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Abstract
Ordinary least squares (OLS) regression is widely employed for statistical prediction and 
theoretical explanation in psychology studies. However, OLS regression has a critical drawback: it 
becomes less accurate in the presence of outliers and non-random error distribution. Several robust 
regression methods have been proposed as alternatives. However, each robust regression has its 
own strengths and limitations. Consequently, researchers are often at a loss as to which robust 
regression method to use for their studies. This study uses a Monte Carlo experiment to compare 
different types of robust regression methods with OLS regression based on relative efficiency (RE), 
bias, root mean squared error (RMSE), Type 1 error, power, coverage probability of the 95% 
confidence intervals (CIs), and the width of the CIs. The results show that, with sufficient samples 
per predictor (n = 100), the robust regression methods are as efficient as OLS regression. When 
errors follow non-normal distributions, i.e., mixed-normal, symmetric and heavy-tailed (SH), 
asymmetric and relatively light-tailed (AL), asymmetric and heavy-tailed (AH), and 
heteroscedastic, the robust method (GM-estimation) seems to consistently outperform OLS 
regression.
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Among conventional statistical methods, ordinary least squares (OLS) regression is one 
of the most widely employed statistical analyses used by researchers for prediction and 
theoretical explanation (Erceg-Hurn & Mirosevich, 2008). Due to its straight-forward 
interpretation (e.g., linear relationships), easy calculation, and popularity, OLS regression 
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is widely used in many areas of research in fields such as biology, business, education, 
computer science, psychology, and more (Anderson & Schumacker, 2003; Haupt et al., 
2014; Sauvageau & Kumral, 2015; Yellowlees et al., 2016). OLS regression is used to 
predict dependent variables based on explanatory variables plus errors, which can be 
presented as

yi = β0 + β1xi1 + ⋯ + βpxip + εi, (1)

where yi denotes the dependent or response variable from i = 1,…, n observations, 
xij = xi1, …, xip (where j = 1,…, p) denote p numbers of predictors or explanatory variables, 
β0, …, βp are the p + 1 regression coefficients, and εi represents the difference between 
the actual observed score and the score predicted from a statistical model. The purpose 
of OLS regression is to minimize the sum of squares of the difference between predicted 
values and actual observed values. That can be written as

∑ yi − y i 2  =   ∑
i = 1

n yi − β0 + β1xi1 + … + βpxip
2. (2)

With the OLS regression model, researchers in psychology can examine whether predic­
tors can significantly predict an outcome measure, which is a highly appealing and 
widely-employed statistical procedure. For example, in one study (McCrone et al., 2005), 
OLS regression was used to predict costs based on family history of psychiatric illness. 
In another study, Mossakowski (2011) used OLS regression to analyze if unfulfilled 
expectations predict subsequent symptoms of depression.

To use OLS regression properly, researchers need to check whether or not four 
critical assumptions have been met (Anderson & Schumacker, 2003; Field & Wilcox, 2017; 
Greene, 2003; Yellowlees et al., 2016). First, errors must follow a normal (N) distribution. 
Second, explanatory variables should not be correlated with error distribution. Third, 
homoscedasticity must be achieved; that is, residuals at each level of the predictor 
variable should have a common variance (Anderson & Schumacker, 2003; Greene, 2003; 
Yellowlees et al., 2016). Finally, the relationship between the response variable and 
the explanatory variable should be linear (Field & Wilcox, 2017). When all of these 
assumptions are met, OLS regression will be the maximal, unbiased linear estimator of 
the regression coefficients in the population (Field & Wilcox, 2017). However, in reality, 
this is not what researchers commonly face (Erceg-Hurn & Mirosevich, 2008).

In many research scenarios involving behavioral and social data, these assumptions 
are violated. One of the assumptions that is often violated is the assumption of homo­
scedasticity. Erceg-Hurn and Mirosevich (2008) claimed that the presence of heterosce­
dasticity (HE) is common in real data. In addition to that, normality assumptions are 
rarely met in practice. Micceri (1989) found that, of 440 large-sample measures related 
to psychology such as achievement and other common psychometric measures, none 

Different Types of Robust and OLS Regression 324

Methodology
2023, Vol. 19(4), 323–347
https://doi.org/10.5964/meth.8285

https://www.psychopen.eu/


were normally distributed among the data they investigated. Approximately 15.2% of 
440 distributions followed Gaussian distribution, and most of the distributions followed 
either a heavy or skewed distribution.

Using OLS regression under violations of assumptions gives rise to several critical 
problems for researchers. First, when the normality assumption is not met, OLS regres­
sion produces lower power and wider confidence intervals. In other words, it weakens 
the generalizability of data. Moreover, it may inflate the possibility of making a Type 1 
error (Anderson & Schumacker, 2003; Erceg-Hurn & Mirosevich, 2008). Even when the 
normality assumption is not violated, the problems mentioned above can occur with the 
presence of heteroscedasticity (Brossart et al., 2011). As a result, OLS regression becomes 
inefficient and generates unstable results when underlying assumptions are not met, 
which is quite common in practice.

Just as violated assumptions are commonly encountered in reality, so are outliers. As 
can be seen in Equation 2, each observation is weighted equally by the OLS estimator, 
and hence, a large difference between an outlier and the mean of all other scores will 
have a substantial impact in the accuracy of the slope estimates. For this reason, the 
presence of outliers in data also markedly distorts the efficiency of OLS regression, 
resulting in erroneous results. Outliers can arise from different sources: man-made or 
random (Osborne & Overbay, 2004). That is, outliers can be caused by researchers during 
data entry, incorrect distribution assumptions, and sampling error, or by random chance 
when collecting samples from a population.

Outliers have different influences on the estimation of regression coefficients, de­
pending on their location. The influence of an outlier may be much more severe when 
it lies on the x-axis, called the leverage point, than when it lies on the y-axis (Anderson 
& Schumacker, 2003). The leverage point can be either good or bad (Rousseeuw & Leroy, 
2003). A good leverage point, which is away from the bulk of the points but close to a 
regression line, reduces the standard error. However, when the location of a data point is 
far away from the rest of the data points and from the line of best fit, called bad leverage, 
it can pull the regression line towards the outlier’s location. Therefore, outliers in data 
not only indicate the assumptions that normality and homogeneity may not hold, but 
also seriously impact the result based on OLS regression including inaccurate intervals, 
lowering statistical power, and Type 1 and Type 2 errors (Brossart et al., 2011).

One of the common approaches to handling these outliers is to transform data using 
logarithms or square roots (Grissom, 2000). Transformation may be a valuable option; 
however, it often gives rise to more problems. Transforming data often fails to restore 
normality and homoscedasticity and is not adequate to deal with outliers (Wilcox, 2022). 
Moreover, it also leads researchers to interpret data in an inaccurate way by changing the 
original construct (Osborne, 2003).

The other option that researchers commonly use is to discard outliers. Yellowlees 
et al. (2016) argued that this method, however, can only be used if an outlier can be 
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traced back to an error that occurred during an experiment (e.g., wrong dose of a drug 
or product). Finney (2009, p. 51) also stated: “the danger [is] that scientists bias their 
conclusions by removing data that deviate markedly from current ideas of truth.” They 
warned: “[n]ever discard an apparent outlier unless there is strong evidence that it was 
the product of a measurement or other form of observation that suffered a gross mistake 
or accident, this misfortune being unrelated to any experimental treatment under investi­
gation.” Hence, this method may only be advisable when researchers clearly know the 
cause of outliers (Yellowlees et al., 2016). Unfortunately, it is hard for researchers to 
objectively define outliers especially when the data have many explanatory variables 
(Maronna et al., 2006). Moreover, the presence of outliers sometimes disguises other 
outliers (called a masking effect; Wilcox, 2022). On the other hand, retaining outliers 
could still result in a highly misleading result, if the goal of a research study is to 
characterize the nature of the association among the bulk of participants.

Robust regression can be an alternative method to deal with outliers and assumption 
violations. Despite the potential of robust regression, there is no single study that com­
prehensively integrates these methods and systematically evaluates their accuracy in 
a Monte Carlo experiment. The current research fills this research gap. The following 
section discusses the mathematical and computational details of these methods.

Robust Regression
Robust regression is a modern method conceptualized many decades ago. In the 1950s, 
Siegel (1956) stated that non-parametric and robust techniques of hypothesis testing are 
best suited to behavioral sciences data. However, robust regression has only recently 
been studied due to advancements in computer technology (Anderson & Schumacker, 
2003). Unlike OLS regression, which gives weights to outliers, robust regression reduces 
the impact of the outliers by weighing them down. This allows researchers to take outli­
ers into account in the statistical model rather than using other, potentially problematic 
methods to deal with them.

Two pivotal concepts need to be addressed to understand robust regression methods: 
breakdown point, and relative efficiency (Anderson & Schumacker, 2003). The break­
down point measures the minimum proportion of points that are needed to make a 
statistical estimate, such as regression slope, arbitrarily large or small. The breakdown 
points vary between 0, or 1/n and 50%, or n/2. In other words, an estimator with a 0% 
breakdown point does not efficiently prevent the regression equation from being influ­
enced by regression outliers or bad leverage points. OLS regression has the breakdown 
point of 0%; consequently, the presence of one outlier or bad leverage point can render 
the data inefficient. On the other hand, robust regression estimators with a 50% break­
down point can contain as many as 50% bad leverage points without making a statistical 
estimate being arbitrarily large or small. It is noteworthy that even though replacing 
the OLS regression with robust estimators having a high breakdown point appears to be 
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a reasonable solution when data contains outliers or bad leverage points, some recent 
studies (e.g., Wilcox, 2022; Wilcox & Xu, 2023) have showed that the presence of a few 
outliers or bad leverage points could still have a noticeable impact on the slope estimates. 
Or, stated differently, robust estimators can only ensure that having a few outliers or bad 
leverage points will not lead to an arbitrarily large or small statistical estimate, but they 
do not guarantee that the slope estimates are not substantially influenced by outliers or 
bad leverage points, thereby leading to a misleading conclusion of the true association in 
practice.

Another key concept is relative efficiency, which refers to the extent to which ro­
bust regression performs like OLS regression when error distribution follows a normal 
pattern. The relative efficiency is determined by dividing OLS regression mean square 
error (MSE) by the robust regression MSE, which can be expressed as (Anderson & 
Schumacker, 2003)

Relative efficiency = RE =    MSE OLS
MSE Robust

This is often expressed using a percentage value ranging between 0% and 100% or more. 
For example, if one robust regression technique has 75% relative efficiency, this means 
that the method is 75% as efficient as OLS regression. While robust regression may 
suffer from a slightly lower efficiency than OLS regression when the normality and 
homoscedasticity assumptions are met, robust regression is expected to produce much 
more accurate (or robust) estimates and results if the assumption is violated, which is 
crucial for obtaining more accurate statistical results in psychological research.

Types of Robust Regressions
Least-Square-Fit-CI (lsfitci) Approach

One approach to dealing with violation of the normal-error assumption is bootstrapping 
residuals (εi) instead of raw scores (x and y) to generate empirical distribution and 
standard error of residuals for the construction of 1 − α CI, where α is the type 1 error 
rate. By locating the α/2 and 1 − α/2 percentiles of the bootstrap residuals, it is expected 
that the CI could be asymmetrical, thereby adjusting for any non-normal residuals. This 
method is known as “least square fit CI” (lsfitci) in Wilcox (2022), and its performance is 
evaluated in this study.

Heteroscedastic-Consistent (HC) Standard-Error Approaches

HC standard-error approaches (Huber, 1967; Long & Ervin, 2000; White, 1980) can 
be used to fit a regression model that contains heteroscedastic errors. Among 
them, HC3 method was developed for studies with large sample sizes (Wilcox, 
2022). This method can effectively replace the bootstrap standard error estimate by 
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HC3 = S = X′X −1X′diag ri2/ 1 − ℎij
2 X X′X −1, where ri is the residual for i = 1,..,n, 

ℎij = xi X′X −1xi′, and

X =

1 x11
1 x21

⋯ x1p
⋯ x2p

⋮ ⋮
1 xn1

⋯ ⋮
⋯ xnp

,

where xi is the ith row of Xi. Consequently, the 1 − α CI surrounding βp is bj ± tSj, where 
t is the 1 − α/2 quantile of t distribution with n – p – 1 degrees of freedom. Another 
approach is called HC4, which is a modified version of HC3 that was found to be better 
for more general use. That is, HC4 = S = X′X −1X′diag ri2/ 1 − ℎij

dii X X′X −1.

HC-Robust Wild Bootstrap (W-B) Approach

The W-B approach was originally developed by Wu (1986), and it can be used to produce 
unbiased estimates of regression models with heteroscedastic errors. The W-B approach 
resamples the multiway, clustered heteroscedastic error terms to estimate the bootstrap 
dependent variable scores for constructing the CI surrounding the slope parameters. 
Roodman et al. (2019) have advanced and modified Wu’s (1986) approach by developing 
a fast W-B approach that can efficiently calculate bootstrap test statistics and implements 
a HC-robust W-B procedure for constructing the CI via their developed R package 
(fwildclusterboot; Fischer et al., 2023), and the performance of this approach is evaluated 
in this study.

Least Median of Squares (LMS) Estimator

The LMS estimator was developed by Rousseeuw (1984). Unlike OLS regression, using 
the sum of the squared residuals, the LMS-estimator uses the median of the squared 
residuals. This can be expressed as

  minM yi − β0 + β1xi1 + … + βpxip
2 = minM ri2 , (3)

where M is the median. The LMS-estimator is the first method that achieves the break­
down point 0.5; therefore, it is resistant to outliers. The LMS function in R does not 
provide an analytic method for the standard error, but it can be estimated through 
bootstrapping that locates the α/2 and 1 − α/2 percentile bootstrap slopes based on the 
LMS-estimator for the 1 − α CI (called LMS-B in this study). However, it has a critical 
limitation: the relative efficiency of the LMS-estimator to OLS regression is 0 due to n−1/3
convergence. For this reason, the LMS-estimator is not practically useful, but it plays a 
significant role in other robust methods such as the MM-estimator, which is described 
below (Andersen, 2008).
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Least Trimmed Squares (LTS) Estimator

Another robust estimator developed by Rousseeuw (1984) is called LTS, which is defined 
as

Minimize  ∑
i = 1

ℎ ri2 ,   (4)

where r 1
2 ≤ … ≤ r ℎ

2  are the ordered squared residuals following ascending order. The 
breakdown point of 0.5 can be achieved with ℎ = n/2 + p + 1 /2 , which is common­
ly used (Wilcox, 2022). Although the LTS-estimator may have a high breakdown point 
depending on h, its efficiency is very low, about 8% (Stromberg et al., 2000). Nevertheless, 
this method has some value insofar as it is used as an initial estimate for other robust 
methods (Andersen, 2008). Another related approach is the use of bootstrapping that 
locates the α/2 and 1 − α/2 percentile bootstrap slopes based on the LTS-estimator for 
the 1 − α CI, which is labelled as LTS-B.

Maximum Likelihood Type Estimation (M-estimator)

The M-estimator proposed by Huber (1973) minimizes

∑
i = 1

n ψ ri , (5)

where ψ is a robust loss function with a unique minimum at zero. The robustness of the 
M-estimator depends on a robust loss function that researchers choose. One commonly 
used function is Huber’s p function, expressed as

ψ x =
1
2x

2 for  x < c

c x − 1
2c

2 for  x ≥ c
,   (6)

where c is a tuning constant which can be adjusted to control asymptotic efficiency. 
When outliers lie in the y-axis, the Huber M-estimator, in general, is more efficient than 
OLS regression against outliers. However, it does not consider a leverage point. If there 
is an outlier in the x-axis, the Huber’s M-estimator is not better than OLS regression; 
therefore, the breakdown point is 1/n  (Wilcox, 2022).

Generalized M-Estimator (GM-Estimator)

Due to the limitation of the M-estimator which does not consider leverage points, a 
generalized M-estimator was developed to guard against leverage points by adding some 
weight, ωi, to xi values. Mallow (1973, as cited in Krasker & Welsch, 1982, p. 596) 
proposed the GM-estimator, which can be expressed as
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∑
i = 1

n ωiψ ri/τi xij = 0 (7)

where xio = 1, and j = 0, …,  p. Mallow used ωi =   1 − ℎii based on a condition if 
ℎii > ℎjj,  ωi < ωj. That is, high leverage points to xi receive less weight than low leverage 
points to xi. As a result, this method gives less weight to good leverage points resulting 
in a loss of efficiency (Andersen, 2008).

To solve the low efficiency issue by using Mallow’s weight, Schweppe proposed a 
different solution (Handschin et al., 1975), expressed as

∑
i = 1

n ωiψ ri/ ωiτi xij = 0, (8)

where j = 0, …, p. The idea of Equation 8 is to use different weight values according 
to the size of the residuals. In other words, Schweppe tried to solve the limitation of 
Mallow’s weight by dividing ri by ωi. Even though Schweppe’s estimator may provide 
a better option for dealing with leverage points than the regular M-estimator, its break 
point is less than 0.5 (Maronna et al., 2006), and especially low with a large number of 
predictors (Andersen, 2008).

Schweppe One-Step (S1S) Estimator

Coakley and Hettmansperger (1993) expanded from the Schweppe’s estimator and devel­
oped the S1S estimator, expressed as

β = β0 + ∑
i = 1

n ψ′ ri
ωi

xixi′
−1

× ∑
i = 1

n ωiψ
ri
ωi

xi (9)

where ωi is determined by using the same criterion that the original Schweppe’s estima­
tor used. The S1S-estimator is different from the two GM-estimators mentioned above in 
that it can achieve 95% efficiency when the error term is normally distributed. Moreover, 
it achieves a breakdown point of 0.5 by using the LTS-estimator as an initial estimator 
(Andersen, 2008). Wilcox (2022) states that the S1S-estimator can be effective when the 
sample size is large, and ε follows a normal distribution. However, it becomes inefficient 
when samples sizes get smaller.

MM-Estimator

Another popular robust technique derived by Yohai (1987) is MM-estimator, so called 
because it calculates the final estimates by employing more than one M-estimation. 
Three steps are involved to find the MM-estimator. The first step is to compute initial 
estimates of the coefficients β  with high breakdown points, 0.5, using s-estimation. 
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Then, a robust M-estimate of scale σ of the residuals is calculated by using the initial 
estimation (Maronna et al., 2006). The robust scale of σ satisfies

1
n ∑
i = 1

n ψ ri
σ = 0.5 (10)

The final step is to compute the regression parameters by solving the following equation 
(Wilcox, 2022):

∑
i = 1

n ψ ri/σ xij = 0, (11)

where j = 0, …, p, and ψ, is Tukey’s biweight which is commonly used. Tukey’s biweight 
is expressed as

ψ x = x 1 − x2 2 x < 1
0 x ≥ 1 (12)

where σ in Equation 10 is a robust M-estimate of scale, and Tukey’s biweight is used as a 
redescending function in Equation 10.

ψ ri; c =
ri
σ

ri
c σ

2
− 1

2
ri/σ ≤ c

0 ri/σ ≥ c
  .   (13)

When c is 4.685, the relative efficiency of the MM-estimator is 95% to OLS regression. 
Under normality, it has a high breakdown point, 0.5, and relative efficiency, 95%, to OLS 
regression (Wilcox, 2022). Another related approach is the use of bootstrapping that 
locates the α/2 and 1 − α/2 percentile bootstrap slopes based on MM-estimator for the 
1 − α CI; this method is called MM-B in this study.

S-Estimators

Rousseeuw and Yohai (1984) proposed the S-estimators that estimate slope and intercept 
values with the goal to minimize some measure of scale corresponding to the residuals. 
Indeed, the conventional, least squares approach is regarded as one type of S-estimator 
that minimizes the variance of the residuals. In this case, replacing the variance with 
some measure of location that is robust to outliners is the goal of using S-estimators 
for estimating robust slopes and intercepts. Wilcox (2022) mentioned that S-estimators 
may have some practical value, but no study has examined their empirical performance 
via simulation studies. One approach is the Nelder-Mead method (SNM; e.g., Olsson 
& Nelson, 1975). According to Wilcox (2022); let Ri = yi − bix1i − …bpxip, and the SNM 
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approach searches the values of bi, …, bp such that the standard error estimate (S) is 
minimized through some measure of scale based on the values of Ri…, Rn. Consequently, 
the intercept is b0 = My − b1M1 − …bpMp, where My and Mj are the medians of the y 
values and of the xij scores, where i = 1,…,n.

E-Type Skipped Estimator

The purpose of using an E-Type (or error-type) skipped estimator is to remove or 
decrease the influence of any outliers existing in a dataset on fitting a regression model. 
This estimator often begins by running preliminary fit to search for any outlier residuals, 
removing or downweighing those outliers, and fitting a regression model based on the 
remaining data. Wilcox (2022) supposes that Mr is the median of the residuals, and MADr 

(median absolute deviation) is the median of the values ri − Mr , …, rn − Mr . Consequent­
ly, for an ith point (xi, yi) with ri − Mr > 2 MADr /.6745, this point is deemed an outlier. 
The slope and intercept estimates will then be based on the data points that are not 
declared as outliers.

Methods Based on Robust Covariances

Replacing conventional covariances with robust covariances in fitting a regression model 
is a general approach that leads to robust intercept and slope parameter estimators of 
the model (ROB; Huber, 1981). In its simplest form with one predictor, the slope of 
the OLS regression line is β1 = σxy/σx2, in which the numerator can be replaced by a 
robust covariance estimate between x and y, and the denominator can be replaced by a 
robust variance estimate of x. One common approach for estimating robust variance and 
covariance is the biweight midcovariance that estimates the variability and co-variability 
of the scores based on the robust location (medians) and robust distance (MAD) that exist 
in a dataset.

Quantile (QUA) Regression

Another robust approach is estimating regression parameters based on minimizing the 
summation of the absolute of the residual scores, ∑ ri . According to Koenker and Bassett 
(1978), researchers could estimate the qth quantile of y scores given x scores. Suppose 
ρq u = u q − Iu < 0 , where I is the indicator function. Hence, the regression model is 
estimated by minimizing ∑ρq ri . When q = 0.5 (or 50th quantile), it refers to the least 
absolute value of the estimator which, in turn, leads to an estimate of the median of y 
scores, a robust measure of location, given x scores.

In sum, it has been suggested that robust regression methods outperform OLS regres­
sion when outliers exist in the data (Andersen, 2008; Anderson & Schumacker, 2003; 
Brossart et al., 2011; Finger, 2010; Maronna et al., 2006; Mercer et al., 2015; Sauvageau & 
Kumral, 2015; Wilcox, 2022; Wilcox & Keselman, 2004; Yellowlees et al., 2016). However, 
no robust regression technique is universally superior, because each regression method 
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has strengths and limitations. Depending on the situation, one may be more appropriate 
than another. In terms of handling leverage points, the S1S-estimator may be the best 
option. However, the S1S-estimator becomes less efficient with a small sample size, in 
which case the MM-estimator may be more appropriate (Andersen, 2008). In general, 
MM-type robust estimation may be the preferred choice in terms of relative efficiency, 
bias, and testing the null hypothesis (Anderson & Schumacker, 2003). When outliers 
are located in the y-axis, the Huber M-estimator would be appropriate as well, because 
it has a .5 breakdown point regarding outliers in the y-axis (Yellowlees et al., 2016). 
Therefore, the purpose of this research study is to compare robust regression methods 
using different settings to provide other researchers with information that will help them 
select the most appropriate robust regression methods when errors violate normality and 
homoscedasticity assumptions in psychological research.

Method: A Monte Carlo Simulation
To provide a better understanding of the selection of appropriate robust regression 
methods, we used a Monte Carlo simulation study to compare OLS and robust regression 
methods under a variety of conditions that researchers commonly face. The simulation 
was conducted based on multiple regression models with two independent predictors 
that can be expressed as

yi = β0 + β1xi1 + β2xi2 + εi (14)

To represent varied research conditions, we included variations across the following 
research variables: sample size per predictor, slope, and different types of error distribu­
tion.

Sample Size Per Predictor
Several rules have been proposed for minimum required sample ratio per predictor to 
conduct multiple regression analysis (Miller & Kunce, 1973; Schmidt, 1971). Schmidt 
(1971) recommends 15 to 20 samples per predictor, whereas Miller and Kunce (1973) 
argue that there should be 30 samples per predictor for accurate regression analysis. In 
response, and to provide more representative results, we added two more sample size 
variables, thus including 20:1, 30:1, 50:1, and 100:1 (n; sample size per predictor) in this 
study.

Slope
For slope, we selected values of 0, .3606, and .5099 (Cohen, 1988), which correspond 
to the zero effect, medium effect (.36062 = 13% of the variance of y explained by x), 
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and substantial effect (.50992 = 26% of the variance of y explained by x), to create nine 
combinations: (0, 0); (0, .3606); (0, .5099); (.3606, 0); (.3606, .3606); (.3606, .5099); (.5099, 0); 
(.5099, .3606); and (.5099, .5099).

Error Distribution
For error distribution, we adopted the same criteria used by Yuan and MacKinnon (2014) 
and Wilcox (2022). First, a normal distribution, N ~ (0, 12), was simulated. Second, follow­
ing Yuan and Mackinon, a mixed normal distribution (MN) with 90% random errors was 
generated from N ~ (0, 12) and 10% random errors generated from N ~ (0, 102). It is 
noteworthy that MN is a type of symmetric distributions with heavy tails on both ends, 
and it has been widely employed and tested in previous simulation studies (e.g., Algina et 
al., 2005). Third, a heteroscedastic error term, in which the variance used to generate the 
random error score of each simulated participant depends on his or her xip, N ~ (0, xip2 ), 
where i = 1,..,n, and p = 1 or 2, was simulated (Yuan & MacKinnon, 2014). The remaining 
three distributions followed Wilcox’s (2022) method for simulating asymmetric and/or 
heavy tailed error distribution for testing the performance of robust regressions. That 
is, the fourth distribution was a symmetric and heavy-tailed (SH) distribution based on 
a g-and-h distribution with (g, h) = (0, 0.5). The fifth distribution was an asymmetric 
and light-tailed (AL) distribution with (g, h) = (0.5, 0). The sixth distribution was an 
asymmetric and heavy-tailed (AH) distribution with (g, h) = (0.5, 0.5).

In summary, four sample sizes per predictor, nine combinations of slopes, and six 
types of error distributions were evaluated. This factorial design created a total of 
4 × 9 × 6 = 216 different conditions. Each of the 216 conditions were replicated 1,000 
times. For bootstrapping, the simulated x and y scores were resampled 1,000 times for 
constructing the 95% bootstrap percentile intervals. In sum, this design produced a total 
of 216 × 1, 000 × 1, 000 = 216,000,000 simulated data sets for evaluation. OLS-regression 
estimates and CI, nine robust regression estimates and analytic-based CIs (i.e., LTS-es­
timator, M-estimator, GM-estimator, S1S-estimator, MM-estimator, S-estimator, E-type, 
ROB, and QUA regressions), one robust, analytic-based CI for OLS-regression estimates 
(i.e., lsfitci), and five bootstrap-based CIs (i.e., HC3, HC4, LMS-B, LTS-B, and MM-B) 
described above were performed on these simulated data sets in order to compare the 
accuracy of their results. We used the statistical software, R, to conduct our simulation (R 
Core Team, 2023), and the code is shown in the Supplementary Materials.

Criteria
The criteria we used to compare the regression methods were relative efficacy, bias, 
RMSE, Type I error, power, coverage probability of the 95% CI, and width of the CI. For 
relative efficacy, higher percentages are desirable. For example, if the relative efficacy of 
a robust approach is .98, this means that it can maintain 98% of efficiency compared to 
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the conventional OLS estimates, when the normality and homoscedasticity assumptions 
are met. Regarding bias, when a regression method generates a slope farther away from 
the true slope, this is considered bias. Consequently, bias, in this study, is defined as 
the difference between the mean of the 1,000 replicated slopes minus the true slope (i.e., 
bias = b − β, where b  is the mean of 1,000 replicated observed slopes in each simulated 
condition, and β is the true slope value manipulated in the condition). Evaluating the bias 
of the slope estimates is insufficient because it does not measure the variability of those 
values. The root mean square error (RMSE) and variance of the 1,000 replicated slope 
values are also included. RMSE is defined by ∑r = 1

1, 000 br − β 2/1, 000, which measures the 
average (squared) distance between each of the 1,000 replicated slope values with the 
true value. Confidence width is used to evaluate the precision and sampling error of 
the slope estimates. A narrower confidence width indicates a more precise estimate. For 
Type 1 error, we set its error rate at α = .05 level (two-tailed test), which is commonly 
used as a criterion in psychological research. When the true slope was set at 0, we 
examined the number of times (or probability) that a regression method would lead to 
an incorrect decision (i.e., rejecting the null hypothesis: β = 0) out of 1,000 replications 
for each of the 216 manipulated conditions. By the same token, when the true slope 
was set at .3606 and .5099, we evaluated the number of times (or probability) that a 
regression method would lead to a correct decision (i.e., rejecting the null hypothesis: 
β = 0) out of 1,000 replications for each of the 216 manipulated conditions. The coverage 
probability examines the probability a 95% CI has spanned a true slope parameter value. 
Theoretically speaking, of the 1,000 replications, the number of the 95% CIs that has 
spanned the true parameter value is expected to be 950 (or coverage probability = 95%). 
In practice, sampling error exists, and hence, an observed coverage probability ranging 
from .925 to .975 yielded by a regression method is deemed desirable (Chan & Chan, 
2004).

Results

Relative Efficiency (RE)
The results of RE of each robust regression method compared to OLS regression, with 
normal error distribution, are presented in Table 11 (for all tables, see Supplementary Ma­
terials). When errors were normally distributed, three types of RE results were observed. 
The first type was observed by LMS and LTS, which produced the least efficient RE with 
a range from .761 to .778 when the sample size was small (20). The second type was 
observed by S, E, and QUA, and they were regarded as moderate RE, which ranged from 

1) This table and all tables subsequently referenced throughout the article can be found in the Supplementary 
Materials.
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.935 to .960 with a small sample size of 20. The third type was found in the M, GM, 
S1S, MM, and ROB approaches leading to the highest RE, which ranged from .958 to .996 
with a small sample size of 20. Comparing the effects of different manipulated factors, 
the sample size was found to be the most influential. As the sample size got larger, the 
discrepancy between the efficiency of robust regression and OLS regression got smaller. 
When the sample size was larger (e.g., n = 100), most of the robust regression methods 
(except LMS and LTS) were nearly the same in efficiency, ranging from 0.982 to 0.999. 
Therefore, this result indicates that there is no obvious or substantial loss of efficiency 
based on the robust regression methods compared to OLS regression, especially when n 
is greater than 100.

Bias, RMSE, and Variance of the Slope Estimates
Given that the patterns of the results are similar between Slopes 1 and 2, the following 
paragraphs focus on the results based on Slope 1 estimates only. Table 2 shows that, 
when errors were normally distributed, all the slope values were close to the true slope, 
with biases ranging from -.020 to .064 with a mean of .005 and median of .001. That 
is, no regression method showed bias in slopes with normally distributed errors. When 
errors were symmetric with long tails (MN and SH; Table 3 & 4), the biases were still 
appropriate, and they ranged from -.054 to .08 with a mean of .005 and median of .001. 
When errors were lightly skewed (AL; Table 5), all the biases were reasonable, range 
= (-.011, .055), mean = .003, median = .000; however, when errors were heavily skewed 
(AH; Table 6), the range of the bases became large based on OLS, range = (-.112, .105), 
mean = .003, median = -.001, and the other robust methods produced similar patterns of 
biases, range = (-.023, .080), mean = .006, median = .001, as in other error distributions. 
When errors were heteroscedastic (Table 7), first, the MM method consistently produced 
an error message in R, and hence, it was inappropriate for evaluation. Second, the OLS 
method resulted in reasonable biases, range = (-.028, .031), mean = .001, median = -.001, 
as in most other robust methods, range = (-.026, .025), mean = .000, median = .000, except 
for the S-estimator that resulted in biases ranging from .065 to .144 with a mean of .102 
and median of .101.

When errors were normal (Table 8), the OLS method resulted in the smallest RMSE 
values, range = (.068. .258), mean = .140, median = .117. This is reasonable as OLS should 
be the most precise in estimating the slope values when the normality assumption is 
met. All the robust methods resulted in larger RMSE values, range = (.070, .613), mean = 
.185, median = .141. When errors were symmetrical with longer tails (i.e., MN and SH; 
Tables 9 & 10), OLS produced larger RMSE values, range = (.230, 1.715), mean = .570, 
median = .449, than all the robust methods, range = (.076, .663), mean = .209, median 
= .167. When errors were skewed, the RMSE of OLS depended upon whether the tail 
was light or heavy. With AL (Table 11), range = (.086, .324), mean = .170, and median 
= .141. Some of the robust methods had even larger RMSE than OLS, e.g., LMS, range = 
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(.142, .569), mean = .288, median = .234; S, range = (.087, .334), mean = .177, median = 
.144; E, range = (.082, .335), mean = .174, median = .142; and QUA, range = (.086, .332), 
mean = .175, median = .144, whereas the remaining robust approaches resulted in smaller 
RMSE values, range = (.067, .331), mean = .152, median = .126. With AH (Table 12), RMSE 
became noticeable larger for OLS, range = (.545, 4.198), mean = 1.344, median = 1.075, 
indicating a larger bias. All the robust methods produced smaller RMSE, range = (.082, 
.649), mean = .214, median = .173). When errors were heteroscedastic (Table 13), OLS also 
resulted in larger RMSE values, range = (.260, .832), mean = .473, median = .419, than all 
the robust approaches, range = (.000, .510), mean = .230, median = .190.

The patterns of the variance of 1,000 replicated slope estimates across 216 conditions 
are identical to the patterns of the RMSE values, as they measured the variability of those 
estimates. That is, the variance was found to be smaller for OLS, range = (.005, .030), 
mean = .015, median = .014, than other robust methods, range = (.005, .167), mean = .029, 
median = .020, when errors were normal (Table 14). When errors were symmetrical with 
long tails (i.e., mixed-normal and SH; Table 15 & 16), the variance was larger for OLS, i.e., 
range = (.05, 5.385), mean = .406, median = .255, than the robust methods, i.e., range = 
(.006, .168), mean = .034, median = .028. When errors were AL (Table 17), the variance of 
the OLS estimates, range = (.007, .043), mean = .022, median = .020, was similar to most of 
the robust methods, range = (.004, .047), mean = .019, median = .017, except LMS, range 
= (.021, .121), mean = .060, median = .053, suggesting that the variance of the OLS slopes 
was less influenced by an asymmetric, light tail. On the contrary, the variance of the 
OLS slopes, i.e., range = (.384, 24.891), mean = 2.464, median = 1.055, became noticeably 
larger than the robust methods, i.e., range = (.007, .134), mean = .033, median = .030, with 
an asymmetric, heavy tail (Table 18). When errors were heteroscedastic (Table 19), the 
variance of OLS slope estimates, i.e., range = (.068, .353), mean = .193, median = .178, was 
larger than the robust methods, i.e., range = (.0009, .112), mean = .040, median = .036.

Type I Error

When errors were normal (Table 20), the Type 1 error rates were well protected for 
the OLS method, range = .044, .062, mean = median = .051. Some robust methods (e.g., 
HC3, HC4, W-B, MM-B, and ROB) produced Type 1 error rates similar to those obtained 
by OLS. Of the remaining robust methods, some resulted in slightly smaller (or more 
conservative) Type 1 error rates, e.g., LMS-B: range (.000, .007), mean = median = .003; 
LTS-B: range (.004, .036), mean = .015, median = .012; GM: range (.031, .060), mean = 
median = .043; S1S: range (.013, .064), mean = .032, median = .003; S: range (.010, .033), 
mean = median = .021; E: range (.007, .039), mean = .021, median = .020; QUA: range (.018, 
.042), mean = .028, median = .026, while others produced higher Type 1 error rates, e.g., 
lsfitci range (.056, .095), mean = .074, median = .073; LTS: range (.115, .163), mean = .146, 
median = .148; M: range (.036, .082), mean = .059, median = .061; MM: range (.,035, .080), 
mean = .058, median = .059.
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When errors were mixed-normal, SH, AL, and AH (Tables 21–24), the Type I error 
rates produced by OLS were surprisingly comparable with those observed in the normal 
distribution: range (.038, .065), mean = .051, median = .050. Four robust methods, W-B, 
range (.031, .061), mean = .047, median = .047; GM, range (.029, .059), mean = .041, 
median = .040; MM-B, range (.032, .065), mean = .047, median = .046; and ROB, range 
(.033, .067), mean = .046, median = .045, yielded reasonable Type 1 error rates close to the 
nominal level of .05. Nine robust methods, HC3, HC4, LMS-B, LTS, LTS-B, S1S, S, E, and 
QUA, produced Type I error rates slightly smaller than the nominal level: range (.000, 
.066), mean = median = .023. Three robust methods, LTS, N, and MM, yielded Type I error 
rates higher than the nominal level of .05, range (.031, .135), mean = .072, median = .062.

When errors were heteroscedastic (Table 25), OLS performed poorly with less protec­
ted (or higher) Type I error rates: range (.361, .409), mean = median = .378. Indeed, only 
four robust methods, HC3, range (.043, .065), mean = .056, median = .060; HC4, range 
(.041, .057), mean = .051, median = .054; W-B, range (.047, .068), mean = .055, median = 
.053; and GM, range (.037, .058), mean = .048, median = .047, produced reasonable Type I 
error rates. Eight robust methods, LMS-B, LTS-B, S1S, MM-B, S, E, ROB and QUA, yielded 
smaller Type I error rates: range (.004, .059), mean = .027, median = .028. The remaining 
three robust methods, lsfitci, LTB, M, and MM resulted in larger Type I error rates: range 
(.072, .606), mean = .390, median = .505.

Power

When errors were normal (Table 26), the power rates produced by OLS were the largest: 
range (.566, 1), mean = .882, median = .949. Of the remaining robust methods, some of 
them, including lsfitci, HC3, HC4, W-B, LTS, M, and MM, yielded power rates similar 
to those obtained by OLS: range = (.512, 1), mean = .871, median = .935. GM, MM-B, 
and ROB produced power rates slightly smaller than OLS: range (.403, 1), mean = .816, 
median = .878. The rest of the robust methods, LMS-B, LST-B, S1S, S, E, and QUA, 
produced much smaller power rates: range (.019, 1), mean = .585, median = .584. The 
factors that influenced the power rates were the same for all the approaches. First, when 
n increases, power rates increase. Second, when β1 increases, power rates increase. Third, 
there is no obvious relationship between the size of β2 and power rates.

When errors were mixed normal, SH, AL, and AH (Table 27–30), the OLS produced 
the smallest power rates, range (.125, 1), mean = .47, median = .329. This pattern of 
results is reasonable because the standard error should be more biased with the longer 
tails, and hence, this affects the precision of the estimates and likelihood of detecting 
significant results. Of the remaining methods, most of them produced power rates larger 
than those obtained by OLS. The LTS and MM led to the relatively larger power rates 
in the mean range of .80, i.e., range (.402, 1), mean = .829, median = .874. The M, GM, 
MM-B, and ROB produced power rates in the mean range of .70, i.e., range (.262, 1), mean 
= .745, median = .789. The S1S, S, E, and QUA fell in the mean range of .60, i.e., range 
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(.153, 1), mean = .658, median = .654. The remaining robust methods, lsfitci, HC3, HC4, 
W-B, LMS-B, LTS-B, resulted in power rates that fell in the mean range of .4, range (.024, 
1), mean = .461, median = .399.

When errors were heteroscedastic (Table 31), the OLS produced power rates ranging 
from .458 to .865, with a mean (or median) of .634 (or .614), although one should be 
cautious about the use of the OLS because of the highly unprotected Type I error rates. 
Of the remaining robust methods, LTS, M, S1S resulted in the largest power rates, range 
(.301, 1), mean = .859, median = .928. The LTS-B, GM, S, E, and QUA resulted in power 
rates like those observed in OLS, range (.240, .995), mean = .629, median = .607. The 
other approaches, lsfitci, HC3, HC4, W-B, LMS-B, MM-B, and ROB produced power rates 
smaller than those obtained by OLS, range (.134, .973), mean = .402, median = .344.

Coverage Probability and Width of CI

When errors were normal (Table 32), the coverage probabilities yielded by the OLS 
method were desirable: range (.928, .962), mean = median = .946. Of the 36 conditions, 36 
(or 100%) produced coverage probabilities within the criteria of (.925, .975). The widths of 
the CI ranged from .278 to .654 with mean = .460 and median = .457 (Table 33). Of the 
remaining robust methods, eight of them, HC3, HC4, W-B, M, GM, MM, MM-B, and ROB, 
led to coverage probabilities comparable to the OLS approach, range (.918, .972), mean = 
.950, median = .951. Of the 36 conditions, 36 (or 100%) yielded by HC3, HC4, W-B, GM, 
MM, MM-B, and ROB fell within (.925, .975), whereas 35 (or 97.2%) produced by M fell 
within (.925, .975). The widths were slightly wider than those obtained by OLS, range 
(.282, .837), mean = .513, median = .516, and this pattern is reasonable as the OLS-based 
CI is expected to be the most precise with normal errors. The remaining seven robust 
methods, lsfitci, LMS-B, LTS-B, S1S, S, E, and QUA, were subpar. LMS-B, LTS-B, S1S, S, 
E, and QUA produced coverage probabilities larger than expected, range (.936, 1), mean 
= .981, median = .982. Of the 36 conditions, only around 11.5 conditions (or 31.9%), on 
average, fell within the criteria of (.925, .975). The widths were wider than those obtained 
by OLS, range (.322, 2.294), mean = .963, median = .883. On the contrary, lsfitci and LTS 
resulted in smaller coverage probabilities, range (.814, .932), mean = .879, median = .886. 
Of the 36 conditions, none of the LTS’s (or one of the lsfitci’s) conditions fell within the 
criteria of (.925, .975). The widths were narrower than those observed in OLS, range (.253, 
.612), mean = .425, median = .420.

When errors were mixed-normal, SH, AL, and AH (Table 34 to 37), the OLS method 
still produced good coverage probabilities: range (.925, .965), mean = median = .946. Of 
the 144 conditions, 144 (or 100%) yielded coverage probabilities within (.925, .975). As 
shown in Table 38–41, the widths ranged from .333 to 3.752 with mean = 1.514 and 
median = 1.550. Five robust methods, M, GM, MM, MM-B, and ROB, yielded desirable 
coverage probabilities: range (.919, .981), mean = .951, median = .952. Of the 144 condi­
tions, 142.4 (or 98.9%), on average, led to coverage probabilities within (.925, .975). The 
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widths were noticeably narrower than those found in OLS, range (.281, 1.225), mean 
= .625, median = .581. The W-B method yielded desirable coverage probabilities, range 
(.936, .969), mean = .952, median = .953, but its widths were noticeably wider, range = 
(.337, 3.610), mean = 1.401, 1.314. Eight robust methods, HC3, HC4, LMS-B, LTS-B, S1S, 
S, E and QUA, produced larger coverage probabilities, range (.934, 1), mean = median 
= .977. Of the 144 conditions 64.1 (or 44.5%) resulted in coverage probabilities within 
(.925, .975). The widths ranged from .289 to 3.585 with mean = .625, median = .581. Two 
robust methods (lsfitci and LTS) produced smaller coverage probabilities, range (.838, 
.943), mean = median = .895. Of the 144 conditions, only 6 (or 4.2%) yielded coverage 
probabilities within (.925, .975). The widths ranged from .304 to 2.960 with mean = 1.277 
and median = 1.298.

When errors were heteroscedastic (Table 42), the OLS produced undesirable coverage 
probabilities: range = (.584, .654), mean = .615, median = .612. Of the 36 conditions, 0 
fell within (.925, .975). As shown in Table 43, the widths ranged from .464 to .989 with 
mean = .728 median = .735. Six robust methods, HC3, HC4, W-B, GM, E, and QUA, led to 
desirable coverage probabilities, range (.930, .979), mean = .951, median = .950. Of the 36 
conditions, 35.7 (or 99.1%), on average, fell within (.925, .975). It is noteworthy that GM, 
range (.937, .967), mean = median = .950; HC3, range (.930, .960), mean = .944, median 
= .943; HC4, range (.937, .965), mean = .949, median = .948; and W-B, range (.932, .960), 
mean = .947, median = .949, resulted in coverage probabilities much closer to the true 
value of .950. The widths ranged from .421 to 2.366 with mean = 1.219 and median = 
1.126. Six robust methods, LMS-B, LTS-B, S1S, MM-B, S, and ROB, led to over-coverage 
probabilities, range (.954, .997), mean = median = .977. Of the 36 conditions, 16 (or 
44.4%), on average, fell within (.925, .975). The widths ranged from .399 to 1.449 with 
mean = .864 and median = .815. Three robust methods (lsfitci, LTS, and M) resulted in 
under-coverage probabilities, range (.394, .905), mean = .602, median = .489. Of the 36 
conditions, 0 fell within (.925, .975). The widths ranged from .142 to 1.586 with mean = 
.576 and median = .299.

Summary of the Findings
Tables 44 and 45 present the mean, median, and range of the biases, RMSEs, Type 1 error 
rates, power rates, coverage probabilities and widths of the CIs for each of the six distri­
butions of errors with the factors of the sample size and slope being aggregated. When 
all those criteria are considered, some important patterns of results are observed. First, 
OLS could produce, on average, a good point estimate of the slope value (as evidenced by 
the mean and median of bias and RMSE), but the range of those point estimates becomes 
much larger with MN, SH, AL, AH, and HE, as compared with other robust methods. 
OLS has a good protection of the Type 1 error for N, MN, SH, AL, and AH, but it leads 
to a very large Type 1 error for HE (mean = median = .378). The associated power rates 
are large for N (mean = .882, median = .949), but they drop substantially for MN, SH, 
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AL, AH, and HE, as shown by the noticeably wider widths of the OLS CIs. Hence, even 
though OLS has both good protected Type I error rates and coverage probabilities of the 
true parameter value for N, MN, SH, AL, and AH, the precision of the point estimates is 
compromised and the widths of the CIs are too wide, leading to a noticeable decline in 
the observed power rates in potentially detecting any significant slope estimates, when 
they are indeed different from zero in the population. It is also noteworthy that OLS 
performed poorly for HE.

Second, HC3, HC4, and W-B appear to offer good adjustment when errors are HE. In 
particular, the means (or medians) of the Type I error rates were .056, .051, .055 (or .060, 
.054, and .053) for HC3, HC4, and W-B respectively. The coverage probabilities were also 
improved: the means (or medians) were .944, .949, and .947 (or .943, .948, and .949) for 
HC3, HC4, and W-B, respectively. On the other hand, HC3, HC4, and W-B still have the 
same limitation as in the conventional OLS-based CIs, meaning that the power rates were 
small, and the widths of the CIs were wide for MN, SH, AL, and AH. Hence, HC3, HC4, 
and W-B could potentially solve the issue of the Type I error and coverage of the true 
parameter for HE, but they may not be the most appropriate approach to use in practice 
when errors are non-normal (MN, SH, AL, AH, and HE).

Third, of the remaining robust methods, only M, GM, MM, MM-B, and ROB could be 
considered for MN, SH, AL, and AH, and only GM, E, and QUA could be considered for 
HE because of their superiority of the coverage probabilities that span the true parameter 
slope values. Comparatively, MM produced Type I error rates slightly larger than the 
criterion of .05, and it also consistently led to “no solution” for HE. Hence, it is not 
the most appropriate approach in practice. MM-B, a modified approach based on MM, 
seemed to overcome the no-solution issue with MM for HE, but its Type I error rates 
seem to fall in the conservative side of .05 (e.g., mean = .032, median = .031 for HE). 
ROB’s performance is also similar to MM-B’s performance, meaning that ROB behaved 
appropriately for N, MN, SH, AL, and AH, except for more conservative Type 1 error 
rates (mean = median = .028) for HE. Conversely, QUA seems to have good, protected 
Type 1 error rates for HE (mean = .047, median = .046), but they became noticeably 
smaller (or more conservative) for N, MN, SH, AL, and AH. E consistently produced 
smaller Type I error rates for all the six error conditions.

In sum, GM seems to have the best all-round performance. The Type 1 error rates 
remain slightly conservative for N, MN, SH, AL, and AH (means = .043, .042, .042, .040, 
and .041; medians = .043, .043, .041, .039, and .040, respectively) The power rates are 
reasonable and comparable to those obtained by M, MM, MM-B, and ROB for MN, SH, 
AL, and AH. When errors are HE, the Type 1 error rates are still appropriate (mean = 
.048, median = .047), and the power rates are desirable (mean = .625, median = .586) and 
comparable to those obtained by other robust methods.
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Discussion
OLS regression is a widely employed statistical method in psychology (Anderson & 
Schumacker, 2003; Erceg-Hurn & Mirosevich, 2008; Haupt et al., 2014). However, its 
efficiency is often distorted in practice due to violated assumptions and the presence of 
outliers (Erceg-Hurn & Mirosevich, 2008; Micceri, 1989; Wilcox, 1998). When researchers 
have outliers in their data, robust regression may be a valuable alternative to handle out­
liers without causing other potential problems caused by other methods (e.g., changing 
the original construct or distribution). However, due to the existence of several types of 
robust regression estimators, which have their own strengths and weaknesses, it may 
be confusing and challenging for researchers to choose which robust regression method 
is appropriate for their research—without a clear guideline based on empirical evidence 
from a simulation study.

Implications of the Findings
The primary purpose of this study was to provide applied researchers with empirical evi­
dence and guidelines to select more appropriate regression methods by comparing OLS 
and robust regression under different conditions. This simulation study suggests that 
when the normality assumption is met, OLS regression outperforms robust regression 
methods in terms of bias, RMSE, Type 1 error, power, coverage probabilities and confi­
dence width of the CIs. This is because OLS regression achieves maximum efficiency 
when the normality assumption is met (Andersen, 2008; Field & Wilcox, 2017). Consis­
tent with previous research (Andersen, 2008; Anderson & Schumacker, 2003; Mercer et 
al., 2015), the current results show that when the sample size per independent variable 
is large (n = 100), robust regression methods are quite comparable to OLS regression. 
That is, as the sample size increases, the efficiency of robust regression methods also 
increases, thereby paralleling the OLS regression method. Therefore, with sufficiently 
large samples, robust regression methods may be an appropriate alternative.

These research findings concur with those of other researchers (Andersen, 2008; 
Anderson & Schumacker, 2003; Brossart et al., 2011; Finger, 2010; Mercer et al., 2015; 
Sauvageau & Kumral, 2015; Yellowlees et al., 2016), and indicate that robust regression 
methods, in general, are better options than OLS regression when the normality and 
homoscedastic assumptions are violated. More specifically, when errors were non-normal 
(MN, SH, AL, AH, HE), HC3 and HC4 provide good adjustment for HE, but the associated 
power rates are still noticeably small and the widths of the CIs are wide, leading to a 
subpar approach in practice. Comparatively, GM is the most all-around and appropriate 
method in terms of the Type I error, power, coverage probability, width of the CI, as 
well as the precision of the point estimates. There are alternative robust methods which 
researchers could consider if they know that the errors are either with long tails (i.e., 
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MM-B and ROB for MN, SH, AL, and AH) or heteroscedastic (QUA), if they would like to 
have slightly higher power with reasonably protected Type 1 error rates.

In addition to reporting the slope estimates, researchers often report and interpret the 
associated standard error and p-value to evaluate the sampling error or precision of the 
estimates. According to Wilcox and Keselman (2004), heteroscedasticity does not impact 
the slope but the standard error, which, in turn, influences the p-value. These findings 
provide empirical evidence that concurs with Wilcox and Keselman’s explanation of het­
eroscedasticity. Therefore, although all regression methods perform well in terms of bias, 
only GM handles the Type 1 error rate effectively with desirable coverage probability of 
the CI. Therefore, GM seems to be an appropriate option for researchers to deal with 
heteroscedasticity.

Limitation and Future Directions
Although the results of this study provide a valuable guideline for future research 
regarding the use of appropriate robust regression methods, researchers need to consider 
the limitations of this study. First, although the Monte Carlo simulation tool allowed 
us to compare OLS and different types of robust regression methods under a variety of 
conditions, the findings were based on the simulated data. Therefore, like all other Monte 
Carlo simulation studies, the degree to which the findings may generalize to real data 
is uncertain and needs further examination. On the other hand, by including a variety 
of sample sizes, slopes, and error distribution conditions, based on previous studies, the 
research findings may serve as a guideline for future researchers when they select an 
appropriate robust regression method for their research. Future research may explore 
additional manipulated factors, such as larger sample size per predictor (n > 100) and 
other types of non-normal distributions; it could also compare OLS and robust regression 
methods based on real-world data in published studies. Second, this study shows that, 
broadly speaking, the GM estimation seems to perform appropriately across all the 
simulated conditions. Indeed, other studies (e.g., Wilcox, 2022) illustrated that it is overly 
simplistic for researchers to suggest one single estimator that is robust to all different 
levels or patterns of heteroscedasticity. Additional research is needed to further examine 
the details regarding the performance of various robust estimators under different levels 
and patterns of heteroscedasticity.

Conclusion
Due to the accessibility and advancement of computing power and the existence of free 
statistical software R and packages, researchers are readily able to conduct research 
using robust regression. When researchers suspect outliers in their data, but don’t know 
the exact source, robust regression methods may be a valuable option to consider when 
addressing the specific outliers in their analysis. Based on the current research findings, 
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researchers may be able to deal with outliers in their data efficiently using robust 
regression methods, especially if they use the GM-estimator. With sufficiently large 
sample sizes (n = 100), robust regression methods could be used by default instead of 
OLS regression without worrying about whether the error scores meet or violate the 
normality assumption. On the other hand, when the normality and homoscedasticity 
assumptions are met, OLS is found to offer small advantage in terms of slightly improved 
power, more precise width of the CIs, and protected Type I error as compared with other 
robust methods.
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