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Abstract
Consider a one-way or two-way ANOVA design. Typically, groups are compared based on some 
measure of location. The paper suggests alternative methods where measures of location are 
replaced by a robust measure of effect size that is based in part on a robust measure of dispersion. 
The measure of effect size used here does not assume that the groups have a common measure of 
dispersion. That is, it deals with heteroscedasticity. It is fairly evident that no single method reveals 
everything of interest regarding how groups differ. Certainly, comparing measures of location 
provides useful information. But as illustrated, comparing measures of effect size can provide a 
deeper understanding of how groups compare.
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Consider the goal of comparing independent groups. A broad issue is how many methods 
are needed to get a good understanding of how, and by how much, groups differ. Certain­
ly, the best-known approach is to use some measure location such as the mean, median, 
20% trimmed mean or even an M-estimator. Classic methods based on means provide 
some information regarding how groups differ, but it is fairly evident that this approach 
can miss details that are clinically important. For example, the difference between means 
might be relatively small when the difference between the medians is large. Of course, 
the reverse can happen where the difference between the medians is small but the 
difference between the means is large.
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A limitation of methods that test hypotheses based on measures of location only is 
that they ignore the variation within the groups. The goal in this paper is to suggest 
methods that are based on a robust measure of effect size that is based in part on a 
robust measure of dispersion. As is illustrated later in this paper, taking into account the 
variation within groups can increase power substantially in some situations.

For J  independent groups, let τj (j = 1, …, J ) denote some measure of dispersion 
associated with the jth group. The better-known measures of effect size assume homo­
scedasticity, meaning that τ1 = … = τJ  is assumed. The measures of effect size used here 
avoid this assumption. That is, they allow heteroscedasticity. The idea is that comparing 
groups based on a heteroscedastic measure of effect size provides an alternative perspec­
tive that helps provide a deeper understanding of how groups differ.

Two situations are considered. The first is where the goal is to perform all pairwise 
comparisons among J  independent groups. More formally, let ηjk denote a measure of 
effect size when comparing groups j and k. The goal is to test

H0:   ηjk = 0 (1)

and to compute a confidence interval for ηjk for all j < k. Typically, as is the case here, 
ηjk is based in part on the difference between two measures of location, say θj − θk. 
Consequently, a decision can be made about whether ηjk is greater than or less than zero 
by simply testing the hypothesis H0: θj = θk. But here, ηjk is also based on a measure 
of dispersion. Consequently, power when testing H0: θj = θk can differ from the power 
of testing (1) simply because the method for testing (1) is sensitive to different features 
of the data. And even when these two approaches have similar power, the problem of 
computing a confidence interval for ηjk remains.

The second goal deals with comparing the levels of the first (or second) factor of a 
J -by-K  ANOVA design. To elaborate a bit, momentarily focus on a 2-by-K  design where 
the goal is to compare the first and second levels of the first factor. To be a bit more 
precise, consider 2K  independent random variables. Let ξ1 be some global measure of 
effect size associated with the first K  random variables and let ξ2 denote the measure of 
effect size for the remaining K  variables. As will be made evident, the choice for ξ used 
here is related to the choice for η but it differs in a fundamental way. The goal is to test

H0:   ξ1 = ξ2 (2)

And there is the related goal of computing a confidence interval for ξ1 − ξ2. The proposed 
method is readily extended to a J -by-K  design where the goal is to make inferences 
based on all pairwise levels of the first or second factor. The results here extend the 
results in Wilcox (2022b), which was limited to two-by-two design.

When testing (1), a seemingly natural guess is that a percentile bootstrap method will 
perform well in terms of controlling the Type I error probability. Simulations related to 
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this issue are reported here. As for testing (2), a percentile bootstrap method was found 
to perform poorly; the actual level was estimated to be well below the nominal level. An 
alternative approach is proposed here and studied via simulations.

The paper is organized as follows. The next section describes the robust hetero­
scedastic measures of effect size that will be used. Both are based on a simple extension 
of measures of effect size proposed by Kulinskaya et al. (2008) and Kulinskaya and 
Staudte (2006). This is followed by proposed methods for testing (1) and (2). Then some 
simulations results are reported followed by two illustrations.

Robust, Heteroscedastic Measures of Effect Size
Momentarily consider two independent groups and let X j denote the sample mean for 
the jth group. Let nj denote the corresponding sample size. Let μ1 and μ2 denote the 
population means and let σ1 and σ2 denote the population standard deviations. Certainly, 
one of the better-known measures of effect size is

Δ = μ1 − μ2
σ

where it is assumed that σ = σ1 = σ2. That is, homoscedasticity is assumed. Cohen’s d, 
(e.g., Cohen, 1988) provides an estimate of Δ that is biased. Hedge’s g (Hedges & Olkin, 
1985) provides an unbiased estimator for Δ. Glass et al. (1981) avoid the homoscedasticity 
assumption by specifying one of the groups as the control group and then use only the 
estimate of the variance for the control group to measure effect size. Kulinskaya et al. 
(2008) avoid the homoscedasticity assumption in the following manner. Note that the 
standard error of X 1 − X 2 can be written as ς2/N  where

ς2 = 1 − q σ12 + qσ22

q 1 − q

N = n1 + n2 and q = n1/N . As a result, they use

ΔKMS =
μ1 − μ2

ς (3)

as a measure of effect size. Kulinskaya and Staudte (2006, p. 101) note that a natural 
generalization of Δ to the heteroscedastic case does not appear to be possible without 
taking into account the relative sample sizes. Under normality and when the population 
variances are equal, Δ = 2ΔKMS. For J ≥ 2 independent groups, Kulinskaya and Staudte 
(2006) generalized this approach by estimating effect size with
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∑
(X j − X )2

sj2
(4)

where X = ∑qjX j/∑qj and sj2 is the sample variance associated with the jth group. 
Their results include a method for computing an interval estimate of the population 
analog of (4) assuming normality.

A parameter is said to be non-robust if a small change in a distribution has a large 
impact on its value. Formal mathematical methods for characterizing robust parameters 
are summarized by Hampel et al. (1986), Staudte and Sheather (1990) as well as Huber 
and Ronchetti (2009). The point here is that the population mean and variance are not 
robust. In practical terms, when using the measures of effect size just reviewed, even a 
small departure from a normal distribution can mask a large effect size among the bulk 
of the participants. Algina et al. (2005) illustrate this point when using Δ.

Here, robust versions of (3) and (4) are used, which are based on a trimmed mean and 
a Winsorized variance. This mimics the basic approach used by Algina et al. (2005) to 
derive a robust version of Δ. For notational convenience, momentarily focus on a single 
random sample X1, …, Xn and let X 1 ≤ …   ≤ X n  denote the values written in ascending 
order. Let γ denote some specified constant, 0 ≤ γ < 0.5, and let g = γn , where γn
is the value of γn rounded down to the nearest integer. The sample γ trimmed mean 
is computed by removing the g largest and g smallest observations and averaging the 
values that remain. More formally, the sample trimmed mean is

X t =
X g + 1 + ⋯ + X n − g

n − 2g

The choice γ = 0.2 has been studied extensively (e.g., Wilcox, 2022a) and is used here. It 
has good efficiency under normality and its standard error can be substantially smaller 
than the standard error of the mean when dealing with heavy-tailed distributions where 
outliers are likely to occur.

Winsorizing X1, …, Xn means that the g smallest values are set equal to X g + 1  and 
the g largest are set equal to X n − g . The γ Winsorized mean, Xw, is the mean of the 
Winsorized values and the Winsorized sample variance, sw2 , is the usual sample variance 
based on the Winsorized data. When sampling from a normal distribution and when 
γ = 0.2, swN2 = sw2 /0.642 estimates the population variance. Let X t j denote the trimmed 
mean for the  jth group. Here, the measure of effect size that will be used is estimated 
with

ξ = J
2 ∑

(X t j − X )2

sjwN2 (5)
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where X = ∑qjX t j/∑qj and sjwN2  is the Winsorized variance of the jth group rescaled to 
estimate the variance when dealing with a normal distribution. This will be called the 
KMS measure of effect size henceforth. The robust version of (3) is estimated with

η = X t1 − X t2
ς (6)

where

ς2 = 1 − q s1wN2 + qs2wN2

q 1 − q

Consider the case where J − 1 of the groups have a common population trimmed mean 
and the other group has a population trimmed mean that is larger than the other 
J − 1 trimmed means by some specified amount. If the term J /2 is excluded from (5), 
the resulting measure of effect size decreases as J  increases. By including this term, ξ
remains similar to what would be obtained when J = 2.

Testing (1): Method M1
A basic percentile bootstrap method is used to test (1). Momentarily focus on two inde­
pendent groups. First, generate a bootstrap sample from each group. That is, randomly 
sample with replacement nj values from the jth group. Based on these bootstrap samples, 
compute the measure of effect size corresponding to (6) and for notational convenience 
label the result D*. Repeat this process B times yielding D1*, …, DB*. Let D 1* ≤ ⋯ ≤ D B*
denote the D* values written is ascending order. Then a 1 − α confidence interval for η12
is

D l + 1* , D u*

where l = αB/2, rounded to the nearest integer, and u = B − l. Let A denote the number 
of times D* > 0 and let P* = A/B. From Liu and Singh (1997), a (generalized) p-value is 
2min P*, 1 − P* . This is called method M1 henceforth.

When J > 2, the improvement on the Bonferroni method, derived by Hochberg 
(1988), is used to control the family wise error rate (FWE) meaning the probability of 
one or more Type I errors. Given C p-values, say p1, …, pC, the computational details are 
as follows. Put the p-values in descending order yielding p 1 ≥ … ≥ p C . Suppose the 
goal is to have FWE equal to α. Set k = 1.

1. If p k ≤ α/k, reject all C hypotheses.
2. If p k > α, increment k by one. If p k ≤ α/k, reject all hypotheses where the p-value 

is less than or equal to α/k.
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3. If p k > α, repeat step 2.

Testing (2): Method M2
As is evident, the percentile bootstrap method is readily adapted to testing (2) where 
J=2 and now ξ j (j = 1, 2) is given by (5) based on the jth level of the first factor and 
corresponding K  levels of the second factor. However, simulations made it clear that 
this approach is highly unsatisfactory when the sample sizes are relatively small. The 
actual level was estimated to be well below the nominal level. A much more satisfactory 
approach is to use a simulation to estimate the null distribution of F = ξ1 − ξ2. Now let 
njk denote the sample size corresponding to the jth level of the first factor and the kth 
level of the second factor. The initial strategy was, for the jth level of the first factor and 
the kth level of the second, generate njk observations from a standard normal distribution 
and then compute F  yielding say F*. This is repeated I  times yielding F1*, …, FI*, which 
yields an estimate of the null distribution of F . Here, I = 5000 is used. However, for small 
sample sizes, control over the Type I error probability was not quite satisfactory when 
dealing with a skewed, light-tailed distribution.

Let Z  be a random variable having a standard normal distribution. Then

V = exp gZ − 1
g exp ℎZ

2
2

has a g-and-h distribution, where g and ℎ are parameters that determine the first four 
moments (Hoaglin, 1985). When g = 0, the expression for V  is taken to be

V = Z exp ℎZ
2
2

Here, an estimate of the null distribution of F  is based on data randomly sampled from a 
g-and-h distribution with g = 0.75 and ℎ = 0.

Let δ denote the estimate of ξ1 − ξ2. Let H = ∑I(δ  < Fi*)/I  where the indicator 
function I(δ  < Fi*) = 1 if δ  < Fi*, otherwise I(δ  < Fi*) = 0. A p-value is 2min H, 1 − H . 
A 1 − α confidence interval can be computed by assuming that the null distribution of 
F is reasonably well approximated as described above. Let fq be an estimate of the qth 
quantile of the null distribution of F  based on F1*, …, FI*. Then a 1 − α confidence interval 
for ξ1 − ξ2 is readily shown to be

δ  − f1 − α/2, δ  − fα/2
That is, an estimate of the upper quantile of the distribution of F  is used to compute the 
lower end of the confidence interval. (This result is similar to how confidence intervals 
are computed via a bootstrap-t method. See Wilcox, 2022a, for details.) When J > 2 and 
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the goal is to perform all pairwise comparisons among the J  levels of the first factor, 
FWE is controlled via Hochberg’s method.

Some comments about a 2-by-2 design are helpful. For this special case, let θjk denote 
some measure of location associated with the jth level of the first factor and the kth level 
of the second factor. Let ξj .  denote ξ when comparing the groups associated with the jth 
level of the first factor and the first and second levels of the second factor. In a similar 
manner, let ξ . k denote ξ when comparing the groups associated with the kth level of 
the second factor and the first and second levels of the first factor. As is evident, when 
dealing with an interaction, testing

H0:   θ11 − θ12 = θ21 − θ22
is the same as testing

H0:   θ11 − θ21 = θ12 − θ22
That is, it is irrelevant whether differences are based within rows rather than within 
columns. Note that testing

H0:   ξ1. = ξ2. (7)

is an analog of testing for an interaction. Rather than comparing measures of effect size 
based on the difference between measures of location only, a measure of effect size is 
used that is based in part on the Winsorized variance within each group. But testing (7) 
is not necessarily the same as testing

H0:   ξ.1 = ξ.2 (8)

That is, comparing measures of effect size corresponding to the levels of the first factor 
differs from comparing measures of effect size corresponding to the levels of the second 
factor.

Simulation Results
Simulations were used to assess the small sample properties of methods M1 and M2. Data 
were generated from four types of distributions: normal, symmetric and heavy-tailed 
symmetric and relatively light-tailed, and asymmetric and relatively heavy-tailed, rough­
ly meaning that outliers tend to be common. More specifically, data were generated 
from four g-and-h distributions. The four distributions used here are the standard normal 
(g = ℎ = 0), a symmetric heavy-tailed distribution (ℎ = 0.2, g = 0), a skewed distribution 
with relatively light tails (g = 1, ℎ = 0), and a skewed distribution with heavy tails (g = 1, 
h = 0.2). Table 1 summarizes the skewness (κ1) and kurtosis (κ2) of these distributions. All 
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g-and-h distributions have a median equal to zero. For g = 0 and ℎ = 0.2 the variance is 
2.15. For g = 1 and h = 0, the mean and variance are 0.648 and 4.67, respectively. For g 
= 1 and h = 0.1, the mean and variance are 0.97 and 30.6. Figure 1 shows plots of these 
four distributions.

Table 1

Some Properties of the g-and-h Distribution

g h κ1 κ2
0.0 0.0 0.00 3.00

0.0 0.2 0.00 21.46

1.0 0.0 0.61 3.68

1.0 0.2 32.81 2295.98

Figure 1

The Four g-and-h Distributions Used in the Simulations

Note. In the upper left panel, g = h = 0, in the upper right, g = 0 and h = 0.2, in the lower left g = 1 and h = 0 and 
in the lower right g = 1 and h = 0.2.
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The range of distributions used here is motivated by a review of several studies aimed 
at charactering the extent distributions differ from normality (Wilcox, 2022a, section 
4.2). It is noted that the reported skewness and kurtosis for g = ℎ = 0.2 are estimates of 
the actual skewness and kurtosis based on a sample size of one million. Repeating this 
process yielded even larger estimates. This particular distribution might appear to be 
extreme. The point here is that if a method performs reasonably well when dealing with 
this distribution, this provides some assurance that it will perform reasonably well for 
distributions that are likely to be encountered.

For method M1, simulations were run for J = 2 and 4 groups. For J = 4, three sample 
size configurations were used: (20, 20, 20, 20), (40, 40, 40, 40) and (20, 20, 40, 40). For 
J = 2 the sample sizes were (20, 20), (40, 40) and (20, 40). For convenience these three 
sample size configurations are labeled N1, N2 and N3, respectively. The results for N1 
and N2 are reported in Table 2 and are based on 1000 replications. The estimates for 
N3 were very similar and so for brevity are not reported. Note that the largest estimate 
occurs for N2, J = 4, g= 0 and ℎ = 0.2. Increasing the common sample size to 60, the 
estimate is 0.040. Some additional simulations were run where the first group has a 
standard deviation four times larger than the other groups. Again, control over the Type 
I probability was similar to the results in Table 2. Bradley (1978) has suggested that as a 
general guide, when testing at the 0.05 level, the actual level should be between 0.025 and 
0.075. All indications are that M1 satisfies this criterion. Replacing the KMS method with 
the robust version of Δ derived by Algina et al., 2005, gives very similar results.

Table 2

Estimated Type I Errors for Method M1

g ℎ J = 2 J = 4

N1
0.0 0.0 0.055 0.055

0.0 0.2 0.053 0.051

1.0 0.0 0.056 0.057

1.0 0.2 0.041 0.053

N2
0.0 0.0 0.048 0.053

0.0 0.2 0.047 0.068

1.0 0.0 0.040 0.051

1.0 0.2 0.047 0.048

Note. α = 0.05.

There is a well-established heteroscedastic method for performing all pairwise compari­
sons based on trimmed means (e.g., Wilcox, 2022a, section 7.4.1). For convenience, this 
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method is labeled T1. In some cases, T1 will have about the same amount of power as 
M1, but the expectation is that the choice of method might make a practical difference 
simply because they are sensitive to different features of the data. Consider, for example, 
normal distributions having variance one and suppose the mean of the first group is 
0.5 while the remaining groups have a mean of zero. For N2, the probability of one or 
more significant results was estimated to be 0.553 for method M1 and 0.543 for method 
T1: Hochberg’s method was also used to control FWE when using T1. Increasing the 
common sample size to 60, the estimates were 0.734 and 0.693, respectively. If instead 
the first random variable is divided by 4 and 0.8 is added to the first and second random 
variables, the estimates are 0.945 and 0.865.

As for method M2, simulations were run for J = 2 and K = 4. Four sample size 
configurations were used. The first three had a common sample size of 20, 50 and 100. 
Now N1, N2 and N3 are used to denote these three sample configurations, respectively. 
The fourth, N4, consisted of a common sample size of 20 for the first four groups 
(corresponding to the first level of the first factor) and a common sample size of 50 
for the remaining four groups. The Type I error probability was estimated with 5000 
replications. Table 3 shows the estimated probability of a Type I error, α, when testing at 
the α= 0.05 level.

As can be seen, the estimates satisfy Bradley’s criterion in all situations except N1 
and when dealing with a symmetric distribution; the estimates are less than 0.025, the 
lowest estimate being 0.016.

Method T1 is readily extended to a two-way ANOVA design where the goal is to 
perform all pairwise comparisons of the levels of the first or second factor, which is 
called method T2 henceforth. The details are in Wilcox (2022a, section 7.2.1; here, the 
R function t2way in the R package WRS was used to apply method T2). As was the 
case for a one-way design, M2 and T2 are sensitive to different features of the data, so 
which method has more power depends on the situation. A few simulations are reported 
here to provide some indication of the extent the choice of method matters, where again 
J = 2 and K = 4 and the goal is to compare the two levels of the first factor. Power was 
estimated for situations where, excluding the first group (the group corresponding to 
the level 1 of both factors), the remaining groups have a standard normal distribution. 
The first group also had a normal distribution but a mean μ > 0. Values for the standard 
deviation for the first group were taken to be σ = 0.5, 1 and 2. Table 4 reports the results. 
As can be seen, M2 generally has the highest power. But as indicated, this is not always 
the case. The only point is that the power of the two methods can differ substantially. 
Moreover, the method that has the most power depends on how the groups differ which 
is not known. But perhaps the more important point is that the two methods provide 
different perspectives on how the groups differ.
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Table 4

Estimated Power for Methods M2 and T2

μ σ M2 T2

N1
1.0 1.0 0.447 0.301

1.0 0.5 0.798 0.229

1.0 2.0 0.284 0.206

N3
0.5 1.0 0.712 0.361

0.5 0.5 0.993 0.407

0.5 3.0 0.290 0.213

Table 3

Estimated Type I Errors for Method M2

g ℎ α

N1
0.0 0.0 0.021

0.0 0.2 0.016

1.0 0.0 0.071

1.0 0.2 0.070

N2
0.0 0.0 0.032

0.0 0.2 0.029

0.2 0.0 0.063

1.0 0.2 0.063

N3
0.0 0.0 0.043

0.0 0.2 0.042

1.0 0.0 0.055

0.2 0.2 0.057

N4
0.0 0.0 0.029

0.0 0.2 0.028

1.0 0.0 0.065

1.0 0.2 0.065

Note. α = 0.05.
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Two Illustrations
Methods M1 and M2 are illustrated based on data stemming from a study of an inter­
vention program aimed at improving the physical and mental health of older adults 
(Clark et al., 2012). The first illustration is based on a measure of depressive symptoms 
(CESD) taken after intervention. The goal is to compare five groups corresponding to a 
participant’s educational level: less than high school, high school graduate, some college 
or technical school, four years of college completed, post-graduate study. The total 
sample size is 328. Table 5 reports the p-values for methods M1 and T1. The p-values 
were adjusted via Hochberg’s method. As indicated, these two methods are consistent in 
terms of whether a significant result is obtained at the 0.05 level. Note, however, that the 
p-values differ substantially in some cases indicating that the two methods can paint a 
decidedly different picture about which groups differ significantly.

Table 5

The Hochberg Adjusted p-Values

Group M1 T1

1 2 0.084 0.060

1 3 0.000 0.002

1 5 0.000 0.001

2 3 0.352 0.534

2 4 0.260 0.325

2 5 0.564 0.103

3 4 0.564 0.999

3 5 0.564 0.825

4 5 0.564 0.997

Note. When comparing education groups based on a measure of depressive symptoms.

Presumably, what constitutes a large effect size can depend on the situation. For illustra­
tive purposes, suppose Δ = 0.2, 0.5 and 0.8 are viewed as small, medium and large effect 
size, respectively, as is sometimes suggested (e.g., Cohen, 1988). Then under normality 
and homoscedasticity, 2ΔKMS = 0.2, 0.5 and 0.8 correspond to small, medium and large 
effect sizes as well. For the three significant results reported here, the estimates of 2ΔKMS
range between 0.66 and 0.77. That is, the results indicate a rather substantial difference 
between participants who did not complete high school versus those who have some 
educational training beyond high school.

The second illustration deals with the goal of understanding the association between 
a measure of meaningful activities (MAPA) and two independent variables: a measure 
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of life satisfaction (LSIZ) and a participant’s cortisol awakening response (CAR), which 
is the difference between cortisol measured upon awakening and measured again about 
30-45 minutes later. The focus here is on measures taken after intervention.

For illustrative purposes, the data are split into four groups based on the medians of 
the two independent variables, resulting in a two-by-two ANOVA design. Wilcox (2019) 
demonstrates that this approach can reveal details that are missed by nonparametric 
regression methods. The median of the CAR values is −0.033, so the two CAR groups 
reflect approximately groups where cortisol increases versus decreases soon after awak­
ening. Analyzing the data with method T2, for the low versus high LSIZ groups the 
p-value is 0.001. That is, there is reasonably strong evidence that the low LSIZ has 
a lower trimmed mean when CAR is ignored. For the low versus high CAR groups, 
ignoring LSIZ, the p-value is 0.509. Testing the hypothesis of no interaction, the p-value 
is 0.004. For low LSIZ, the 20% trimmed means for low versus high CAR groups are 33.03 
and 30.64, respectively. The difference between these estimates differs at the 0.05 level; 
the p-value is 0.014. For the high LSIZ group the estimates are 34.31 and 35.74, which do 
not differ at the 0.05 level; the p-value is 0.186. That is, the evidence suggests that there is 
a disordinal interaction, but the strength of the evidence is not very strong.

As for method M2, for low LSIZ, the estimate of ξ, ξ1., when comparing the groups 
corresponding to low versus high CAR values, is 0.248. For high LSIZ scores, the estimate 
of ξ2., is 0.129. Testing (6), the p-value is 0.160. In contrast, for low CAR values, compar­
ing the low and high LSIZ groups, the estimate of ξ.1 is 0.131 and for high CAR values 
the estimate of ξ.2 is 0.468. The p-value when testing (8) is 0.002 and the 0.95 confidence 
interval for ξ.1 − ξ.2 is (-0.510, -0.146). That is, testing (8) yields a significant result at the 
0.05 level in contrast to testing (7).

As previously noted, based on trimmed means only, a significant interaction was 
obtained. The results based on ξ also indicate an interaction but with the added bene­
fit of an alternative perspective regarding the nature and relative importance of the 
interaction. In particular, the results demonstrate that differences within rows can yield 
a different perspective compared to differences within columns when using the KMS 
measure of effect size. Roughly, knowing whether cortisol increases or decreases appears 
to provide information about how low and high life satisfaction groups differ in terms of 
meaningful activities. When cortisol decreases, the results indicate that there is a much 
more pronounced difference between the high and low LSIZ groups compared to when 
cortical increases.

Concluding Remarks
Steegen et al. (2016) discuss and illustrate an extremely important issue: no single 
method reveals everything of interest when comparing groups. Multiple methods can 
be required to get a deep and nuanced understanding of data. The goal here is to suggest 
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a method for comparing groups, via a robust, heteroscedastic measure of effect size, 
that helps achieve this goal. Here, the illustration involving a 2-by-2 ANOVA design 
demonstrates this point.

Perhaps it should be stressed that it is not being suggested that methods based on 
measures of location only should be abandoned. Surely, they provide useful information 
about how groups compare. Again, the only suggestion is that comparing groups based 
on a robust measure of effect size that includes some measure of variation can provide 
insights about how groups compare.

There are several other ways for dealing with an interaction, based on a heterosce­
dastic measure of effect size, beyond the approach used here (Wilcox, 2022a, section 
7.4.17). One approach is to use a quantile shift measure of effect size and another is 
to use the notion of explanatory power. Inferences based on these methods are under 
investigation.
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