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Abstract
Regression coefficients are crucial in the sciences, as researchers use them to determine which 
independent variables best explain the dependent variable. However, researchers obtain regression 
coefficients from data samples and wish to generalize to populations; without reason to believe 
that sample regression coefficients are good estimates of corresponding population regression 
coefficients, their usefulness would be curtailed. In turn, larger sample sizes provide better 
estimates than do smaller ones. There is much recent literature on the a priori procedure (APP) 
that was designed for the general purpose of determining the sample sizes needed to obtain sample 
statistics that are good estimates of corresponding population parameters. We provide an extension 
of the APP to regression coefficients, which works for standardized or unstandardized regression 
coefficients. A simulation study and real data example support the mathematical derivations. Also, 
we include a free and user-friendly computer program to aid researchers in making the 
calculations.
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For over a century, researchers have performed multiple regression analyses to obtain 
regression coefficients that, in turn, provided valuable information about the ability 
of independent variables to explain dependent variables. However, until the present 

METHODOLOGY

This is an open access article distributed under the terms of the Creative Commons 
Attribution 4.0 International License, CC BY 4.0, which permits unrestricted use, 
distribution, and reproduction, provided the original work is properly cited.

https://crossmark.crossref.org/dialog/?doi=10.5964/meth.8245&domain=pdf&date_stamp=2022-09-30
https://www.psychopen.eu/
https://meth.psychopen.eu/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


work, sample size determination has been left to power analyses (e.g., Cohen, 2013). 
From the point of view of determining sample sizes needed to render good chances of 
obtaining statistical significance, power analyses make sense. But from the point of view 
of determining sample sizes needed so that sample statistics can be trusted to estimate 
corresponding population parameters, power analysis is insufficient (Trafimow et al., 
2020; Trafimow & Myüz, 2019). This is because power analysis is a function not only of 
the sample size, but of the expected effect size too. For example, consider the simple case 
of a single mean under the typical prescription in psychology that researchers should 
attempt to detect a ‘medium’ effect size (e.g., Cohen’s d = 0.50) with a 0.80 probability 
of rejecting the null hypothesis at alpha equals 0.05. In that case only 31 participants 
are required. However, that sample size implies that the researcher has a probability of 
0.95 of obtaining a sample mean that is within 0.35 standard deviations of the population 
mean it is intended to estimate (Trafimow et al., 2020), which many would consider 
insufficiently precise. Trafimow (2018) recommended having a probability of 0.95 of hav
ing sample statistics be within 0.20 or 0.10 of corresponding population parameters for 
‘good’ or ‘excellent’ precision, respectively, though also indicating that such designations 
could change depending on study contexts. Clearly, an alternative to power analysis is 
desirable, and the a priori procedure (APP), to be explained presently, provides it. The 
present goal is to expand the APP so that researchers can determine the sample sizes 
necessary to meet their requirements for obtaining sample regression coefficients that 
provide good estimates of corresponding population regression coefficients.

To set up the present work, it is useful to briefly consider the issue of regression 
coefficient size in the context of research that is exploratory or that is beyond explora
tory, keeping in mind that the definitions of ‘small’ or ‘large’ regression coefficients 
depend on substantive areas and researcher goals. In exploratory research, variables 
with larger regression coefficients are typically considered better candidates for future 
investigation than are independent variables with smaller regression coefficients. In 
research that is beyond the initial exploration phase, independent variables with larger 
regression coefficients are typically considered better candidates for intervention, policy 
recommendations, or theoretical explanation than are independent variables with smaller 
regression coefficients. This is because policy makers must have reason not only to 
believe in the empirical relationship, but also that the relationship is sufficiently large 
to justify the costs of implementing a policy (Trafimow & Osman, 2022). Even for 
basic research, large regression coefficients are less susceptible to trivial alternative 
explanations than are smaller ones, all else being equal. Whether the research is at the 
exploratory level, or beyond that, researchers must have some reason to believe that 
the regression coefficients they obtain from their sample generalize to the population of 
interest; it is necessary to assume that sample regression coefficients are good estimates 
of corresponding population regression coefficients. Most researchers are aware that, 
in general, the larger the sample size, the better the estimation. However, at present, 
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there is no way to know the minimum sample size needed to meet criteria for quality 
of estimation. Our goal is to derive a procedure to accomplish this. The procedure to be 
described works equally well for those researchers who prefer unstandardized regression 
coefficients to standardized ones.

Recently, a general methodology—the APP—has been developed for determining re
quired sample sizes so that sample statistics provide good estimates of corresponding 
population parameters. There are two main criteria that are bullet-listed below:

• Precision: Researchers must specify the distance within which they wish their sample 
statistics to be of corresponding population parameters.

• Confidence: Researchers must specify the probability they wish to have of meeting 
the precision specification.

For example, in the case of a single mean, under normality, Trafimow (2017) showed 
that it is necessary to obtain a sample size of 385 to be 95% confident that the sample 
mean will be within one-tenth of a standard deviation of the population mean. Note the 
contrast between a sample size of 385 participants versus 31 participants sufficient to 
satisfy a typical power analysis. Even dropping the criterion to a precision level of 0.20 
implies a sample size of 97, which still exceeds 31, thereby exemplifying that the APP is 
very different from power analysis.

Recent APP work has gone well beyond single means under normality. For example, 
Trafimow et al. (2019) extended the APP to work for skew normal distributions; Wang 
et al. (2019a) extended the APP to work for comparisons between independent groups 
under skew normal distributions; and Wang et al. (2019c) provided an APP extension 
to two dependent groups (matched data). Moreover, Wang et al. (2020) extended the 
APP to one-way analysis of variance paradigms. Then, too, there are APP extensions 
pertaining to standard deviations or scales (e.g., Wang et al., 2022), distribution shapes 
(Wang et al., 2019b), and correlation coefficients (Wang et al., 2021). There is even a 
Bayesian APP extension for estimating the normal mean (Wei et al., 2020) and proportion 
based on skew normal approximations and the Beta-Bernoulli process (Cao et al., 2021). 
The foregoing citations indicate that a sizable APP literature already exists and that it is 
growing quickly.

The present goal is to add to the APP literature by extending that literature to ad
dress regression coefficients assuming a multivariate normal distribution. Our aim is to 
derive a procedure by which researchers can specify the desired degree of precision and 
confidence, as well as the number of independent variables, to determine the minimum 
sample sizes needed to meet the specifications. In other words, the work to be presented 
provides a way for researchers to determine the sample size necessary so that they 
can trust that their sample regression coefficients are good estimates of corresponding 
population regression coefficients.
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Review of Multiple Linear Regression Model
In statistical modeling, regression analysis is a set of statistical processes for estimating 
the relationships between a dependent (response) variable and one or more independent 
(explanatory) variables. The most common form of regression analysis is linear regres
sion that most closely fits the data according to a specific mathematical criterion.

The multiple linear regression model for n observations can be written as

yi = β0 + β1xi1 + ⋯ + βpxip + εi, i = 1,…, n

which is equivalent to the matrix form

y = Xβ + ℰ (1)

where y = (y1, …, yn)′ is the vector of dependent variable,

X ≡ (jn,X1) = (jn, x1, …, xp)

is n × (p + 1) design matrix with jn = (1, …, 1)′ in ℜn and xj = (x1j, …, xnj)′ is the vector 
of observations for jth variable for j = 1,…, p. The random vector ℰ = (ε1, …, εn)′ is the 
error term in the model and β = (β0, β1, …, βp)′ is the vector of regression coefficients. For 
estimating β, we need general assumptions that the mean and the covariance matrix of ℰ
are, respectively, given by E(ℰ) = 0 and Cov(ℰ) = σ2In, where In is the identity matrix of 
order n and σ > 0. Note that the model (1) can be written in centered form:

y = (jn,Xc)
α
β1 + ℰ (2)

where β1 = (β1, β2, …, βp)′, α = β0 + β1x̄1 + β2x̄2 + ⋯ + βkx̄p, and

Xc = (In − J̄n)X1, J̄n = 1
njnjn′

The following lemma will be used in constructing our APP method for estimating β and 
its proof is given in Rencher and Schaalje (2008).

Lemma 1
Consider the regression model given in (1) and (2) and assume that y ∼ Nn(Xβ, σ2In), the 
n-dimensional multivariate normal distribution with mean Xβ and covariance matrix σ2In. 
Then the maximum likelihood estimators of α, β1, and σ2 are, respectively, given by

α̂ = ȳ , β̂ 1 = (Xc′Xc)−1Xc′y, σ̂2 = 1
n (y − Xβ̂ )′(y − Xβ̂ ) (3)
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where ȳ = jn′y/n. Furthermore, these estimators have the following properties:

a. β̂ 1 ∼ Np β1, σ2(Xc′Xc)−1 .
b. nσ̂2/σ2 ∼ χn − p − 12 , the chi-square distribution with n − p − 1 degrees of freedom.
c. β̂ 1 and σ̂2

 are independent.

Let Sxx = (sij) be the sample covariance matrix of (x1, …, xp)′ and syx = (sy1, …, syp)′ be the 
vector of sample covariances between y and the xj’s, where sy j’s are sample covariance 
between y and xj for j = 1,…, p. It can be shown that

Xc′Xc = (n − 1)Sxx, Xc′y = (n − 1)syx, and β̂ 1 = Sxx−1syx (4)

We can also express the vector of regression coefficients β̂ 1 in terms of sample correla
tions. Let R be the sample correlation matrix between y and x1, …, xp’s and S be its 
corresponding sample covariance matrix as

R =
1 ryx′
ryx Rxx

and S = sy2 syx′
syx Sxx

where ryx is the vector of correlations between y and xj’s and Rxx is the correlation 
matrix for the x1, …, xp, and sy2 is the sample variance of y1, y2, …, yn. Let

D = [diag(S)]1/2 ≡ diag sy, s1, …, sp and Dx = diag s1, …, sp

Then it is easy to verify from (4) that

β̂ 1 = syDx
−1Rxx

−1ryx and β̂ 1
∗ = (β̂1

∗, …, β̂p
∗)′ = 1

syDxβ̂ 1 (5)

where β̂ 1
∗
 is the estimator of the vector of standardized coefficient β1∗ = ( s1syβ1, …,

sp
syβp)′. 

For references of standardized regression coefficients, please see Cohen (1968), 
Darlington and Hayes (2016), Green (1991), and Viswesvaran (1998).

Example 1
Consider the regression model with two independent variables x1 and x2. We have

Dx =
s1 0
0 s2

, Sxx =
s12 s12
s21 s22

and syx =
sy1
sy2

By (4) and (5), we obtain, after simplification, that the estimators of β1 and β1∗ are
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β̂ 1 =
β̂1
β̂2

= 1
s12s22 − s122

s22sy1 − s12sy2
s12sy2 − s21sy1

and β̂ 1
∗ = β̂1

∗

β̂2
∗ = 1

1 − r122
ry1 − r12ry2
ry2 − r12ry1

respectively. ◻

Remark 1
Note that the β̂j

∗
’s can be compared to each other, whereas the β̂j’s cannot be so com

pared. The division by sy is customary but not necessary. That is, the relative values of 
s1β̂1 and s2β̂2 are the same as those of s1β̂1/sy and s2β̂2/sy. Therefore, in stead of finding 
the necessary sample size needed to trust standardized regression weights β̂ 1

∗
, people 

look for the sample size needed for estimating γ = syβ1∗ = Dxβ1, which is equivalent to 
estimating β1 as Dx are calculated by the observations of independent variables X1, …,Xp. 
Therefore we will focus on setting our APP method on the estimation of β1.

The Necessary Sample Size Needed for 
Estimating the Vector of Regression Coefficients

In this section, we will establish the APP for estimating β1, vector of the regression 
coefficients given in (2) under normal assumption.

Theorem 1
Assume that y ∼ Nn(Xβ, σ2In), where X is n × (p + 1) of rank p + 1 and 
β = (β0, β1, …, βp)′ = (β0, β1′)′. Then for specified precision f and confidence level c, the 
necessary sample size needed for estimating regression coefficients β1 (or regression weights) 
can be obtained by solving the following equation

0

(n − 1)f 2

fU(u)du = c (6)

where

U ≡
Sxx1/2(β̂ 1 − β1)

2

ps2/(n − 1) ∼ Fp, n − p − 1
(7)

the F-distribution with numerator degrees of freedom p and denominator degrees of freedom 
n − p − 1 and fU(u) is the density of U.
The proof of Theorem 1, together with the density of U is given in the Appendix.
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Remark 2
Note that Theorem 1 still hold for finding the necessary sample size needed to trust γ̂
since

R1/2 γ̂ − E(γ̂ ) = R1/2(Dxβ1̂ − Dxβ1) = R1/2Dx(β1̂ − β1) = Sxx1/2(β̂ 1 − β1)

Therefore, the necessary sample size, n, for estimating β̂ 1
∗
, the vector of standardized 

regression weights will be same as that for estimating β1.

Remark 3
If the previous data sets are available, we can use them to obtain β10 so that the random 
variable U given in (10) has a noncentral F distribution with non-centrality parameter

λ0 = (β1 − β10)′Sxx(β1 − β10)

and degrees of freedoms p and n − p − 1, denoted by U ∼ Fp, n − p − 1(λ0). The density 
function of W ≡ U ∼ Fk1, k2(λ) is given in the Appendix. Therefore the required sample 
size n can be obtained by specifying an extra λ0 with fU  given in (6) replaced by fW  given 
above. ◻

The density curves of U with different values of p and n are listed in Figures 1 
and 2. In Figure 1, the density curves of U are given for p = 2 and different values of 
n − p − 1 = 27, 47, 97, 297, which do not change much as n increases. In Figure 2, the 
density curves of U are graphed for n = 50 and different values of p = 2, 3, 5, 10, which 
change substantially when p changes.
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Figure 1

The Density Curves of U for p = 2 and n = 30, 50, 100, 300

Figure 2

The Density Curves of U for n = 50 and p = 2, 3, 5, 10

If the non-central parameter λ0 is not 0, the density curves for p = 5, n = 50, and different 
values of λ0 = 0, 1, 2, 5 are listed in Figure 3. We can see that the non-central parameter λ0
do effect density curves.
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Figure 3

The Density Curves of Non-Central F-Distribution for p = 5, n − p − 1 = 15 and Non-Central Parameter 
λ0 = 0, 1, 2, 5

Remark 4
From Theorem 1, we can construct a confidence region for β1 or γ with give confidence 
level c100% and precision f, the confidence region for β1 and γ are given by

Cβ1(c, f ) = β1: Sxx1/2(β̂ 1 − β1) ≤ pfσ (8)

and

Cγ(c, f ) = γ : Rxx
1/2(γ̂ − γ) ≤ pfσ (9)

respectively.
To illustrate the above results for case where p = 2, c = 0.95, the confidence regions 

of β1 = ( − 4, 2.5)′ with n = 308, 138 and f = 0.1, 0.15 are given in Figures 4 and 5, respec
tively. Here data observations of x1 and x2 are generated from the uniform distribution 
with mean 0 and variance 1, and with true values (β0, β1, β2) = (2, − 4, 2.5).
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Figure 4

Confidence Regions of β1 = (β1, β2)′ = ( − 4, 2.5)′ (Green Point) Enclosed by Blue Dashed Line for C = 0.95 and 
f = 0.1, 0.15 From Left to Right and the Corresponding Point Estimators (Red Points)

Figure 5

Confidence Regions of γ = ( − 1.128, 0.721)′ (Left Green Point) and γ = ( − 1.162, 0.715)′ (Right Green Point) 
Enclosed by Red Dashed Line for C = 0.95 and f = 0.1, 0.15 From Left to Right and the Corresponding Point 
Estimates (Red Points)

Simulation Study and Real Data Example
In this section, we conduct a simulation study and present a real data analysis to evaluate 
the performance of the APP proposed above. The necessary sample sizes (n) obtained 
by using Theorem 1 are provided in Tables 1, 2, 3, 4 for different values of p when 
f = 0.1, 0.15, 0.2, 0.25 and c = 0.9, 0.95.

Table 1

The Necessary Sample Sizes and Coverage Rates for p = 2

f 0.1 0.15 0.2 0.25

c 0.95 0.9 0.95 0.9 0.95 0.9 0.95 0.9

n 308 244 138 114 84 62 58 49

cr 0.95027 0.89956 0.95006 0.89995 0.95005 0.89968 0.94963 0.90019
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Table 2

The Necessary Sample Sizes and Coverage Rates for p = 3

f 0.1 0.15 0.2 0.25

c 0.95 0.9 0.95 0.9 0.95 0.9 0.95 0.9

n 275 222 129 104 74 60 49 38

cr 0.94976 0.90035 0.94999 0.90042 0.94974 0.90039 0.94991 0.90003

Table 3

The Necessary Sample Sizes and Coverage Rates for p = 5

f 0.1 0.15 0.2 0.25

c 0.95 0.9 0.95 0.9 0.95 0.9 0.95 0.9

n 229 195 113 96 71 51 43 38

cr 0.95009 0.90000 0.94962 0.90004 0.95003 0.89946 0.94992 0.90030

Table 4

The Necessary Sample Sizes and Coverage rates for p = 10

f 0.1 0.15 0.2 0.25

c 0.95 0.9 0.95 0.9 0.95 0.9 0.95 0.9

n 192 172 98 78 58 46 38 35

cr 0.95009 0.89961 0.94995 0.89959 0.94991 0.89957 0.94971 0.89984

The tables indicate the following. First, the required sample size n decreases as values of 
precision f increase for all p = 2, 3, 5, and 10. Second, with M = 100, 000 runs (samples) 
for required sample size n, the coverage rates (the percentage of the constructed confi
dence intervals that include the true parameters) are very close to the corresponding 
confidence levels c = 0.9, 0.95. Third, as the number p of independent variables increases, 
the required sample size n decreases for fixed f and c. It is reasonable since the multiple 
correlation coefficient R2 is increased as p increases so that the sample size decreases 
as p increases. Fourth, the effect of increasing the number p of independent variables is 
smaller for low precision setting (e.g., f = 0.25: p = 2, c = 0.9, n = 49; f = 0.25, p = 10, 
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c = 0.9, n = 35) than for high-precision setting (e.g., f = 0.10: p = 2, c = 0.9, n = 224; 
f = 0.10, p = 10, c = 0.9, n = 172).

For calculating the necessary sample sizes needed to estimate the regression coeffi
cients β1, a freely available online calculator can be found at the Supplementary Materi
als.

Introduction to the Link
To use the program for finding the sample size needed to estimate the regression coeffi
cients, it is necessary to make three entries. In the first box, type in the number (p) 
of independent variables included in the model. In the second box, type in the desired 
degree of precision (f). In the third box, type in the desired confidence level (c). The last 
input is the noncentrality parameter (λ0), which can be determined by using previous 
data. The default value of λ0 is 0. Then click “update” to obtain the sample size needed to 
meet your specifications for precision and confidence.

Example 2
The data set was obtained from the R Package named datarium (Kassambara, 2019). The 
data sets list the impact of three advertising media (Youtube, Facebook and newspaper) 
on sales. Data are the advertising budget in thousands of dollars along with the sales. 
The advertising experiment has been repeated 200 times. Now, we construct a regression 
model to predict sales (y) on the basis of advertising budget spent in Youtube media 
(x1) and newspaper (x2). By the online calculator provided in the above, we obtain the 
necessary sample size needed for estimating the standardized regression weights is 138 
with precision f = 0.15, confidence level c = 0.95. So we randomly choose a sample of 
size n = 138 from the row data. After calculation, the least-squares estimate of β1 in 
equation (2) and γ are β̂ 1 = (0.04680, 0.04472)′ and γ̂ = (4.74557, 1.16442)′, respectively. 
Also the estimate of the standardized regression weights is β̂ 1

∗
=(0.76823, 0.18850)′. If we 

use the whole data set as a sample (n = 200), the estimates of β1, γ and β1∗ are β̂ 10 = 
(0.04690, 0.04422)′, γ̂ 0 = (4.83200, 1.15565)′ and β̂ 10

∗ = (0.77177, 0.18458)′, respectively. For 
comparison, the difference between β̂ 10 and β̂ 1 is (0.0001, − 0.0005)′, which indicates that 
our proposed method for required n = 138 is consistent.

Remark 5
The verification of the assumptions of normality, homoscedasticity and influential values 
is provided in the C section of the Appendix.
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Discussion
In the introduction, we explained why the size of regression coefficients, not just wheth
er they are statistically significant, is important especially for applied research. Even if 
a regression coefficient is statistically significant, it might not be sufficiently large to 
justify expenditures necessary for a policy change (Trafimow & Osman, 2022). However, 
once the importance of regression coefficient size is acknowledged, there remains the 
crucial issue of the accuracy with which sample regression coefficients estimate popula
tion regression coefficients. Even a large sample regression coefficient may not justify 
a policy change if it cannot be trusted to be a good estimator of the corresponding 
population regression coefficient. Consequently, it is useful to have a procedure to 
enable valid judgments of the degree of trust consumers of research can place in sample 
regression coefficients as estimators of corresponding population regression coefficients. 
The present APP expansion provides that procedure.

In turn, there are two ways the present work, with the free and user-friendly pro
gram, can be used. One use concerns the original purpose of the APP, which is to plan 
sample sizes necessary for achieving researcher goals pertaining to precision and confi
dence. Secondly, however, the present APP expansion can be used post data collection, 
such as evaluating an already published regression coefficient. If a researcher reports a 
seemingly impressive regression coefficient, the trust that regression coefficient deserves 
can be assessed using the present program. If the reported sample size is less than 
what is necessary to meet assessors’, reviewers’, or policy makers’ criteria for precision 
and confidence, the applicability of the sample regression coefficient can be discounted 
accordingly. Alternatively, if the reported sample size exceeds that which is necessary to 
meet criteria for precision and confidence, trust in the sample regression coefficient can 
be augmented accordingly.

Also, we wish to be upfront about an important limitation, which is the assumption 
of multivariate normality. Future work, that we intend to perform, could include com
mencing from more general assumptions. For example, instead of assuming a multivari
ate normal distribution, it would be a further advance to extend the APP to regression 
coefficients under a multivariate skew normal distribution. In the meantime, the present 
work is nevertheless useful even if the assumption of multivariate normality is violated. 
To see why, consider that skewness decreases sample sizes necessary to meet specifi
cations for precision and confidence (e.g., Trafimow et al., 2019; Wang et al., 2019a; 
Wang et al., 2019c). Thus, when multivariate normality is violated, the present computer 
program will overestimate necessary sample sizes needed to meet specifications for 
precision and confidence. Hence, the results the program produces can be considered 
conservative sample size estimates; if a researcher collects the sample size indicated by 
the computer program, he or she can be assured that precision and confidence are at 
the specified level, or better. Of course, in those cases where multivariate normality 
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does apply, the results produced by the computer program should be very accurate and 
neither conservative nor liberal.

Finally, applied researchers should consider potential applications of their research, 
and explicitly consider how accurate the estimation needs to be to base an intervention 
or policy change on the regression coefficients they obtain. They can render specifica
tions for precision and confidence accordingly. Also, the total cost of collecting a sample 
with required sample size n should be considered in selecting f and c. In our real data 
example, n = 138 for f = 0.15 and 0.95. If we use f = 0.10 and 0.15 with p = 2 instead, the 
required sample size are 308 and 1014, respectively. It is impossible to have such sample 
sizes because the whole data size is 200.

In conclusion, we hope and expect that the present contribution provides an alterna
tive to power analysis for researchers who use correlational designs that feature regres
sion coefficients. If the goal is to attain statistical significance, power analysis makes 
sense; but if the goal is to obtain sample regression coefficients that are trustworthy esti
mators of corresponding population regression coefficients, the present APP extension is 
best.
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Appendix

A. Proof of Theorem 1
By Lemma 1 we know that β̂ 1 ∼ Np(β1, σ2(Xc′Xc)−1) so that

Dx(β̂ 1 − β1) ∼ Np(0, σ2Dx(Xc′Xc)−1Dx)

From (4), we obtain Dx(Xc′Xc)−1Dx = Rxx
−1/(n − 1), and hence

Dx(β̂ 1 − β1) ∼ Np 0, σ2
n − 1Rxx

−1

Let

Z = Rxx
1/2Dx(β̂ 1 − β1)
σ/ n − 1 and q = Z′Z

Note that it is easy to verify that Z ∼ Np(0, Ip) so that

Z′Z = (β̂ 1 − β1)′DxRxxDx(β̂ 1 − β1)
σ2/(n − 1) = (β̂ 1 − β1)′Sxx(β̂ 1 − β1)

σ2/(n − 1) ∼ χp2

which is equivalent to, with the norm notation
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Sxx1/2(β̂ 1 − β1)
2

σ2/(n − 1) ∼ χp2

Let s2 be the unbiased estimator of σ2 so that (n − p − 1)s2 = nσ̂2
 by Lemma 1. Note that 

(n − p − 1)s2/σ2 ∼ χ2(n − p − 1) and β̂ 1, s2 are independent. From the definition of F-distribution, 
we obtain

U ≡
Sxx1/2(β̂ 1 − β1)

2

ps2/(n − 1) ∼ Fp, n − p − 1
(10)

the F-distribution with numerate degrees of freedom p and denominator degrees of freedom 
n − p − 1 and the the density of U is given by

fU(u) =
Γ( n − 1

2 )
Γ(p2 )Γ( n − p − 1

2 )
p

n − p − 1
p/2

up/2 − 1 1 + pu
n − p − 1

−(n − 1)/2
, u > 0

where Γ( ⋅ ) is the gamma function.
Now, we set up the APP for estimating β1, the vector of regression coefficients using its 

unbiased estimator β1̂. For a given precision f and confidence level c,

c =P Sxx1/2(β̂ 1 − β1) ≤ pfσ = P Sxx1/2(β̂ 1 − β1)
2 ≤ pf 2σ2

= P
Sxx1/2(β̂ 1 − β1)

2

pσ2/(n − 1) ≤ (n − 1)f 2

By strong law of large numbers, we know that s2 is a consistent estimator of σ2 so that for large n, 
the above expression can be reduced to

P U ≤ (n − 1)f 2 ≈ c

Therefore the required n can be obtained from (6). 

B. The Density of W Given in Remark 3
The density of W, the non-central F-distribution with degrees of freedoms k1 and k2 and non-cen
tralized parameter λ is given by

fW(w ; k1, k2, λ) =
k1k2k2/2

Γ( 12 )Γ( k1 − 1
2 )Γ( k22 )2(k1 + k2)/2 0

∞
exp − 1

2 λ + (k1w + k2)u uk2/2

× − k1wu

k1wu
exp(λ1/2s)(k1wu − s2)(k1 − 3)/2dsdu

(11)
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C. The Verification of Normality Assumptions
Now we check the assumptions of normality, homoscedasticity and influential values by Figure 6. 
From the histogram and QQ plot of residuals, we can see that in our example, all the points fall 
approximately along this reference line, so we can assume normality. There is no pattern in the 
scatter of the fitted values and residuals and the width of the scatter as predicted values increase is 
roughly the same so the assumption of homoscedasticity has been met. The residual and leverage 
plot highlights the top 3 most extreme points (129, 166, and 179 are marked in Fitted values of 
Figure 6), with a standardized residuals above 2 or below −2. However, there is no outliers that 
exceed 3 standard deviations. Additionally, the data do not present much influential points. That is, 
most of data points have a leverage statistic below 2(p + 1)/n = 6/138 = 0.04.

Figure 6

Histogram of Standardized Residuals, Plot of Residuals vs Fitted Values, QQ Plot of Standardized Residuals, and 
Plot of Residuals vs Leverage
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