independent samples under normality or 
under skew normality (Trafimow et al., 2020; Wang, Wang, Trafimow, & Myüz, 2019b; 
Wang, Wang, Trafimow, & Chen, 2019), estimating population scale values (Wang, Wang, 
Trafimow, & Myüz, 2019b), estimating population shape values (Wang, Wang, Trafimow, 
& Myüz, 2019a), and correlation coefficients (Wang et al., 2021).

But not surprisingly, for a new literature, there are limitations and one of them is the 
need for expansion to additional distribution families. The present work addresses that 
limitation with respect to estimating population means under log-normal and gamma 
distributions. Both distributions are continuous probability distributions that are widely 
used in different fields of science to model continuous variables that are always positive 
and have skewed distributions. They can be used to fit the data collected in (i) human be
haviors such as the length of comments posted in Internet discussion forums; (ii) biology 
and medicine such as measures of size of living tissue and blood pressure; (iii) social sci
ences and demographics such as the household income; (iv) reliability analysis, wireless 
communications, and computer networks and internet traffic analysis, etc.

An additional limitation is that APP calculations require the researcher to make a 
distributional assumption, but there has been no APP work exploring the consequences 
when the distributional assumption is wrong. The present work will be the first of 
such explorations. In brief, suppose that a population follows a log-normal distribution, 
and the researcher assumes a gamma distribution; or suppose the population follows a 
gamma distribution and the researcher assumes a log-normal distribution; either way, 
what are the consequences for being wrong? One possibility is that the sample size 
determinations are similar for both log-normal and gamma distributions. In that case, 
the consequence of choosing the wrong distribution could be considered minor because 
there is little loss in choosing the wrong distribution. In contrast, if sample size deter
minations are dissimilar for the two distributions, then using the wrong distribution 
could entail major consequences such as having much less precision than the calculation 
implies. A caveat is that because of the newness of the APP, procedures have not yet 
been developed for distinguishing when a discrepancy is minor or major in a APP 
context.

In summary, the present work was designed to make three main contributions. First, 
our goal was to expand the APP to two new distributions: log-normal and gamma. 
Second, we desired to provide the first exploration of the consequences of wrong distri
butional assumptions, in an APP context, based on the APP expansion to log-normal and 
gamma distributions. Third, the simulation results show that the coverage rates matched 
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our specified precision and confidence level very well in both log-normal and gamma 
distributions.

Properties of Log-Normal and Gamma 
Distributions

For deriving the APP for estimating the population mean, we need the following results 
about the log-normal and gamma distribution.

Definition 1: A positive random variable X is said to be log-normally distributed with 
parameters μ and σ 2, denoted by X ∼ LN(μ, σ 2), if the logarithm of X is normally distributed 
with mean μ and variance σ 2, log X ∼ N(μ, σ 2). The probability density function (pdf) of X is 
given by

fX(x) =
1

2πxσ exp − ( log x − μ)2
2σ2 if  x > 0

0 if  x ≤ 0
(1)

where μ ∈ ℜ and σ > 0.

Note that it is easy to show that the kth moment of X exists and is given by

E(X k) = exp kμ + k2σ2
2 , k = 1, 2, …

so that the mean and the variance of X are

νx = E(X) = exp (μ + σ2/2) and σx2 = Var(X) = (eσ2 − 1) exp (2μ + σ2)

respectively.
Numerical convolution of log-normal distributions has shown that the sum of such 

distributions is a distribution which follows the log-normal law with a fair approxima
tion (but not exactly). Therefore, it can be assumed that the sum of two (or more) 
log-normal distributions is, in a first approximation, another log-normal distribution. The 
problem is to find this distribution without the tedious work of numerical convolution. 
The basic idea is to find a log-normal distribution which has the same moments as 
the exact sum-distribution. Fenton (1960) and Schwartz and Yeh (1982) estimate the pdf 
for a sum of log-normal random variables using another log-normal pdf with the same 
mean and variance. The Fenton approximation, referred to as the Fenton-Wilkinson (FW) 
method, is simple to apply, and for a wide range of log-normal parameters has been 
shown to be reasonably accurate in comparison to the Schwartz-Yeh (SY) method. We 
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introduce the FW method in the following Lemma, which will be used to derive our main 
results in next section.

Lemma 1: Consider the sum of n independent and identically distributed (i.i.d.) log-normal 
random variables X1, …, Xn, where each Xi ∼ LN(μ, σ 2). The Fenton-Wilkinson (FW) approx
imation of the sum T = ∑i = 1

n Xi is a log-normal distribution with parameters μn and σn2, 
where

μn = log n + μ + 1
2(σ2 − σn2) and σn2 = log eσ2 − 1

n + 1 (2)

Proposition 1: Let X, X1, …, Xn be a random sample from the log-normal distribution LN(μ, 
σ 2). Then

i. for a positive constant a, cX ∼ LN(μ + log a, σ 2).
ii. The sample mean X–  is approximately log-normal distributed with parameters μn − log 

n and σn2 given in (2).

Density curves of X–  for μ = 0, σ = 0.7, with different sample sizes n = 30, 50, and 100 are 
given in Figure 1, while the density curves of X–  for μ = 0.5, n = 50, with different σ = 0.5, 
0.75, and 1 are given in Figure 2. From Figure 1, we can see that the density shapes are 
toward symmetric as the sample size n increases, but they change a lot as the parameter 
σ increases.

Figure 1

Density Curves of X–  for Values of n = 30, 50, 100, μ = 0 and σ = 0.75
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Figure 2

Density Curves of X–  for Values of σ = 0.5, 0.75, 1, μ = 0.5 and n = 50

In order to compare the log-normal distribution and the gamma distribution, we need the 
following definition and properties.

Definition 2: A random variable Y is said to have a gamma distributed with the shape 
parameter k and the scale parameter θ, denoted by Y ∼ Gamma(k, θ) if its pdf is given by 
log-normal pdf

fY(y) =
1

Γ(k)θk
yk − 1 exp − k

θ  if  y > 0

0  if  y ≤ 0
(3)

It is easy to show the following properties of gamma distribution.

Lemma 2: Let Y, Y1, …, Yn be a random sample from the gamma distribution Gamma(k, θ). 
Then

i. the mean and the variance of Y are

νy = E(Y ) = kθ and σy2 = Var(Y ) = kθ2

respectively,
ii. the sampling distribution of the sample mean Ȳ is also gamma distributed with the 

shape parameter nk and the scale parameter θ/n: Ȳ ∼ Gamma(nk, θ/n), and
iii. the mean and the variance of Ȳ are given by E(Ȳ) = kθ, Var(Ȳ) = kθ 2/n.

The APP for Estimating Mean 28

Methodology
2022, Vol. 18(1), 24–43
https://doi.org/10.5964/meth.7321

https://www.psychopen.eu/


The APP for Estimating the Population Mean
In this section, we will set up the APP procedures for (i) estimating the population mean 
by a random sample from the log-normal distribution with parameters μ and σ 2, and 
(ii) estimating population mean by a random sample from the gamma distribution with 
the shape parameter k and the scale θ.

The Necessary Sample Size for Estimating νx With Known σ2 Under 
the Log-Normal Setting
In order to determine the necessary sample size n to be c × 100% confident for the given 
precision, we consider the distribution of the unbiased estimator νx = X–  for νx given in 
Definition 1 for known standard deviation σ.

Theorem 1: Suppose that X1, …,Xn forms a random sample from the log-normal distribu
tion LN(μ, σ 2). Let c be the confidence level and f be the precision which are specified such 
that the error associated with estimator X–  is fσx. More specifically, if

P f1σx ≤ X– − νx ≤ f2σx = c (4)

where f1 and f2 are the left and right precision which are restricted by max f1 , f2 ≤ f , 
and σx is the population standard deviation. Then the minimum sample size n required can 
be obtained by

Lx

Ux

f (z)dz = c (5)

such that Ux − Lx is minimized, where

Lx = f1 eσ2 − 1 1/2, Ux = f2 eσ2 − 1 1/2

and the approximated pdf f(z) is

f (z) = 1
2πσn(z + 1) exp − log (z + 1) + 1

2σn2
2

2σn2

Remark 1: The required sample size n, f1 and f2 such that max f1 , f2 ≤ f  are obtained 
simultaneously, given specified precision f and the confidence level c × 100%. The corre
sponding confidence interval for νx based on Theorem 1 is

X– − σxf2, X– − σxf1
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The Necessary Sample Size for Estimating νy With Known k Under 
the Gamma Setting
Similarly, the necessary sample size n can be obtained for a given confidence level c × 
100% and precision f. Consider the distribution of the unbiased estimator νy = Ȳ for νy 

given in Definition 2 for known shape parameter k. The second main result is given 
below.

Theorem 2: Let Y1, …, Yn be independent and identically distributed random variables from 
the gamma distribution Gamma(k, θ). Let c be the confidence level and f be the precision 
which are specified such that the error associated with estimator Ȳ is fσy. More specifically, 
if

P f1σy ≤ Ȳ − νy ≤ f2σy = c (6)

where f1 and f2 are the left and right precision which are restricted by max f1 , f2 ≤ f , and 
σy is the population standard deviation. Then the minimum sample size n required can be 
obtained by

Ly

Uy

f (w)dw = c (7)

such that Uy − Ly is minimized, where Ly = nf1, Uy = nf2, and the pdf f(w) is

f (w) = (kn)kn/2
Γ(kn) w + kn kn − 1 exp − kn(w + kn)

Remark 2: The required sample size n, f1, and f2 can be obtained simultaneously, given 
the precision f and the confidence level c × 100%. The corresponding confidence interval 
for νy based on Theorem 2 is

Ȳ − σyf2, Ȳ − σyf1

The Robustness of APP to Some Sorts of 
Assumption Violations

Like any inferential statistics, the APP assumes a statistical model. For example, we 
assume log-normal distributions and gamma distributions in this paper. What if particu
lar assumptions are wrong? For example, what if we get the distribution wrong? An 
important question is: How robust is the APP to various sorts of assumption violations? 
If one could show robustness to at least some sorts of assumption violations, that would 
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be very helpful. Even if one finds some assumption violations to which the APP is not 
robust, that would still be useful because we would know where it is important to be 
careful. Based on this idea, we first consider sample size. As a trivial example, suppose 
we assume a gamma distribution and the truth is that there is a log-normal population. 
We want to see what difference it makes in the estimated necessary sample size.

When we determine the necessary sample sizes for estimating the population mean, 
we assume σ 2 is known in log-normal setting and assume k is known in gamma setting. 
To see the difference in the necessary sample sizes, we would control the relationship 
between σ 2 and k. A natural idea is to render the first two moments of the sample mean, 
which is an estimator of the population mean in both models. Thus we get the following 
equation:

eσ2 − 1 = 1/k (8)

For example if we let σ = .75 then k = 1.32 and the corresponding necessary sample size 
for specific precision values and confidences by Equations (5) and (7) given in Theorem 
1 and 2, respectively. Here we consider c = 0.95, 0.9 with different values of f, and the 
corresponding necessary sample sizes in log-normal setting and gamma setting are given 
in Table 1 and Table 2, respectively, using the programs linked in the table notes.

Table 1

The Value of Sample Size n in Log-Normal Setting, Left Precision f1 and Right Precision f2 Under Different f for the 
Given c = 0.95, 0.9 and σ = .75

Precision (f) Confidence level (c) Sample sizea (n) Left precision (f1) Right precision (f2)

f = 0.1 0.95 391 −0.0978204 0.0996861

0.9 275 −0.0998779 0.0989713

f = 0.15 0.95 177 −0.1453921 0.1496078

0.9 124 −0.1493012 0.1473061

f = 0.2 0.95 105 −0.1921884 0.1998908

0.9 69 −0.1967918 0.1934145

f = 0.25 0.95 67 −0.2378956 0.2497299

0.9 48 −0.2474282 0.2422409
aTo find the sample size needed to have a particular probability that the sample mean will be within a desired 
distance of the population mean, assuming the population is lognormally distributed LN(μ, σ 2), the lognormal 
program can be used at https://probdiffgamma.shinyapps.io/lognormal/. To use the lognormal program it is 
necessary to make three entries. In the first box, type in the value of (σ). In the second box, type in the desired 
degree of precision (f). In the third box, type in the desired confidence level (c). Then click ‘update’ to obtain the 
sample size needed to meet your specifications for precision and confidence.
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Table 2

The Value of Sample Size n in Gamma Setting, Left Precision f1 and Right Precision f2 Under Different f for the 
Given c = 0.95, 0.9 and k = 1.32

Precision (f) Confidence level (c) Sample sizea (n) Left precision (f1) Right precision (f2)

f = 0.1 0.95 392 −0.0986157 0.0998879

0.9 271 −0.0998625 0.0992504

f = 0.15 0.95 174 −0.1470710 0.1499018

0.9 124 −0.1500000 0.1486157

f = 0.2 0.95 98 −0.1940000 0.1991398

0.9 71 −0.1986367 0.1962319

f = 0.25 0.95 66 −0.2408662 0.2487501

0.9 45 −0.2487469 0.2450630
aTo find the sample size needed to have a particular probability that the sample mean will be within a desired 
distance of the population mean, assuming the population is gamma distributed, the gamma program can be 
used at https://probdiffgamma.shinyapps.io/app-gamma/. To use the gamma program it is necessary to make 
three entries. In the first box, type in the shape parameter of the population distribution (k). In the second box, 
type in the desired degree of precision (f). In the third box, type in the desired confidence level (c). Then click 
‘update’ to obtain the sample size needed to meet your specifications for precision and confidence, assuming 
the shape parameter of the log-arithmetically transformed population that you entered in the first box.

From the results given in Tables 1 and 2, we can see that the sample sizes derived 
under two different populations with same confidence, precision and paired values of 
parameter are similar. For example, when f = 0.1, c = 0.95 we get n = 391 in Table 1 
and n = 392 in Table 2. That is to say the APP is robust to the population assumption 
violations because the required sample sizes are very close in both tables.

Simulation Results
In this section, we conduct two simulations. First we process a simulation to see how big 
a difference we have when we use the same sample size for the estimation of parameters 
in both models. For the comparison of two models, we use measures of the model, such 
as log-likelihood, AIC, and BIC values, respectively.

The Akaike information criterion (AIC) is an estimator of prediction error and rela
tive quality of statistical models for a given set of data (see Akaike, 1974 and Aho, 
Derryberry, & Peterson, 2014). Let m be the number of estimated parameters in the 
model. Let L be the maximum value of the likelihood function for the model. Then the 
AIC value of the model is given by

AIC = 2m − 2 log (L)
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The formula for the Bayesian information criterion (BIC) is similar to the formula for 
AIC, but with a different penalty for the number of parameters, (see Schwarz, 1978). 
With AIC the penalty is 2m, whereas with BIC the penalty is mlog(n). In practice, 
the model with the lowest AIC or BIC is preferred, while the model with the highest 
log-likelihood value is preferred too.

The simulation results are listed in Tables 3 and 4, respectively, using the sample size 
n required for precision f = 0.2 and confidence level c = 0.95.

Table 3

The Mean, Absolute Bias, and the Standard Deviation of the MLEs of Parameters in Both the Log-Normal and 
Gamma Models Are Listed with Sample Size n = 105 and M = 10000 Simulated Data Sets

Log-normal (True model) Gamma

n = 105 μ σ k θ

True value 1.0000 0.7500 1.3244 2.7190

Mean 0.9993 0.7450 1.9914 1.8563

|Bias| 0.0007 0.0050 0.6666 0.8627

Std. Dev. 0.0727 0.0514 0.2563 0.0820

Log-L −222.7483 −227.1051

AIC 449.4967 458.2102

BIC 454.8046 463.5181

pAIC 0.9168 0.0832

Table 4

The Mean, Absolute Bias, and the Standard Deviation of the MLE for Parameters in Both the Log-Normal and 
Gamma Models Are Given with Sample Size n = 98 and M = 10000 Simulated Data Sets

Log-normal Gamma (True model)

n = 98 μ σ k θ

True value 1.5183 0.4270 5.0000 1.0000

Mean 1.5057 0.4659 5.1665 0.9813

|Bias| 0.0135 0.0372 0.1665 0.0187

Std. Dev. 0.0470 0.0332 0.7155 0.1507

Log-L −211.4705 −209.8472
AIC 426.9410 423.6944
BIC 432.1109 428.8643
pAIC 0.1887 0.8113
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In Table 3, we first generate the required n = 105 sample data points from a log-normal 
distribution LN(μ, σ 2) with μ = 1 and σ = 0.75, and use this data sample to fit both 
the log-normal and gamma models. Then we performed the M = 10000 simulated data 
sets and calculated means, absolute bias, and standard deviations of estimators, together 
with log-likelihood, AIC, and BIC values. From Table 3, we can see that if we use the 
gamma model to fit the generated data points, both bias and standard errors of estimates 
are larger than those in fitted log-normal model. Also the Log-likelihood, AIC and BIC 
values indicate the support of the log-normal models.

Similarly in Table 4, we generate the required n = 98 random data points from the 
gamma model, Gamma(k, θ), with shape k = 5 and scale θ = 1, Then we calculate the 
Maximum likelihood estimates of the parameters in both models, together with log-like
lihood, AIC and BIC values. From Table 4, we can see that the fitted gamma model is 
better than fitted log-normal model.

For the effectiveness of comparison between two models we use pAIC, the proportion 
of the true model selected by using AIC among M = 10000 runs of the simulated data. 
We can see that pAIC = 0.9168 in Table 3 indicates the log-normal (true model) is more fre
quently selected model by AIC than the gamma model. Similarly, in Table 4 pAIC = 0.8113 
indicates the gamma (true model) is more frequently selected model by AIC than the 
log-normal model.

For investigating the changes of AIC and BIC values to parameter σ in log-normal 
model, and to the scale θ in gamma model, the results are listed in Figures 3 and 4, and 
Figures 5 and 6. Figures 3 and 4 show that the values of AIC and BIC are changing as 
the value of (σ) of log-normal distribution is being changed with μ = 1. Similarly, Figure 
5 and 6 show that the values of AIC and BIC are changing as the value of scale (θ) 
of gamma distribution is being changed with shape parameter k = 1. Here the sample 
size is 100. We can see that the difference of both AICs and BICs are getting bigger as 
the σ and θ parameters change from 1 to 5, respectively, in Figures 3 and 4 (log-normal 
distribution) and Figures 5 and 6 (gamma distribution).
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Figure 3

AIC with Mean 1 and Different Values of Standard Variation of Log-Normal Distribution

Figure 4

BIC with Mean 1 and Different Values of Standard Variation of Log-Normal Distribution
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Figure 5

AIC with Mean 1 and Different Values of Standard Variation of Gamma Distribution

Figure 6

BIC with Mean 1 and Different Values of Standard Variation of Gamma Distribution

In order to compare the coverage rates of confidence intervals with specified precision 
and confidence level, we process the second simulation for the performance of the 
confidence intervals obtained by using the derived sample sizes obtained. The coverage 
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rate (cr) of interval estimating for population mean (νx) from Theorem 1 with parameters 
μ = 1, and σ = 0.25, 0.5, respectively, is listed in Table 5. The coverage rate (cr) of interval 
estimating for population mean (νy) from Theorem 2 with parameters k = 5, and θ = 1, 2, 
respectively, is given in Table 6. All results are illustrated with a number of simulations 
runs M = 500000. From both Tables 5 and 6, we can see our APP methods are very 
effective.

Table 5

Coverage Rate (CR) of Interval Estimating for Population Mean (νx) from Theorem 3.1 with μ = 1, σ = 0.25, 0.5 and 
M = 500000

Precision (f)
Confidence 

level (c) n (μ = 1, σ = 0.25) cr (μ = 1, σ = 0.25) n (μ = 1, σ = 0.5) cr (μ = 1, σ = 0.5)

f = 0.1 0.95 388 0.9514 392 0.9524
0.9 273 0.9012 271 0.9003

f = 0.15 0.95 173 0.9519 178 0.9548
0.9 121 0.9011 124 0.9063

f = 0.2 0.95 121 0.9011 102 0.9565
0.9 68 0.9038 70 0.9072

f = 0.25 0.95 63 0.9532 65 0.9564
0.9 44 0.9036 45 0.9088

Table 6

Coverage Rate (CR) of Interval Estimating for Population Mean (νy) from Theorem 3.2 with k = 5, θ = 1, 2 and 
M = 500000

Precision (f)
Confidence 

level (c) n (k = 5, θ = 1) cr (k = 5, θ = 1) n (k = 5, θ = 2) cr (k = 5, θ = 2)

f = 0.1 0.95 388 0.9518 388 0.9513

0.9 273 0.9018 273 0.9016

f = 0.15 0.95 173 0.9512 173 0.9519

0.9 121 0.9003 121 0.9012

f = 0.2 0.95 98 0.9518 98 0.9526

0.9 69 0.9045 69 0.9029

f = 0.25 0.95 63 0.9531 63 0.9530

0.9 44 0.9036 44 0.9029

Real Data Examples
In this section we will analyze two real data sets for investigating the performance of our 
APP methods under log-normal and gamma assumptions.
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The first data set is on the survival time (in months) of 184 patients who had limited 
stage small-cell lung cancer from Overduin (2004). We use both log-normal and gamma 
distributions to fit this data set, the maximum likelihood estimates for parameters in 
log-normal model are μ = 2 . 8866, σ = 0 . 4835, and in gamma model are k = 4 . 3334, 
θ = 4 . 5705. Using the input of values of μ and k with f = 0.15 and c = 0.9 in the 
links provided in the notes of Table 1 and 2, we obtain the necessary sample sizes for 
log-normal and gamma are n = 124 and 121, respectively. Since the sample sizes are very 
close we use the larger n. A random sample of simple size n = 124 from the lung cancer 
data set is selected to fit both distributions. The relative histogram, the fitted log-normal 
and gamma pdfs for the sampled data are plotted in Figure 7. From Table 7, we know that 
log-normal model fitting is preferable.

Figure 7

The Fitted PDFs and the Relative Histogram for a Sample from the Lung Cancer Data

The second data set is the salary data of faculties in the College of Arts and Sciences, 
New Mexico State University (2018/19). After the same process as for the first data set, 
a random sample of the larger size n = 123 (this value is determined by the estimates 
of μ and k with f = 0.15 and c = 0.9) is selected form the second data set. The relative 
histogram, the fitted log-normal and gamma pdfs for the sampled data are plotted in 
Figure 8. From Table 7, we know that gamma model fitting is preferable.
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Table 7

Comparison Between the Log-Normal and Gamma

Distribution Estimator Log-L AIC BIC

First data set: Lung cancer

log-normal μ = 2 . 8986; 

σ = 0 . 5053
−450.7487 905.4973 911.1379

gamma k = 3 . 9510; 

θ = 5 . 2405
−455.3863 914.7727 920.4133

Second data set: Faculty salary

log-normal μ = 1 . 6702; 

σ = 0 . 3815
−261.4429 526.8858 532.5102

gamma k = 7 . 3854; 

θ = 0 . 7710
−259.7783 523.5566 529.1810

Figure 8

The Fitted PDFs and the Relative Histogram for the Salary Data

The values of the log-likelihood, AIC and BIC criteria resulted from fitting log-normal 
distribution and gamma distribution to the two data sets are presented in Table 7.
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Discussion
An important contribution is that the present work, which includes links to free and 
user-friendly programs, expands the APP so that it can be used under log-normal and 
gamma distributions. Thus, researchers who wish to know sample sizes needed to have 
sample statistics that are good estimators of corresponding population parameters, but 
who worry about not having normally distributed data, need worry no longer. One 
reason this is important is that most distributions are skewed (Blanca, Arnau, López-
Montiel, Bono, & Bendayan, 2013; Ho & Yu, 2015; Micceri, 1989), thereby rendering the 
family of normal distributions less relevant in estimation contexts. In addition, as there 
are many ways in which skewness can occur, it is desirable to have the possibility of 
using many distribution families as potential models, rather than just the skew normal 
family that has been used earlier (Trafimow et al., 2019). Thus, the present expansion of 
the APP to the log-normal and gamma families is potentially useful. The potential utility 
is backed by both computer simulations and worked examples based on real data.

In addition, however, the present work is, to our knowledge, the first APP work that 
directly addresses the issue of mistakes in identifying the relevant distribution family. To 
that end, we have explored the consequences of assuming a log-normal distribution in 
the presence of a gamma distribution, or assuming a gamma distribution in the presence 
of a log-normal distribution. The results are nuanced. Although the consequences of 
being wrong are minimal with respect to sample size computations, Figures 3 and 4 show 
that the difference in AIC and BIC increases as σ increases. Thus, the consequences for 
being wrong vary depending on the researchers goals. If the goal is sample size determi
nation, the consequences of using the wrong distribution are minimal. In contrast, if 
the goal is more complex, where AIC or BIC is relevant, the consequences of using the 
wrong distribution might matter more. An important caveat is that the present work 
concerns log-normal and gamma distributions. It is not difficult to imagine the possibility 
of arriving at different conclusions with different distribution families.

In conclusion, the present equations and links to programs successfully expand the 
APP to log-normal and gamma distributions. And we have seen that the consequences 
of making a wrong assumption with respect to which family of distributions to use are 
often, but not always, minimal. We hope and expect that future research will include 
more APP expansions to distribution families not addressed here.
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Supplementary Materials
Supplementary materials include three parts. The first one is the R-code for the link of required 
sample size for Gamma distribution. The second one is the R-code for the link of required sample 
size for log-normal distribution. The third one is the R-code for simulations and real data analysis. 
(for access see Index of Supplementary Materials below).
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priori procedure for estimating the mean in both log-normal and gamma populations and 
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Appendix
Proof of Proposition 1: (i) If X ∼ LN(μ, σ2), log(X) ∼ N(μ, σ2). Given any positive constant a, we 
have log(aX) = log a+log X ∼ N(μ+log a, σ2), thus aX ∼ LN(μ+log a, σ2). (ii) The result follows 
directly from Lemma 1 and (i) with a = 1/n. □

Proof of Theorem 1: Consider the standardized random variable

Z = eσ2 − 1 1/2X– − νx
σx

=
X– − exp μ + σ2

2

exp μ + σ2
2

= X–
exp μ + σ2

2
− 1

Then equation in (4) is equivalent to

P eσ2 − 1 1/2f1 ≤ Z ≤ eσ2 − 1 1/2f2 = c

so that

Lx

Ux

f (z)dz = c

where Lx = eσ2 − 1 1/2f1 and Ux = eσ2 − 1 1/2f2.

Note that by (i) and (ii) in Proposition 1, we obtain

X–
exp μ + σ2

2
 Approximate LN − 1

2σn2, σn2
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so that the pdf of Z is

f (z) = 1
2πσn(z + 1) exp − log (z + 1) + 1

2σn2
2

2σn2
□

Proof of Theorem 2: Consider the standardized random variable

W =
Ȳ − νy
Var(Ȳ) =

Ȳ − kθ
kθ2/n

= Ȳ
θ k/n − kn

Then equation in (6) is equivalent to

P nf1 ≤ W ≤ nf2 = c

that is

Ly

Uy

f (w)dw = c

with Ly = nf1, and Uy = nf2. Note that by Lemma 2, we have

Ȳ
θ k/n Gamma kn, 1

kn

so that the pdf of W is given by

f (w) = (kn)kn/2
Γ(kn) w + kn kn − 1 exp − kn w + kn □
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