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Abstract
This article demonstrates how to perform univariate repeated measures ANOVA (U-RM-ANOVA) 
as a special case of structural equation models (SEMs). In the literature, sphericity is usually 
defined in terms of variances of pairwise differences of within-subject conditions. This article 
illustrates the original definition by Huynh and Feldt (1970) in terms of (co)variances of contrasts 
using SEM and demonstrates how to impose, test, and relax sphericity, and how to test main/
interaction effects with and without the assumption of sphericity in SEM. We perform two 
simulation studies. The first study compares Mauchly’s sphericity test with an SEM based test and 
shows that the two approaches have a very similar Type 1 error and power. The second study 
compares U-RM-ANOVA with SEM for different degrees of departure from sphericity and shows 
that U-RM-ANOVA and SEM have similar statistical properties in terms of Type 1 error, power, as 
well as similar bias and efficiency of effect size estimates of main and interaction effects. We 
furthermore show how to implement sphericity in latent variable models and provide software to 
perform the proposed tests and analyses.
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Over the past 30 years, structural equation models (SEMs) have become common for 
analyzing longitudinal data. For instance, growth curve models or latent change models 
are prominent examples and are special cases of SEMs (for more examples, see e.g., 
Newsom, 2015). However, less is known regarding the direct connection between SEMs 
and univariate repeated measures ANOVA (U-RM-ANOVA). More specifically, even 
though it is well known that both regression and ANOVA are special cases of SEM, 
to our knowledge, there is no documented approach on how to test main and interaction 
effects commonly implemented in U-RM-ANOVA using SEM. Although the connection 
between U-RM-ANOVA and SEM may seem trivial, there are at least three challenges 
that quickly become apparent while attempting to identify that connection. First, it is 
not obvious how to; (1) impose or test sphericity in SEM, (2) test the main/interaction 
effects of U-RM-ANOVA (e.g., test the main/interaction effects of, say, a 2 × 3 fully within 
subjects repeated measures design), and (3) impose sphericity on latent variables (i.e., 
perform the U-RM-ANOVA using latent rather than manifest variables). This article tack
les these challenges by identifying and demonstrating how to perform each in SEM, and 
thereby builds on the expansive range of literature on methods for analyzing repeated 
measures using SEM (e.g., growth curve models, McArdle, 1988; McArdle & Epstein, 
1987; Meredith, 1993; latent change models, McArdle, 2009; McArdle & Hamagami, 2001; 
Raykov, 1999; Steyer et al., 1997; for an overview, see Newsom, 2015).

Furthermore, there are at least four benefits to formally identifying the connection 
between U-RM-ANOVA and SEM. First, sphericity is often a difficult concept for re
searchers to grasp, and has a colloquial definition based on the variances of differences 
between all possible pairs of within-subject conditions (e.g., Field, 1998; Field et al., 
2012; Lane, 2016; Nimon, 2012) that only holds in designs with one factor. In contrast, 
this article demonstrates how sphericity may be specified in SEM, which may help 
researchers understand its meaning. Second, researchers may also test and/or relax the 
assumptions of sphericity in SEM (without having to use post-hoc adjustments that are 
common to U-RM-ANOVA; e.g., Greenhouse-Geisser (Greenhouse & Geisser, 1959) and 
Huynh-Feldt (Huynh & Feldt, 1970) adjustments. Third, once in the SEM framework, 
researchers may capitalize on the other benefits of SEM, such as built-in approaches to 
handle both missing data and adjustments for non-normality (see the Conclusions and 
Future Directions section for further detail). Fourth, and which will be demonstrated in 
the article, the SEM framework allows for measurement models, which researchers may 
want to use in cases wherein manifest variables likely contain measurement error.

Although the analysis of repeated measures via SEM is not new, virtually all of 
the literature describes analyses in terms of models for repeated measures across time 
(e.g., growth curves, McArdle, 1988; McArdle & Epstein, 1987; Meredith, 1993; latent 
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change models, McArdle, 2009; McArdle & Hamagami, 2001; Raykov, 1999; Steyer et 
al., 1997). These analyses are vitally important, but they do not apply to all empirical 
investigations. For example, many experimental psychologists aim to examine repeated 
measures across treatment or other experimental conditions, and the repeated measures 
do not follow a function of time (as assumed in growth curves and latent change models). 
Hence, this article builds the SEM literature for repeated measures by reconsidering 
how U-RM-ANOVA (which is not constrained to a specific ordering of time) can be 
implemented in SEM.

We limit the scope of this article in two ways. First, the article only considers within-
subjects designs in order to focus on the sphericity considerations that underlie U-RM-
ANOVA, and because mixed designs have been described elsewhere (see Langenberg et 
al., 2020). Yet, for interested readers, the discussion section briefly characterizes how to 
include between-subjects factors, and points to other articles that describe this topic in 
greater detail. Second, because there is extensive literature on these topics, this article 
assumes that readers have knowledge of the identification of latent variables in the SEM 
framework, and considerations of measurement invariance to compare means of latent 
variables across repeated measures. Relevant citations are provided (e.g., Newsom, 2015; 
Pitts et al., 1996; Widaman et al., 2010).

The remainder of this article includes: (1) a guiding empirical example, (2) a review 
of orthogonal contrasts (which will be central to testing both sphericity and main/inter
action effects in SEM), (3) a review of sphericity, (4) how to impose, test, and relax 
sphericity in SEM, (5) a simulation study that compares Mauchly’s sphericity test to 
SEM, (6) how to test main/interaction effects of U-RM-ANOVA in SEM (including how 
to reproduce F-values from U-RM-ANOVA in SEM), (7) a simulation study that compares 
RM-ANOVA to SEM with and without assuming sphericity, (8) an extension of SEMs 
that include measurement models, and (9) some conclusions and future directions. By 
the article’s close, readers will have a clear understanding of sphericity, how it may be 
imposed in SEM, and how to test the hypotheses of U-RM-ANOVA in SEM.

Guiding Empirical Example
Here we describe an empirical example to guide readers through the remainder of 
the article. The example stems from a study aimed to investigate the development of 
different processes involved in reading; including both the necessary motor skills for 
fixating on a sentence, and the cognitive skills to process the sentence. A total of N = 268 
children were asked to read a set of sentences during Grades One, Two, and Four (each 
child completed three repeated measures, N = 169 children had complete data). Among 
other variables, the researchers measured mean gaze and mean total viewing duration. 
The variables were log-transformed and standardized.
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The comparison (i.e., control) condition used “Landolt sentences” (e.g., Heim et al., 
2018; Hillen et al., 2013), which simply replace each character of a regular sentence with 
a circle. The difference in mean gaze and mean total viewing duration across regular and 
Landolt sentences measures processing time (i.e., processing time for a regular sentence 
includes time for both sentence fixation and processing; whereas processing time for 
Landolt sentences only includes time for sentence fixation).

The experimental design conforms to a 2 × 3 repeated measures design, with sentence 
type (Factor A: A1 = real sentences; A2 = Landolt sentences) and grades (Factor B: B1 
= Grade One; B2 = Grade Two; B3 = Grade Four) as within-subject factors. Figure 1 
displays mean gaze duration (solid line) and the mean total viewing duration (dashed 
line) for the two sentence types across the three measurement occasions. In the next 
section, we only focus on the dependent variable mean gaze duration. The section 
Testing Main and Interaction Effects of U-RM-ANOVA Using L-RM-ANOVA uses both 
dependent variables as indicators of a common latent variable in a measurement model.

Figure 1

Standardized Mean Gaze Duration and Mean Total Viewing Duration for the Two Sentence Types

Note. The solid line indicates standardized mean gaze duration; the dashed line indicates mean total vfiewing 
duration for the two sentence types (left panel: regular sentences; right panel: Landolt sentences) across the 
three measurement occasions. Error bars indicate standard errors.

Review of Orthogonal Contrast Matrices
A matrix of orthogonal contrasts will need to be included in SEM to test both the as
sumption of sphericity, and the main/interaction effects. This section reviews orthogonal 
contrast matrices in preparation for their inclusion in SEM later in this article.
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For R repeated measures (in the empirical example, R = 6) a set of R − 1 orthogonal 
contrasts may be constructed to test the main and interaction effects of U-RM-ANOVA, 
and are usually organized into an (R − 1) × R matrix. For example, if the data from 
the empirical example are organized into an R dimensional column vector, denoted y, 
whose elements conform to the order {A1B1, A1B2, A1B3, A2B1, A2B2, A2B3}, then the 
following orthogonal contrast matrix, C, can be defined as

C =

−0.4082 −0.4082 −0.4082 0.4082 0.4082 0.4082
−0.5000 0.0000 0.5000 −0.5000 0.0000 0.5000

0.2887 −0.5774 0.2887 0.2887 −0.5774 0.2887
0.5000 0.0000 −0.5000 −0.5000 0.0000 0.5000

−0.2887 0.5774 −0.2887 0.2887 0.5774 0.2887

(1)

wherein the first, second/third, and fourth/fifth rows respectively enable tests for the 
main effect of A, main effect of B, and the interaction. In particular, multiplying y by C, 
such that

π = Cy (2)

creates an R − 1 dimensional column vector (i.e., π) of contrast variables; and if the null 
hypothesis for the main effect of A, the main effect of B, or the interaction effect is true, 
then we would respectively expect the means of the first, second/third, or fourth/fifth 
elements of π to equal zero. Stated differently, if five means of π are respectively labeled 
μπ1 through μπ5, then the null hypothesis for the main effect of A prescribes μπ1 = 0; the 
null hypothesis for the main effect of B prescribes that both μπ2 = 0 and μπ3 = 0; and 
the null hypotheses for the interaction prescribes that both μπ4 = 0 and μπ5 = 0. All that 
remains is implementing a method (e.g., calculating p-values) to test whether the sample 
contrast means significantly differ from zero.

There are two necessary criteria for C to be termed an orthogonal contrast matrix. 
First, the rows must sum to zero. Second, the rows (but not the columns) must be 
independent from one another (i.e., CCT equals a (R − 1) × (R − 1) diagonal matrix, with 
zeros in the off-diagonal). The construction of orthogonal contrast matrices for repeated 
measures designs can be complex (especially for designs with two or more factors). 
Hence, we encourage readers to use statistical software, such as R (R Core Team, 2021) 
to construct an orthogonal contrast matrix based on a specific design (see Appendix A 
for R code on how to construct orthogonal contrast matrices; or see UCLA Statistical 
Consulting Group, 2011 for an overview of different types of orthogonal contrast matri
ces, along with code to produce those matrices),

A specific type of orthogonal contrast matrix, termed an orthonormal contrast matrix, 
is of special interest in the context of U-RM-ANOVA. Orthonormal contrast matrices 
are orthogonal contrast matrices (i.e., orthonormal matrices satisfy the two criteria of 
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orthogonal matrices), whose sum of squared row elements equals 1 (i.e., after squaring 
each value in the matrix, the sum across each row equals 1). Consequently, the C 
matrix defined in Equation 1 is an orthonormal contrast matrix. The small benefit of the 
orthonormal matrix (which will be demonstrated later in this article) is that the sums of 
squares, mean squares, and F-values of U-RM-ANOVA may be exactly replicated in SEM 
with the use of an orthonormal contrast matrix (as opposed to an orthogonal contrast 
matrix, which only directly reproduces F-values, see Voelkle, 2007). As an aside, we note 
that if some contrast matrix C is orthogonal but not orthonormal, then the rows of C 
may be scaled to make a new orthonormal matrix (this may be useful for readers using 
statistical software that can produce orthogonal contrasts, but not orthonormal contrasts, 
e.g., we rescaled an orthogonal contrast matrix produced by the statistical software R 
to obtain C in Equation 1). Appendix B demonstrates how to rescale the rows of an 
orthogonal matrix to create an orthonormal matrix.

Taken together, this section alludes to how an orthogonal contrast matrix may be 
used to evaluate the null hypotheses of main and interaction effects from U-RM-ANOVA 
(i.e., by forming, and testing whether specific means of π significantly differ from zero). 
Later in this article we will use this information to estimate π from y in SEM, and use the 
tools of SEM to perform the significance tests that reflect main and interaction effects.

Review of Sphericity
Univariate repeated measures ANOVA assumes that the variance covariance matrix of 
repeated measures conforms to a specific pattern, commonly referred to as “sphericity” 
or a “spherical matrix”. Therefore, using SEM to test main and interaction effects in 
the same manner as U-RM-ANOVA requires sphericity to be imposed in SEM, and this 
section reviews the definition of sphericity in preparation for its inclusion in SEM.

Importantly, the colloquial definitions of sphericity provided in applied statistics text
books for psychology researchers are often simplifications that do not readily generalize 
to U-RM-ANOVA designs with two or more within subjects factors. In response, we 
review the colloquial definitions, describe their potential for misunderstanding, describe 
the actual definition as originally provided in the statistics literature (Huynh & Feldt, 
1970, p. 1587, Theorem 3), and clarify that definition for U-RM-ANOVA designs with 
more than one within-subjects factor.

Colloquial Definition of Sphericity
In the psychology literature, the colloquial definition of sphericity states that the varian
ces of all pairwise differences between repeated measures are equal (see for example, 
Field, 1998; Field et al., 2012, pp. 550–552; Lane, 2016; Nimon, 2012). For example, in 
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a one-way U-RM-ANOVA with three levels (i.e., A1, A2, and A3; not the same as this 
article’s guiding empirical example), the common definition of sphericity prescribes

σYA1 − YA2
2 = σYA1 − YA3

2 = σYA2 − YA3.2
(3)

The colloquial definition is sufficient for sphericity for designs with one within-subjects 
factor, but does not clearly generalize to designs with more than one within-subjects 
factor.

For example, researchers may infer that sphericity for the 2 × 3 design from the 
empirical example implies that the 13 unique pairwise differences across the 6 repeated 
measures must have equal variances, such that

σYA1B1 − YA1B2
2 = σYA1B1 − YA1B3

2 = σYA1B1 − YA2B1
2 = ⋯ = σYA2B2 − YA1B3

2 = ⋯ = σYA2B2 − YA2B3.2
(4)

Unfortunately, this constraint is neither required nor implied by sphericity.
A second confusing aspect of the colloquial definition of sphericity concerns the 

separate tests of sphericity provided by statistical software for each main or interaction 
effect (i.e., each main and interaction effect receive their own test of sphericity unless 
the effect has one degree of freedom; see the section Sphericity for Main and Interaction 
Effects of U-RM-ANOVA for details). In particular, if the colloquial definition of spheric
ity were true, then only one test should be needed regardless of the within-subjects 
design (i.e., the definition refers to pairwise differences rather than main/interaction 
effects). Therefore, the outputs from statistical software implementing U-RM-ANOVA do 
not corroborate the colloquial definition.

We want to briefly mention that, in fact, an omnibus test can be constructed to test 
for sphericity in multiple effects simultaneously. This omnibus test can decrease the Type 
I error rate of incorrectly rejecting the assumption that sphericity holds. This test will be 
described in the section Testing Sphericity Using L-RM-ANOVA.

Separate from the colloquial definition, psychology texts often describe compound 
symmetry as a special case of sphericity, and then describe assumptions in terms of 
compound symmetry (Field, 1998; Haverkamp & Beauducel, 2017; Maxwell & Delaney, 
2004). Even though these texts do not claim equality across compound symmetry and 
sphericity, the compound symmetry simplification also does not easily generalize to 
higher-order within-subjects designs.

Original Definition of Sphericity
Huynh and Feldt (1970, p. 1587, Theorem 3) provide the original definition of sphericity . 
In general (i.e., not specific to the guiding empirical example), a P × P matrix Σ (e.g., a 
variance covariance matrix), conforms to sphericity if, and only if,
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CΣCT = σ2I (5)

wherein C is a (P − 1) × P orthogonal contrast matrix, σ2 is some positive constant, 
and I is a (P − 1) × (P − 1) identity matrix. Therefore, a given matrix (e.g., Σ) adheres 
to sphericity if (after pre- and post-multiplying by an orthogonal contrast matrix), the 
diagonal elements are equal and the off-diagonal elements are zero.

However, the definition of sphericity requires more specificity for higher-order U-
RM-ANOVAs (i.e., Huynh & Feldt, 1970, definition was for a single repeated measures 
factor, not for within-subjects designs with more than one repeated measures factor). 
Similarly, multivariate statistics textbooks describing U-RM-ANOVA often provide the 
original definition by Huynh and Feldt (1970), without explaining how to extend the 
definition to obtain separate tests for each main/interaction effect (for example, see 
Stevens, 2002, p. 421). Hence, we explain the original (1970) definition using the variance 
covariance matrix of the contrast data (i.e., Vπ) from the empirical example to show how 
to generalize the definition to multi-factorial designs.

Sphericity for Main and Interaction Effects of U-RM-ANOVA
Following the empirical example, let Vy refer to the R × R variance covariance matrix of 
y, and Vπ refer to the (R − 1) × (R − 1) variance covariance matrix of π. Then, adhering to 
the definitions for C given in Equation 1, it follows that

Vπ = CVyCT (6)

and sphericity for each main/interaction effect will correspond to specific constraints 
within Vπ. In particular, for a given main or interaction effect, sphericity will hold if 
both (1) the variances in Vπ created from the effect’s contrasts are all equal, and (2) 
the covariances in Vπ created from the effect’s contrasts are all zero. To clarify that 
definition, we explicitly define Vπ from the empirical example as

Vπ =

σπ1
2 σπ1π2 σπ1π3 σπ1π4 σπ1π5

σπ1π2 σπ2
2 σπ2π3 σπ2π4 σπ2π5

σπ1π3 σπ2π3 σπ3
2 σπ3π4 σπ3π5

σπ1π4 σπ2π4 σπ3π4 σπ4
2 σπ4π5

σπ1π5 σπ2π5 σπ3π5 σπ4π5 σπ5
2

(7)

and note that the variances and covariances in Vπ that respectively reflect the main effect 
of A, the main effect of B, and the interaction are {σπ1

2 }, {σπ2
2 , σπ3

2 , σπ2π3}, and {σπ4
2 , σπ5

2 , σπ4π5}. 
Then, sphericity holds for the main effect of B if both σπ2

2 = σπ3
2  and σπ2π3 = 0, regardless 

of the remaining elements in Vπ; sphericity holds for the interaction if both σπ4
2 = σπ5

2  and 
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σπ4π5 = 0, regardless of the remaining elements in Vπ; and sphericity is not relevant for 
the main effect of A because there is only one variance and no covariances (i.e., at least 
two variances are needed to form an equality constraint between them, and at least one 
covariance is needed to be set equal to zero).

Thus, the general definition for sphericity in U-RM-ANOVA refers to Vπ (as opposed 
to variances of all pairwise differences). Once the set of orthogonal contrasts for the 
main/interaction effects of a specific U-RM-ANOVA design are identified and organized 
into an (R − 1) × R matrix C, sphericity holds for each effects if, and only if, the variances 
in Vπ that reflect the effect are equal, and the covariances in Vπ that reflect the effect 
equal zero.

Testing Sphericity, Main Effects, and Interaction 
Effects in SEM

In the following sub-sections, we demonstrate how to test sphericity as well as main 
and interaction effects with and without assuming sphericity. We use the open-source 
R package lavaan (Rosseel, 2012) to estimate the models. We furthermore provide the 
open-source R package semnova (Langenberg & Mayer, 2020) which is an interface to 
lavaan and includes user-friendly functions to perform the proposed tests.1

Latent Repeated Measures ANOVA (L-RM-ANOVA)
The SEM framework can be used to test sphericity because SEMs can (1) estimate Vπ
from Vy, (2) place constraints on the estimated elements in Vπ that conform to sphericity, 
and (3) perform likelihood ratio tests to quantify statistical significance (analogous to 
Mauchly’s test). This section characterizes estimation of Vπ from Vy (because the latter 
two points are commonplace), as a special case of latent repeated measures analysis of 
variance (L-RM-ANOVA, Langenberg et al., 2020; an extension of the growth components 
approach given by Mayer et al., 2012). L-RM-ANOVA estimates individual contrasts (i.e., 
π) as a set of latent variables in SEM. Stated differently, L-RM-ANOVA identifies how to 
rewrite Equation 2 as an SEM.

To clarify, recall that the SEM measurement model for P manifest variables and Q 
latent variables may be written as

y = ν + Λη + ε (8)

wherein y is P dimensional vector of manifest variables, ν is a P dimensional column 
vector of manifest intercepts, Λ is a P × Q factor loading matrix, η is a Q dimensional 

1) The complete code for our examples can be found in the Supplementary Materials section.
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column vector of latent variables; and ε is P dimensional column vector of residuals. 
L-RM-ANOVA rewrites Equation 2 as a special case of Equation 8, wherein π will be 
estimated as the set of latent variables.

In particular, L-RM-ANOVA sets P = Q, ν = 0, and ε = 0 (i.e., there are as many latent 
variables as manifest variables, and the latent variables fully account for the means, 
variances, and covariances of the manifest variables), such that

y = Λη. (9)

Equation 9 is similar to Equation 2 (i.e., π = Cy), when conceptualizing π as a set of 
latent variables (i.e., π = η), and C as a matrix of loadings (C=Λ). Conceptually, multiply
ing both sides of Equation 2 by the inverse of C should yield an identical form as the 
SEM measurement model in Equation 9 (i.e., y = C−1π). However, C cannot be inverted 
because it is a not a square matrix (currently R × (R − 1)). L-RM-ANOVA augments C by 
concatenating a row that contains the constant 1/ R to the top of the matrix; creating an 
invertible matrix C∗ that maintains orthogonality. Following the guiding example,

C∗ =

0.4082 0.4082 0.4082 0.4082 0.4082 0.4082
−0.4082 −0.4082 −0.4082 0.4082 0.4082 0.4082
−0.5000 0.0000 0.5000 −0.5000 0.0000 0.5000

0.2887 −0.5774 0.2887 0.2887 −0.5774 0.2887
0.5000 0.0000 −0.5000 −0.5000 0.0000 0.5000

−0.2887 0.5774 −0.2887 0.2887 0.5774 0.2887

. (10)

In general, the concatenated row can be any vector that is pairwise linearly independent 
to the other rows. However, the way we chose the this row, it can be interpreted as an 
intercept that contributes to each of the manifest variables. The mean of this contrast 
equals the mean across all of the dependent variables multiplied by the constant R/ R. 
Replacing C with C∗ into Equation 2 and solving for y yields

y = C∗−1π (11)

which follows the structure of the SEM measurement model in Equation 9. Equation 11 
demonstrates how L-RM-ANOVA identifies latent contrasts: augmenting the orthogonal 
contrast matrix C to create C∗, and using the inverted version of C∗ as a factor loading 
matrix in SEM. Estimating Equation 11 as an SEM estimates Vπ, because the means, var
iances, and covariances of latent variables may be freely estimated. Figure 2 depicts the 
model prescribed in Equation 11 as applied to the guiding example. Rectangles represent 
the manifest variables y and the circles represent the latent contrast variables π. The 
weights of the arrows going from π to y can be found in the C∗−1

 matrix. Importantly, the 
manifest intercepts and residual variances are forced to equal zero; the means/intercepts, 
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variances, and covariances of π are freely estimated; and an additional latent variable 
(i.e., π0) emerges because C∗ contains an extra row relative to C (i.e., the intercept). The 
latent variables π1–π5 have an identical interpretation as their original interpretation 
in the section Review of Orthogonal Contrast Matrices, and the new latent variable π0
indicates a mean across the R repeated measures. Next, this article demonstrates how to 
test sphericity using L-RM-ANOVA in the SEM framework.

Figure 2

Path Diagram of the SEM Implementing a 2 × 3 (Sentence Type × Grade) Repeated Measures Design Using an 
Orthonormal Contrast Matrix

Note. Rectangles represent the manifest variables y and the circles represent the latent contrast variables π. The 
weights of the arrows going from π to y can be found in the C∗−1

 matrix. Intercepts and residual (co)variances 
of the manifest variables y are set to zero. Intercepts and (co)variances of the contrast variables π are freely 
estimated.

Testing Sphericity Using L-RM-ANOVA
Sphericity for a given main/interaction effect may be tested by performing a χ2-differ
ence test across a model that assumes sphericity for the effect versus a model that does 
not. Following the guiding example, sphericity for the main effect of B and the interac
tion may be tested (sphericity is not relevant for the main effect of A because it only 
has one degree of freedom; see the section Sphericity for Main and Interaction Effects 
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of U-RM-ANOVA). Sphericity for the main effect of B prescribes that both σπ2
2 = σπ3

2  and 
σπ2, π3 = 0; whereas sphericity for the interaction effect prescribes σπ4

2 = σπ5
2 , and σπ4, π5 = 0

(see the section Sphericity for Main and Interaction Effects of U-RM-ANOVA for details). 
The constrained covariance matrices VπB and VπA×B are given by:

VπB =

π0 π1 π2 π3 π4 π5
π0

π1

π2

π3

π4

π5

σB2 0
0 σB2

, VπA×B =

π0 π1 π2 π3 π4 π5
π0

π1

π2

π3

π4

π5

σA×B2 0
0 σA×B2

(12)

where σB2  is the equal variance across π2 and π3, and σA×B2  is the equal variance across 
π4 and π5, and omitted cells are freely estimated. In SEM, models with these constraints 
will be compared against models that do not place any constraints at all. Table 1 presents 
the results of both Mauchly’s test of sphericity and the L-RM-ANOVA based χ2-difference 
tests. The results are virtually identical across the two approaches; providing evidence 
that sphericity does not hold for either effect.

Table 1

Mauchly’s Test and χ2-Difference Test for Sphericity

Mauchly’s Test χ2-Difference Test

Effect χ2 df p Δχ2 df p

B 69.81 2 <.001 70.65 2 <.001

A × B 72.41 2 <.001 73.28 2 <.001

B + A × B 112.51 4 <.001

As mentioned earlier, it is also possible to test both sphericity assumptions simultaneous
ly. That is, we can perform an omnibus test that tests for sphericity of in the effect of B 
and the interaction effect of A and B. This omnibus test can decrease the Type I error 
rate that can arise due to multiple testing. The results for the omnibus test can also be 
found in Table 1.
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Simulation 1: Comparing Mauchly’s Sphericity Test to the SEM 
Based Test
In the previous sections, we revisited the original definition of sphericity and showed 
that SEM can be used to test for sphericity in multi-factorial experimental designs. We 
further compared Mauchly’s Sphericity Test to the SEM based test using an empirical 
example, where both tests showed very similar results. It is, however, important to know 
the statistical properties across different settings, for instance, sample sizes and degrees 
of departure from sphericity. In this section, we will conduct a small-scale simulation 
study to compare both tests. The aim of this study is to guide applied researchers to 
decide in which situation which test is to be preferred.

Method

We generated data for a 2 × 3 repeated measures design following the model in Figure 
2. We investigated Type 1 error and power of Mauchly’s Test and the SEM based 
test to detect departures from sphericity for the main effect of Factor B which has 
three levels (i.e., the effect consists of two contrasts). For the data generation, we 
set the means of all contrasts to zero (μπi = 0) and the variances to one (σπi

2 = 1). We 
manipulated the degree of departure from sphericity in terms of Mauchly’s W, where 
W = 1 indicates no departure and W = 0 indicates the largest possible departure. We 
used four values of W which imply a certain value for the covariances between the 
contrast variables (W = 1 ⇒ σπi, πj = 0, W = 0.8 ⇒ σπi, πj = 0.45, W = 0.6 ⇒ σπi, πj = 0.63, 
W = 0.4 ⇒ σπi, πj = 0.77). All covariances where set to this value, although we would have 
only had to manipulate σπ2, π3 and σπ2, π3 in order to impose different degrees of departure 
from sphericity on the main effect of B and the interaction effect of A and B (i.e., the 
other covariances are not important and manipulating them does not do any harm). The 
four conditions were chosen to cover the full range of possible values of W. We further 
manipulated the sample size (N = 30, 40, 50, 60, 70, 80, 90, 100). The smallest sample 
size was chosen because it is close to N = 27 which is the smallest sample size required 
to estimate the model (i.e., we estimate 6 means, 6 variances, and 15 covariances). The 
larger sample sizes were chosen to give a clear picture when the tests reach a power of 
at least .8. An overview of all conditions is shown in Table 4. We used 1,000 replications 
for each of the aforementioned conditions. The simulation was performed using the 
statistical software R (R Core Team, 2021) in combination with the car package (Fox & 
Weisberg, 2019) for Mauchly’s test and Mplus (L.K. Muthén & Muthén, 2017) for the SEM 
based test. Finally, we chose an alpha level of α = .05 for both tests.

Results and Discussion

The simulation results are shown in Figure 3. The leftmost tile of the figure shows the 
Type 1 error for both tests when sphericity is not violated. Mauchly’s Test as well as the 
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SEM based test show a Type 1 error around the desired 5%. Neither of the tests seem to 
have an overly inflated Type 1 error. The other tiles show the statistical power of both 
tests. We can see that the power increases with increasing sample size and increasing 
departure from sphericity. Both tests show very similar power across all conditions 
suggesting that SEM is a viable alternative to Mauchly’s Test.

Figure 3

Power and Type 1 Error for Mauchly’s Sphericity Test and the SEM Based Test as a Function of Sample Size N and 
Degree of Departure From Sphericity (Mauchly’s W)

Note. The first grayed tile (W = 1) shows the Type 1 error. The other tiles show the power.

Testing Main and Interaction Effects of U-RM-ANOVA Using L-RM-
ANOVA
A given main or interaction effect may be tested by performing a χ2-difference test 
across two models: a constrained model in which the means belonging to a particular ef
fect are fixed to zero (i.e., conforming to the null hypothesis), and a second unconstrain
ed model in which the means are freely estimated (i.e., confirming to the alternative 
hypothesis). But, to adhere to the assumptions of U-RM-ANOVA, both models used in 
χ2-difference test must impose sphericity.

Following the guiding example, the null hypothesis for the main effect of A prescribes 
μπ1 = 0; the null hypothesis for the main effect of B prescribes both μπ2 = 0 and μπ3 = 0; 
and the null hypothesis for interaction effect prescribes both μπ4 = 0 and μπ5 = 0 (see 
the section Review of Orthogonal Contrast Matrices for details). Therefore, testing the 
main effect of A compares a model that constrains μπ1 = 0, versus a model that freely 
estimates μπ1 (without any extra constraints for the sphericity assumption). Testing the 
main effect of B compares a model that constrains μπ2 = 0 and μπ3 = 0, versus a model 
that freely estimates μπ2 and μπ3 (while both models impose sphericity for the main effect 
of B). Testing the interaction effect compares a model that constrains μπ4 = 0 and μπ5 = 0, 
versus a model that freely estimates μπ4 and μπ5 (while both models impose sphericity for 
the interaction effect).
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Table 2 displays the relevant test statistics, and their p-values, for the main and inter
action effects from U-RM-ANOVA and L-RM-ANOVA. Importantly, the product of an 
F-value and its numerator degrees of freedom (i.e., dfnum) is asymptotically equivalent to 
the χ2-difference value from L-RM-ANOVA (i.e., Fvalue × dfnum ≈ χ2 ⇔ Fvalue ≈ χ2/dfnum, 
e.g., Fahrmeir et al., 2013; Kohler, 1982; Lu & Zhang, 2010); and the approximate F-values 
are given from L-RM-ANOVA using that transformation.

Table 2

Results for Main and Interaction Effects

U-RM-ANOVA L-RM-ANOVA Sphericity L-RM-ANOVA

Effect F df1 df2 p pGG pHF Δχ2 df1 ≈ F p Δχ2 df1 ≈ F p

A 371.90 1 167 <.001 196.82 1 196.82 <.001 196.82 1 198.87 <.001
B 733.48 2 334 <.001 <.001 <.001 566.14 2 283.07 <.001 318.45 2 159.22 <.001
A × B 431.78 2 334 <.001 <.001 <.001 429.04 2 214.52 <.001 249.59 2 124.79 <.001

Note. GG = Greenhouse-Geisser corrected p-value. HF = Huynh-Feldt corrected p-value.

The test statistics and p-values differ across U-RM-ANOVA and L-RM-ANOVA (as op
posed to the tests of sphericity from the previous sub-section). The difference across 
the approaches arises because U-RM-ANOVA bases its test statistics (and p-values) 
on F-ratios (and F-distributions), whereas L-RM-ANOVA uses χ2-differences (and com
pares those values to χ2-distributions). Therefore, discrepancies may arise across the 
approaches, even though they are designed to test the same hypotheses.

To narrow the gap, the following sub-section (after the excursus) shows how to 
reproduce both the sums of squares and the F-values from U-RM-ANOVA using the 
parameter estimates of L-RM-ANOVA. Furthermore, p-values from U-RM-ANOVA may 
then be more closely reproduced using L-RM-ANOVA by comparing the reproduced 
F-values to an F distribution.

Excursus: Interpreting Main Effects in the Presence of Interaction Effects

Although not the main focus of this article, we would like to briefly pick up on the 
discussion about interpreting main effects in the presence of interaction effects. We find 
it important to note that point estimates of the main effect of sentence type should be 
interpreted with care. That is, the estimate of the average difference in gaze duration 
between regular and Landolt sentences across grades is the unweighted average of the 
conditional effects of sentence type on gaze duration given different grades. This may 
not be the effect that researchers are interested in. As many researchers have argued in 
the past, the effect of an independent variable (sentence type) on a dependent variable 
(gaze duration) is dependent on the moderator (grade) in the presence of an interaction 
effect (e.g., Aguinis, 2004; Aguinis et al., 2016; Aiken & West, 1991; Busenbark et al., 2021; 
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Cohen et al., 2003). This phenomenon can also be observed in Figure 1. An alternative 
approach may be to express the effect of the sentence type on gaze duration as a 
function of the grade and to look at the conditional effects. This enables us to look at 
the difference between regular and Landolt sentences in different grades separately. Still, 
we believe that aggregated or average effects can add valuable additional information in 
some contexts (see also the discussion in Gräfe et al., 2022).

Calculating Sums of Squares, Mean Squares, and F-Ratios Using L-
RM-ANOVA
As noted earlier in this article (section Review of Orthogonal Contrast Matrices), ortho
normal contrast matrices provide the opportunity to reproduce the sums of squares, 
mean squares, and F-ratios for each effect from U-RM-ANOVA (Voelkle, 2007). This 
sub-section shows how to reproduce each of these components using L-RM-ANOVA, 
and Table 3 shows the estimates across U-RM-ANOVA and L-RM-ANOVA. Importantly, 
all sums of squares, mean squares, and F-ratios are formed from an L-RM-ANOVA that 
both creates latent contrasts using an orthonormal matrix, and imposes sphericity. The 
general formulas to calculate the sums of squares are:

SS = ∑μπi
2 × N (13)

RSS = ∑σπi
2 × N (14)

MS = SS dfnum (15)

MRS = RSS (N − 1) × dfnum (16)

F = MS MSR. (17)

Table 3

Sums of Squares

U-RM-ANOVA L-RM-ANOVA

Effect SS RSS MS MSR F SS RSS MS MSR F
A 184.09 82.67 184.09 0.50 371.90 184.09 82.67 184.09 0.50 371.90

B 210.45 47.92 105.23 0.14 733.48 210.45 47.92 105.23 0.14 733.48

A × B 87.28 33.76 43.64 0.20 431.78 87.28 33.76 43.64 0.20 431.78

The sums of squares for a given effect from U-RM-ANOVA (written as, e.g., SSA, 
SSB, or SSA×B) may be reproduced in L-RM-ANOVA by summing across the squared 
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means of the effect’s latent contrasts, and multiplying the sum by the sample size 
(Equation 13). Following the guiding example, SSA = μπ1

2 × N ; SSB = (μπ2
2 + μπ3

2 ) × N ; and 
SSA×B = (μπ4

2 + μπ5
2 ) × N  (N = 169 in the guiding example).

The residual sums of squares for a given effect from U-RM-ANOVA (written as, e.g., 
RSSA, RSSB, or RSSA×B) may be reproduced in L-RM-ANOVA by summing across the 
variances of the effect’s latent contrasts, and multiplying the sum by the sample size 
(Equation 14). Following the guiding example, RSSA = σπ1

2 × N , RSSB = (σπ2
2 + σπ3

2 ) × N , and 
RSSA×B = (σπ4

2 + σπ5
2 ) × N  (again, N = 169 in the guiding example).

The mean squares for a given effect from U-RM-ANOVA (written as, e.g., MSA, 
MSB, or MSA×B ) may be reproduced in L-RM-ANOVA by dividing the effect’s sums 
of squares by its numerator degrees of freedom (i.e., the number of contrasts that 
underlies the effect, Equation 15), such that MSA = SSA/dfAnum; MSB = SSB/dfBnum; and 
MSA×B = SSA×B/dfA × Bnum. In the guiding example, dfAnum = 1, dfBnum = 2, and dfA × Bnum = 2.

The mean squares of the residuals for a given effect from U-RM-ANOVA (writ
ten as, e.g., MSRA, MSRB, or MSRA×B ) may be reproduced in L-RM-ANOVA by 
dividing each effect’s residual sums of squares by the product of N − 1 and 
the effect’s numerator degrees of freedom (Equation 16). Following the guiding ex
ample, we have MSRA = RSSA/((N − 1) × dfAnum); MSRB = RSSB/((N − 1) × dfBnum); and 
MSRA×B = RSSA×B/((N − 1) × dfA × Bnum).

F-values from U-RM-ANOVA may be reproduced in L-RM-ANOVA by dividing the 
effect’s mean squares by its mean squared residuals (Equation 17). Following the guid
ing example leads to FA = MSA/MSRA, FB = MSB/MSRB, and FA×B = MSA×B/MSRA×B. As 
shown in Table 3, all values are virtually identical across U-RM-ANOVA and L-RM-AN
OVA; and therefore researchers may compute F and p-values that closely match those 
from U-RM-ANOVA using L-RM-ANOVA.

Finally, we would like to note that a major advantage of SEM is that sums of squares 
can also be calculated in the presence of missing values. Parameter estimates can be 
obtained through full information maximum likelihood, which are then used to calculate 
sums of squares as shown above. The above calculations can further be extended to 
mixed within- and between-subjects designs with any number of factors. We refer the 
interested reader to Langenberg et al. (2022), which includes instructions in the appendix 
to calculate F-values and the effect size measure ηp2 for larger within- and between-sub
jects designs.

Testing Main and Interaction Effects Without the Assumption of 
Sphericity Using L-RM-ANOVA
In contrast to U-RM-ANOVA, L-RM-ANOVA may test main/interaction effects without 
the assumption of sphericity. The model comparison procedure described above (i.e., 
χ2-difference tests described in the section Testing Main and Interaction Effects of U-RM-
ANOVA Using L-RM-ANOVA) can relax sphericity by estimating all elements of Vπ in 
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both models (i.e., removing the constraints that describe sphericity). The right part of 
Table 2 provides estimates of main and interaction effects from L-RM-ANOVA when 
estimated without the assumption of sphericity.

Currently, U-RM-ANOVA relies on post-hoc corrections to relax sphericity (e.g., 
Greenhouse-Geisser and Huynh-Feldt corrections), which computationally (and concep
tually) differ from direct estimation of Vπ as performed via L-RM-ANOVA. Table 2 also 
provides p-values associated with these common post-hoc corrections.

Imposing the assumption of sphericity can increase power of hypothesis tests in 
U-RM-ANOVA. This is true for any type of assumption imposed to statistical models 
as fewer parameters need to be estimated if the assumptions is true. However, if the 
assumption, in fact, does not hold, an increased Type I error rate may arise (e.g., 
Haverkamp & Beauducel, 2017).

Simulation 2: Comparing U-RM-ANOVA and L-RM-ANOVA With 
and Without Sphericity
In the previous two sections, we compared hypothesis tests of U-RM-ANOVA and L-RM-
ANOVA with and without the assumption of sphericity. Both approaches yield very 
similar F-values and p-values. It remains to be answered whether any of the approaches 
outperforms the others in terms of statistical properties. For instance, L-RM-ANOVA is 
estimated through maximum likelihood which is known to have and inflated Type 1 
error in small samples (e.g., Green & Babyak, 1997; Hu et al., 1992; Muthén & Kaplan, 
1985; Raykov & Widaman, 1995). U-RM-ANOVA, in contrast, is said to have a power ad
vantage but should also have and inflated Type 1 error when sphericity does not hold. In 
this section, we will examine the statistical properties of the aforementioned approaches 
across several settings. We have two main hypotheses: (1) We expect L-RM-ANOVA to 
have an inflated Type 1 error when testing main and interaction effects in small samples 
as compared to RM-ANOVA because it is estimated through maximum likelihood which 
relies on asymptotic theory, and (2) we also expect the models that assume sphericity to 
have an inflated Type 1 error when testing main and interaction effects and larger bias of 
effect size estimates when sphericity does not hold.

Method

We generated data for a 2 × 3 repeated measures design following the model in Figure 
2. We investigated Type 1 error, power, bias and root mean squared error (RMSE) of 
multivariate repeated measures ANOVA (RM-ANOVA), U-RM-ANOVA (with and without 
Greenhouse-Geisser and Huynh-Feldt corrections), L-RM-ANOVA (with and without 
assuming sphericity) for the test of the main effect of the Factor B which has three 
levels (i.e., the effect consisted of two contrasts). We manipulated the degree of depar
ture from sphericity W (i.e., we again set the variances to one and only manipulated 
the covariances), sample size N, and the effect size ηp2. In particular, we again used 
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four degrees of departure from sphericity (W = 1 ⇒ σπi, πj = 0, W = 0.8 ⇒ σπi, πj = 0.45, 
W = 0.6 ⇒ σπi, πj = 0.63, W = 0.4 ⇒ σπi, πj = 0.77), and eight sample sizes, (N = 30, 40, 
50, 60, 70, 80, 90, 100). We further used four effect sizes (ηp2 = 0, 0.01, 0.06, 0.14). ηp2

is a common effect size measure for repeated measures ANOVA (e.g. Keselman et al., 
1998; Maxwell et al., 2008; Olejnik & Algina, 2000; Perugini et al., 2018; Steiger, 2004), 
where ηp2 = 0 indicates no effect is present and the other three choices represent a small, 
medium, and large effect according to Cohen (1988). We imposed a particular effect size 
by setting the means of the two regarding contrast variables (μπ2 and μπ3) to a certain 
value. Since means, variances and the covariance of the contrast variables contribute to 
the effect size, the two means were chosen in a way that accounted for the degree of 
departure from sphericity (i.e., the two means were different for different Ws even if the 
effect size was the same). An overview of all conditions is shown in Table 4.

Table 4

Conditions Used in the Two Simulation Studies

Conditions Population parameters

Simulation study ηp2 W μπ0, μπ1
a μπ2, μπ3, μπ4, μπ5

b σπi
2 σπi, πj

1, 2 0 0.4 0.00 0.00 1 0.77

1, 2 0 0.6 0.00 0.00 1 0.63

1, 2 0 0.8 0.00 0.00 1 0.45

1, 2 0 1.0 0.00 0.00 1 0

2 0.01 0.4 0.10 0.09 1 0.77

2 0.01 0.6 0.10 0.09 1 0.63

2 0.01 0.8 0.10 0.09 1 0.45

2 0.01 1.0 0.10 0.07 1 0

2 0.06 0.4 0.25 0.24 1 0.77

2 0.06 0.6 0.25 0.23 1 0.63

2 0.06 0.8 0.25 0.21 1 0.45

2 0.06 1.0 0.25 0.18 1 0

2 0.14 0.4 0.40 0.38 1 0.77

2 0.14 0.6 0.40 0.36 1 0.63

2 0.14 0.8 0.40 0.34 1 0.45

2 0.14 1.0 0.40 0.29 1 0

Note. The first simulation study used only the first four conditions. The second simulation study used all 
conditions. We used eight different samples sizes (N = 30, 40, 50, 60, 70, 80, 90, 100) which have been omitted to 
reduce the size of the table.
aMeans of contrast variables that belong to an effect with one degree of freedom (i.e., intercept and main effect 
of A). bMeans of contrast variables that belong to an effect with two degrees of freedom (i.e., main effect of B 
and interaction effect of A and B).
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We used 1,000 replications for each of the aforementioned conditions. The simulation 
was performed using the statistical software R (R Core Team, 2021) in combination with 
the car package (Fox & Weisberg, 2019) for RM-ANOVA and U-RM-ANOVA, and Mplus 
(Muthén & Muthén, 2017) for the SEM based models. Finally, we chose an alpha level of 
α = .05 for all of the performed hypothesis tests.

Results and Discussion

Power — Hypothesis tests were based on an F-test and the sums of squares for RM-AN
OVA models, and based on a likelihood ratio test for SEMs. The Greenhouse-Geisser 
and the Huynh-Feldt corrections showed virtually identical results, which is why we 
will summarize both corrections under U-RM-ANOVA + GG/HF. We thus compared the 
statistical power and Type 1 error of five models, namely L-RM-ANOVA, L-RM-ANOVA 
+ sphericity, RM-ANOVA, U-RM-ANOVA, and U-RM-ANOVA + GG/HF. The results are 
shown in Figure 4, where the first row shows Type 1 error (ηp2 = 0) and the other rows 
show power (ηp2 > 0). As hypothesized, the SEM based models showed a slightly inflated 
Type 1 error of up to 7.3% for the small samle size condition N = 30 and when the 
simulated effect size was zero (as shown in the first row of the figure). The Type 1 error 
was further inflated of up to 8.5% for all models that mistakenly assumed sphericity 
when the assumption did not hold (first row, the three right-hand tiles). The Type 1 
error decreased with increasing sample size for the SEM based models, but seemed 
to be be constant across sample sizes for univariate models that incorrectly assume 
sphericity. Furthermore, power increased with sample size and effect size for all models. 
The multivariate approaches (RM-ANOVA and L-RM-ANOVA) were unaffected from 
departure from sphericity in terms of power. The univariate models (U-RM-ANOVA 
and L-RM-ANOVA + sphericity) showed higher power by up to 15.8% as compared to 
multivariate models, particularly when sphericity was strongly violated W = 0.4 and the 
sample size was small N = 30. We argue that this presumed power “advantage” is bought 
from the inflated Type 1 error and should not be trusted. The corrected univariate model 
(U-RM-ANOVA + GG/HF) also shows a slight power advantage (by 6.3% with W = 0.4 
and N = 30) which we think can be trusted as the model does not show Type 1 error 
inflation.
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Figure 4

Power and Type 1 Error for RM-ANOVA, U-RM-ANOVA, L-RM-ANOVA and L-RM-ANOVA Assuming Sphericity as 
a Function of Effect Size ηp2, Sample Size N, and Degree of Departure From Sphericity (Mauchly’s W)

Note. The first grayed row (ηp2 = 0) shows the Type 1 error. The other rows show the power.

As mentioned in the beginning of the previous paragraph, hypotheses are tested by 
different statistical tests in RM-ANOVA models and SEMs. Those tests can differ in terms 
of power and Type 1 error rate. However, it is also possible to derive the sums of squares 
and an F-test based on the point estimates of means, variances and covariances from SEM 
(see Calculating Sums of Squares, Mean Squares, and F-Ratios Using L-RM-ANOVA). The 
resulting test would have the same statistical properties as the F-test of RM-ANOVA. 
We limited comparison, however, to the classical tests (i.e., F-tests for RM-ANOVA and 
likelihood ratio test for SEM) because they are most common in the two frameworks.

Bias — Relative and absolute bias of the estimated effect size η̂p
2
 was identical across 

the univariate models (L-RM-ANOVA + sphericity and U-RM-ANOVA), and also across 
the multivariate models (L-RM-ANOVA and RM-ANOVA). This pattern is not surprising 
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because exact sums of squares (which effect size estimates rely on) can exactly be 
derived in SEM (see Calculating Sums of Squares, Mean Squares, and F-Ratios Using 
L-RM-ANOVA). The results are shown in Figure 5, where the first row shows the

absolute bias: 1n ∑
i = 1

n ηpi
2 − ηp2

(we cannot divide by ηp2 = 0) and the other rows show the

relative bias: 1n ∑
i = 1

n ηpi
2 − ηp2

ηp2
.

Figure 5

Bias for RM-ANOVA, U-RM-ANOVA, L-RM-ANOVA and L-RM-ANOVA Assuming Sphericity as a Function of Effect 
Size ηp2, Sample Size N, and Degree of Departure From Sphericity (Mauchly’s W)

Note. The first grayed row (ηp2 = 0) shows the absolute bias. The other rows show the relative bias.
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In general, relative and absolute bias decreased with increasing sample size and relative 
bias decreased with effect size. Violations from sphericity did not seem to affect relative 
bias. Univariate models had a smaller bias as compared to multivariate models. As 
apposed to our expectation, departures from sphericity did not seem to affect bias for 
neither the multivariate or the univariate models.

Root Mean Squared Error — As for bias, the relative and absolute RMSE of the 
estimated effect size η̂p

2
 was identical across the univariate models (L-RM-ANOVA + 

sphericity and U-RM-ANOVA), and also across the multivariate models (L-RM-ANOVA 
and RM-ANOVA). The results are shown in Figure 6, where the first row shows the

absolute RMSE:  1
n ∑

i = 1

n (ηpi
2 − ηp2)2

(we cannot divide by ηp2 = 0) and the other rows show the

relative RMSE: 
1
n ∑i = 1

n (ηpi
2 − ηp2)2

ηp2
.

In general, relative and absolute RMSE decreased with increasing sample size and relative 
bias decreased with increasing effect size. Again, univariate models showed a smaller 
RMSE as compared to multivariate models. And also as opposed to our expectation, 
departures from sphericity did not seem to affect the RMSE for neither the multivariate 
or the univariate models.
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Figure 6

Root Mean Squared Error (RMSE) for RM-ANOVA, U-RM-ANOVA, L-RM-ANOVA and L-RM-ANOVA Assuming 
Sphericity as a Function of Effect Size ηp2, Sample Size N, and Degree of Departure From Sphericity (Mauchly’s W)

Note. The first grayed row (ηp2 = 0) shows the absolute RMSE. The other rows show the relative RMSE.

Testing Sphericity, Main Effects, and Interaction 
Effects for L-RM-ANOVAs With Measurement 

Models
Traditional (U-)RM-ANOVA assumes that the outcome variable can be observed across 
experimental conditions. The outcome of interest, however, oftentimes includes ques
tionnaire items, test scores, reaction times, and accuracies that serve as indicators to 
measure an underlying psychological construct, such as cognitive processes, attention, 
traits, or attitudes. Underlying constructs, however, cannot be measured directly in 
many cases and indicators suffer from measurement error. Latent variable models can 
be used to explicitly model measurement error. This section describes how sphericity, 
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main effects, and interaction effects may be tested in extensions of L-RM-ANOVA that 
include measurement models (conceptually similar to second order growth curves; see 
Langenberg et al., 2020). We will use the two manifest measures mean gaze duration and 
mean total viewing to measure the latent construct “reading ability” and re-analyze the 
data.

Figure 7 extends the guiding example to include two manifest measures (mean gaze 
duration and mean total viewing duration, see Figure 1) at each of the six measurement 
conditions; forming six latent common factors (η1–η6) that are transformed into six 
latent contrasts (π0–π5). Rectangles represent manifest variables and circles represent 
latent variables. Following standards for longitudinal models with multiple indicators per 
measurement occasion (e.g., Newsom, 2015, p. 42), residual covariances are estimated 
between the same manifest indicator across the six measurement conditions (depicted as 
gray double-headed arrows). The η variables explain common variance in the manifest 
variables in each of the conditions. However, residual covariances between manifest vari
ables across conditions may occur. These correlations can be accounted for by including 
residual covariances between mean gaze duration across conditions and between mean 
total viewing duration, respectively.

Oftentimes, such designs are inappropriately analyzed by averaging across the two 
indicators, so that traditional methods can be used (e.g., RM-ANOVA). Averaging across 
indicators, however, can lead to ignoring other random factors, such as stimuli, and can 
introduce substantial bias (Judd et al., 2017). As a solution, linear mixed models (LMM; 
Fitzmaurice et al., 2011; Laird & Ware, 1982) are able to include all of the measures and 
to estimate the model. LMMs, however, assume that the two indicators are parallel meas
urements. A parallel measurement model assumes that loadings equal one (λ2 = 1), the 
intercepts equal zero (μYTV = 0), and the residual variances are equal (Var(εij) = Var(εkl)). 
This condition, however, does not necessarily hold in the given example and neither in 
many other examples from psychological research, such as test scores or questionnaire 
items. In SEM, on the contrary, the assumption can be relaxed and the more general 
congeneric measurement model can be used (as was used in Figure 7).

Inclusion of measurement models across repeated measures (e.g., second-order 
growth curves) further necessitates consideration of (and tests for) measurement invari
ance (e.g., Newsom, 2015, Ch. 2). However, given this article’s focus on sphericity and 
main/interaction effects, the didactic nature of this section (i.e., we do not aim to ex
plicitly test psychological theories), and available literature on measurement invariance 
(Newsom, 2015; Pitts et al., 1996; Widaman et al., 2010), this article assumes that readers 
have knowledge of measurement invariance and does not discuss the topic in detail 
(see Langenberg et al., 2020, for measurement invariance in L-RM-ANOVA). Instead, we 
note that data in the guiding example adhered to a model with strong measurement 
invariance (CFI = .946, TLI = .914, RMSEA = .115, 90% CI RMSEA = [.099, .132]), which 
facilitates comparisons across the means/intercepts of η1–η6. That is, loadings are con
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strained to be equal across time (i.e., the first loading is fixed to 1 and second loading is 
the same λ2) and so are the intercepts of the manifest variables (i.e., the intercept of the 
first indicator is fixed to 0 and the second indicator is constrained to be equal).

As is standard for SEM estimation more generally (and departing from prior analyses 
that only used complete data), this section analyzes all available data (N = 268) via 
full information maximum likelihood (FIML). Analogous to measurement invariance, we 

Figure 7

Path Diagram of the SEM Implementing a 2 × 3 (Sentence Type × Grade) Repeated Measures Design Using an 
Orthonormal Contrast Matrix and a Measurement Model With the Manifest Variables Mean Gaze Duration and 
Mean Total Viewing Duration

Note. Rectangles represent manifest variables and circles represent latent variables. Intercepts of mean gaze 
duration in each condition are set to zero. Intercepts of mean total viewing duration are estimated but 
constrained to be equal. Residual variances of the manifest variables y are freely estimated. Residual 
covariances among the y of the same type of sentence and variable are estimated but constrained to be equal. 
Intercepts and (co)variances of the contrast variables π are freely estimated.

Langenberg, Helm, Günther, & Mayer 85

Methodology
2023, Vol. 19(1), 60–95
https://doi.org/10.5964/meth.8415

https://www.psychopen.eu/


assume that readers have sufficient knowledge of FIML and its application in SEM to 
account for missing data (Enders, 2013).

If strong measurement invariance holds, then sphericity of each main/interaction 
effect may be tested in an identical manner as L-RM-ANOVA without measurement 
models. Sphericity may still be tested via χ2-difference tests across models that con
strain/relax the appropriate variances and covariances of Vπ (see the section Testing 
Sphericity Using L-RM-ANOVA). In the guiding example, sphericity for the main effect 
of B fails (Δχ2 = 67.44, df = 2, p < .001), and sphericity for the interaction effect also fails 
(Δχ2 = 60.88, df = 2, p < .001).

Main and interaction effects may still be tested via χ2-difference tests across mod
els that constrain/relax the appropriate means of the π latent contrasts. And those 
comparisons may be done under the assumption of sphericity (i.e., both models in the 
comparison include the constraints that conform to sphericity), or not (i.e., both models 
in the comparison fully estimate Vπ). Although this article does not intend to compare 
SEM to LMM, we would like to point out that imposing sphericity on the variances of 
latent contrast variables in an SEM is conceptually similar to constraining the covariance 
matrix of the random effects in a LMM (for similarities between SEM and LMM in the 
context of growth curves, see, e.g., Rovine & Molenaar, 1998; see also Newsom, 2002). 
When assuming sphericity, there is evidence for a main effect of A (Δχ2 = 329.54, df = 1, 
p < .001), B (Δχ2 = 859.88, df = 2, p < .001), and the interaction (Δχ2 = 624.81, df = 2, p < 
.001). When relaxing sphericity, there is evidence for a main effect of A (Δχ2 = 329.54, df 
= 1, p < .001), B (Δχ2 = 505.53, df = 2, p < .001), and the interaction (Δχ2 = 360.06, df = 2, p 
< .001).

Conclusions and Future Directions
This article identified and exemplified the direct connection between U-RM-ANOVA 
and SEM: L-RM-ANOVA. More specifically, latent contrasts may be formed by using 
the inverse of an orthogonal contrast matrix as a factor loading matrix, sphericity 
corresponds to specific constraints on the variances and covariances of those latent 
contrasts (i.e., specific elements in Vπ), and tests of main/interaction effects correspond 
to the significance of latent contrast means. As shown in the examples, sphericity may be 
imposed, relaxed, and tested in the SEM context via χ2-difference tests, and results mirror 
those from Mauchly’s test (see the section Testing Sphericity Using L-RM-ANOVA). And, 
although the χ2-difference tests of SEM do not exactly match the F-tests from U-RM-AN
OVA, they do test the same hypotheses, and sums of squares and exact F-values may 
be reproduced in L-RM-ANOVA via an orthonormal contrast matrix. Finally, taking full 
advantage of the SEM framework, the L-RM-ANOVA approach can include measurement 
models and accommodate missing data via FIML when testing for sphericity, main 
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effects, and interaction effects. Therefore, this article serves to fill the gap of how 
U-RM-ANOVA is a special case of SEM.

Two simulation studies were performed: (1) examining the statistical properties of 
the SEM based sphericity test, and (2) comparing properties of (U-)RM-ANOVA and 
L-RM-ANOVA with and without sphericity. The first simulation study shows that Mau
chly’s test and the SEM based test yield virtually identical power and Type 1 error rates. 
The second simulation study shows that RM-ANOVA and L-RM-ANOVA have similar 
statistical properties. However, L-RM-ANOVA has a slightly inflated Type 1 error of 
about 7% for a sample size of N = 30, which approaches the desired 5% for larger sample 
sizes. The univariate approaches also show an inflated Type 1 error of up to 8% when 
sphericity is violated. Greenhouse-Geisser and Huynh-Feldt corrected hypothesis tests 
from U-RM-ANOVA, furthermore, perform best in terms of power. Although the power 
advantage is rather small, power was larger than for multivariate RM-ANOVA, while the 
Type 1 error was not inflated as in the case of the uncorrected U-RM-ANOVA.

This article also helped illuminate the definition of sphericity. In contrast to the collo
quial definition (i.e., equal variances across all pairwise differences; which only holds for 
the within-subjects design with one factor) this article emphasized the original definition 
of sphericity via matrix algebra, showed how that definition may be generalized to 
within-subjects designs with two or more factors, and illustrated how that definition may 
be implemented/tested in L-RM-ANOVA both with and without measurement models. It 
is our hope that researchers familiar with SEM—but either lack clear understanding of 
sphericity, or adhere to the colloquial definition—can use this article to gain a clearer 
understanding of sphericity.

Although L-RM-ANOVA can be extended to mixed designs (i.e., those with both 
within- and between-subjects factors), we narrowed the scope of the article to within-
subjects designs to emphasize identification and tests of sphericity, and because L-RM-
ANOVA with mixed-designs has been described elsewhere (see Langenberg et al., 2020, 
for examples of mixed designs). Nevertheless, we briefly mention the two extensions 
for incorporating between-subjects factors into L-RM-ANOVA. First, coded versions of 
between-subjects factors (e.g., dummy codes, effect codes) may be used to predict the 
latent contrasts. Second, a multiple group SEM can estimate the L-RM-ANOVA model for 
each intersection of the between subjects factors. The first approach must assume that 
Vπ is equal across the intersections of the between-subjects factors, whereas the multiple 
group approach can test/relax that assumption.

We discuss two future directions which build on the knowledge generated in this 
article. First, the L-RM-ANOVA approach can be generalized to non-normal and/or non-
continuous dependent variables (e.g., log-normal, dichotomous, or ordinal measures). 
Researchers implementing experimental designs likely measure such variables. SEM has 
extensions available for non-normal dependent variables (e.g., Finney & DiStefano, 2013). 
For instance, analyzing error rates requires a binomial distribution, and reaction times of
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ten follow a skewed distribution (e.g., log-normal). Stated differently, L-RM-ANOVA can 
capitalize on SEMs extension for non-normal and non-continuous dependent variables, 
which researchers will likely find useful. Second, the L-RM-ANOVA approach can be 
compared to linear mixed models. As was described in the section Testing Sphericity, 
Main Effects, and Interaction Effects for L-RM-ANOVAs With Measurement Models, L-
RM-ANOVA allows for relaxing the assumption of a parallel measurement model which, 
in contrast, is essential for LMM. It would be interesting to see how both approaches 
perform if this assumption is violated. Following the first future direction, L-RM-ANOVA 
and LMMs could also be compared for non-normal outcomes.

In conclusion, this article identified and demonstrated the missing link that connects 
U-RM-ANOVA to SEM (via L-RM-ANOVA), and provided researchers a clear definition 
of sphericity. We hope that this article enables applied researchers to use SEM in prac
tice (especially in cases that warrant measurement models), and motivates quantitative 
researchers to continue building on the L-RM-ANOVA framework.
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Appendices

Appendix A

R Code to Create an Orthogonal Contrast Matrix

> # create a data frame containing all experimental conditions
> idata <- expand.grid(A = c("A1", "A2"), B = c("B1", "B2", "B3"))
> idata
   A  B
1 A1 B1
2 A2 B1
3 A1 B2
4 A2 B2
5 A1 B3
6 A2 B3
> # create a formula that describes the effects to be analyzed
> idesign <- ~A*B
> idesign
~A * B
> # create the B matrix (the inverse of the contrast matrix C) 
> # using the model.matrix() function
> B_matrix <- model.matrix(
+     idesign, 
+     idata, 
+     contrasts.arg = list(A = "contr.poly", B = "contr.poly")
+ )
> B_matrix
  (Intercept)        A.L           B.L        B.Q       A.L:B.L    A.L:B.Q
1           1 -0.7071068 -7.071068e-01  0.4082483  5.000000e-01 -0.2886751
2           1  0.7071068 -7.071068e-01  0.4082483 -5.000000e-01  0.2886751
3           1 -0.7071068 -7.850462e-17 -0.8164966  5.551115e-17  0.5773503
4           1  0.7071068 -7.850462e-17 -0.8164966 -5.551115e-17 -0.5773503
5           1 -0.7071068  7.071068e-01  0.4082483 -5.000000e-01 -0.2886751
6           1  0.7071068  7.071068e-01  0.4082483  5.000000e-01  0.2886751
attr(,"assign")
[1] 0 1 2 2 3 3
attr(,"contrasts")
attr(,"contrasts")$A
[1] "contr.poly"
attr(,"contrasts")$B
[1] "contr.poly"

> # the C matrix is the inverse of the B matrix
> C_matrix <- solve(B_matrix)
> C_matrix
                     1          2          3          4          5         6
(Intercept)  0.1666667  0.1666667  0.1666667  0.1666667  0.1666667 0.1666667
A.L         -0.2357023  0.2357023 -0.2357023  0.2357023 -0.2357023 0.2357023
B.L         -0.3535534 -0.3535534  0.0000000  0.0000000  0.3535534 0.3535534
B.Q          0.2041241  0.2041241 -0.4082483 -0.4082483  0.2041241 0.2041241
A.L:B.L      0.5000000 -0.5000000  0.0000000  0.0000000 -0.5000000 0.5000000
A.L:B.Q     -0.2886751  0.2886751  0.5773503 -0.5773503 -0.2886751 0.2886751
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Appendix B

R Code to Create an Orthonormal Contrast Matrix

> # the C matrix is an orthogonal contrast matrix
> C_matrix
                     1          2          3          4          5         6
(Intercept)  0.1666667  0.1666667  0.1666667  0.1666667  0.1666667 0.1666667
A.L         -0.2357023  0.2357023 -0.2357023  0.2357023 -0.2357023 0.2357023
B.L         -0.3535534 -0.3535534  0.0000000  0.0000000  0.3535534 0.3535534
B.Q          0.2041241  0.2041241 -0.4082483 -0.4082483  0.2041241 0.2041241
A.L:B.L      0.5000000 -0.5000000  0.0000000  0.0000000 -0.5000000 0.5000000
A.L:B.Q     -0.2886751  0.2886751  0.5773503 -0.5773503 -0.2886751 0.2886751
> 
> # the C matrix is orthogonal if CC^T is a diagonal matrix
> round(C_matrix %*% t(C_matrix), 3)
           (Intercept)   A.L B.L B.Q A.L:B.L A.L:B.Q
(Intercept)       0.167 0.000 0.0 0.0       0       0
A.L               0.000 0.333 0.0 0.0       0       0
B.L               0.000 0.000 0.5 0.0       0       0
B.Q               0.000 0.000 0.0 0.5       0       0
A.L:B.L           0.000 0.000 0.0 0.0       1       0
A.L:B.Q           0.000 0.000 0.0 0.0       0       1
> 
> # scale each row by the square root of its sum of squares
> C_matrix <- t(apply(C_matrix, 1, function(row) row / sqrt(sum(row^2))))
> C_matrix
                     1          2          3          4          5         6
(Intercept)  0.4082483  0.4082483  0.4082483  0.4082483  0.4082483 0.4082483
A.L         -0.4082483  0.4082483 -0.4082483  0.4082483 -0.4082483 0.4082483
B.L         -0.5000000 -0.5000000  0.0000000  0.0000000  0.5000000 0.5000000
B.Q          0.2886751  0.2886751 -0.5773503 -0.5773503  0.2886751 0.2886751
A.L:B.L      0.5000000 -0.5000000  0.0000000  0.0000000 -0.5000000 0.5000000
A.L:B.Q     -0.2886751  0.2886751  0.5773503 -0.5773503 -0.2886751 0.2886751
> 
> # the matrix is orthoNORMAL if (B^T)B is the identity matrix
> round(C_matrix %*% t(C_matrix), 3)
           (Intercept)   A.L B.L B.Q A.L:B.L A.L:B.Q
(Intercept)           1   0   0   0       0       0
A.L                   0   1   0   0       0       0
B.L                   0   0   1   0       0       0
B.Q                   0   0   0   1       0       0
A.L:B.L               0   0   0   0       1       0
A.L:B.Q               0   0   0   0       0       1
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