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Abstract
The front-door model allows unbiased estimation of a total effect in the presence of unobserved 
confounding. This guarantee of unbiasedness hinges on a set of assumptions that can be violated in 
practice. We derive formulas that quantify the amount of bias for specific violations, and contrast 
them with bias that would be realized from a naive estimator of the effect. Some violations result in 
simple, monotonic increases in bias, while others lead to more complex bias, consisting of 
confounding bias, collider bias, and bias amplification. In some instances, these sources of bias can 
(partially) cancel each other out. We present ways to conduct sensitivity analyses for all violations, 
and provide code that performs sensitivity analyses for the linear front-door model. We finish with 
an applied example of the effect of math self-efficacy on educational achievement.

Keywords
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The front-door criterion (Pearl, 1995) is a method to recover an unbiased causal effect in 
the presence of unobserved confounding. The simplest possible example of the method 
is a tri-variate model with a putative cause, an intermediary variable (mechanism), 
and an outcome variable. The cause and the outcome are allowed to have correlated 
errors, meaning that unobserved confounding can be present. To make it more concrete, 
consider that the putative cause is self-efficacy and the effect is academic achievement. 
Self-efficacy was not randomized and no other control variables were available for 
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adjustment. Under a set of assumptions that we will explain in more detail later, we can 
still obtain an unbiased causal effect estimate. In particular, we need to have knowledge 
about the mechanism of the causal effect. For example, we may assume that self-efficacy 
will affect academic achievement only through changing students’ time spent studying. 
Once we fully know this mechanism (together with additional assumptions about the 
unconfoundedness of certain paths clarified later), the front-door model allows the esti
mation of the causal effect of a potentially confounded cause.

The front-door model is not well known to psychological scientists, despite the fact 
that it is a simple variation of the hugely popular mediation model (Baron & Kenny, 
1986). For the benefit of the reader who may not be acquainted with this model, we first 
outline the basic idea of the front-door model. In our examination of the model, we will 
limit ourselves to purely linear models, following work by others (Ding & Miratrix, 2015; 
Pearl, 2015; Thoemmes, 2015). The use of linear models simplifies results, although they 
do not necessarily generalize to broader classes of models. However, insights from linear 
models can serve as a tool to aid understanding (Pearl, 2013). For additional work on bias 
in front-door models, see Glynn and Kashin (2018), or Bellemare et al. (2019).

Throughout our analytic results we use the term “estimator” to describe the proce
dure or formula that is used to estimate a causal estimand (defined as a causal quantity of 
interest). We do not discuss efficiency or how to derive standard errors of the front-door 
estimator. Literature on mediation analysis (Hayes & Scharkow, 2013; MacKinnon et al., 
2012; Tofighi & MacKinnon, 2011) can be fruitfully consulted for the derivation of the 
standard errors of the front-door model. Suggested ways to estimate standard errors for 
product terms in mediation or front-door models are the delta method (Sobel, 1982), 
numerical integration (MacKinnon et al., 2007), or bootstrapping (Shrout & Bolger, 2002).

The remainder of this paper is organized as follows. First, we analytically derive bias 
of the front-door estimator and compare it with a simple regression estimator, which we 
refer to as the naive estimator. We also explain how measurement error would affect 
the estimators. Then we show how sensitivity analysis of the front-door model can be 
implemented. We then illustrate the methods using a real data analysis and conclude 
with a summary of findings and implications of the front-door models.

Analysis of Front-Door Models

Setup
In the basic front-door model in Figure 1, X transmits a causal effect to Y, via M. The 
variables X and Y share a common cause, shown as a bi-directed arrow (left). The 
bi-directed arrow can be replaced with an unobserved (latent) variable that has direct 
effects going into both variables (right). Assuming δXδY = δXY , the two models in
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Figure 1 are equivalent. Based on the right graph, we construct an underlying data-gen
erating model expressed in the following linear equations:

U = eU
X = δXU + eX
M = αX + eM
Y = δYU + βM + eY
eU ∼ N (0,σU)
eX ∼ N (0,σX)
eM ∼ N (0,σM)
eY ∼ N (0,σY)
eU∐eX∐eM∐eY

(1)

Figure 1

Front-Door Model With (Right) and Without (Left) Latent Variable Shown

Note. Latent variables are shown with a dashed ellipse. Observed variables are shown with a solid square.

Disturbance terms, denoted with e, are explicitly added in the equation, although they 
are not shown in the graph. We assume that all disturbance terms are independent of 
each other, as denoted by the last line of the formulas. For ease of exposition but without 
loss of generality, we assume that all variables are standardized with zero mean and 
unit variance. Note that in order to achieve marginal unit variance for each variable, 
the residual (unexplained) variances of each variable need to be adjusted based on the 
magnitude of the effects of other variables (Kenny, 1979). While it is not necessary to 
assume normality of the error terms, we do so because in later data-generating models 
for our simulation, we will use standardized and normally distributed variables.

Given the model shown in Equation (1), a regular regression model predicting Y from 
X alone fails to recover the true causal effect, but the front-door adjustment can yield 
unbiased estimates, as shown here with a brief example. Assume that the effects δX
and δY  of the unobserved variable U on both X and Y are .625 and .4, respectively. Equiv
alently, we may say that the coefficient δXY  of the bi-directed arrow is .25 (= .625 × .4). 
Further assume that the constituent paths α and β of the total effect from X to Y through 
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M are both .3. Then, the total causal effect of X on Y, which is the product of the 
two paths, .3 × .3 = .09, cannot be recovered by the simple regression model of Y on X. 
The standardized regression coefficient bYX is equivalent to the correlation coefficient 
between X and Y, and it can be easily computed by path-tracing rules (Wright, 1934). In 
order to compute the implied correlation of a structural model comprised of standardized 
variables, one needs to multiply all path coefficients of every trace, and sum these 
products of traces of every open path between two variables. An open path is defined as 
a path that does not contain a colliding variable, or short, collider, which is a variable 
that has two arrowheads going into it on a single path (e.g., in path A → C ← B, C is 
a collider; see Elwert and Winship, 2014). In our example, there are two open paths 
between X and Y in Figure 1, X → M → Y  and X ← U → Y  (or simply X ↔ Y ). Note that 
both the mediator M and confounder U are not colliders here because there are no two 
arrowheads that are colliding into them. Further note that the status of a variable as a 
collider is always path-dependent, which means that a variable can be a collider on one 
path, but may not be a collider on a different path. The first path yields a product of the 
path coefficients of .3 × .3 = .09, and the second path, .625 × .4 = .25. Hence the implied 
correlation between X and Y is .09 + .25 = .34. The latter part of this simple expression 
is often called confounding bias and this is why a regular regression analysis fails to 
estimate the unbiased effect of X on Y.

However, despite the unobserved confounding via U, the front-door model allows for 
the estimation of an unbiased effect by estimating the component paths of the total effect 
without bias. First, the path from X to M is unconfounded, as there are no back-door 
paths between X and M. The only path from X to M is a direct, front-door path, whose 
magnitude is simply given by the standardized regression coefficient bMX obtained by 
regressing M onto X. This is identical to the path coefficient α = .3. Second, the path 
from M to Y is confounded due to the open back-door path M ← X ↔ Y . This path can 
be trivially closed by adjusting on X. From a linear regression model predicting Y from M, 
and adjusting for X, we can derive the standardized regression coefficient bYM |X using the 
recursive formula (see Appendix, especially Equation (A4) for the derivation),
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bYM |X = ρMY − ρMXρYX
1 − ρXM2

= (αδXY + β) − {α(αβ + δXY)}
1 − α2

= αδXY + β − α2β − αδXY
1 − α2

= β(1 − α2)
1 − α2

= β .

(2)

Again, note that δXY = δXδY  and all variables are standardized. Thus, the second compo
nent effect is given by β = .3. The final step of the front-door adjustment is then to 
realize that the total effect of X on Y can be derived from the product of the two unbiased 
component paths (Pearl, 2009). Both standardized regression coefficients, bMX and bYM |X , 
are estimated to be .3, therefore, the product of the two regression coefficients is .09, 
which is an unbiased estimate of the true total causal effect from X on Y. Next, we extend 
this work to consider situations in which underlying assumptions are violated.

Assumptions and Sources of Bias
The front-door model rests on a set of assumptions that should be argued for by the 
researcher. These assumptions are qualitative statements as to why a certain path in a 
causal graph is indeed believed to be absent. We review these assumptions and then 
derive expected biases due to violations.

• Full mediation. The first assumption is the absence of a direct path from the cause 
X to the outcome Y. This assumption states that any effect from X needs to be fully 
mediated by the mechanism M. The researcher needs to argue that any effect of X on 
Y goes only and fully through some mechanism M. This mechanism could be through 
a single variable, or multiple variables, but it is a requirement that the totality of 
these variables accounts for the total effect. If the assumed mechanism is incomplete, 
meaning that there are additional front-door paths from X to Y that are ignored, then 
the front-door estimator of the total effect of X on Y will be biased.

• No confounding between X and M. The second assumption relates to the unconfounded
ness of the relationship between the cause X and the mechanism M. The researcher 
must assume that there is no open back-door path, and hence no confounding through 

Bias in Front-Door Models 260

Methodology
2023, Vol. 19(3), 256–282
https://doi.org/10.5964/meth.9205

https://www.psychopen.eu/


common causes, between X and M. Without this assumption, it is impossible to obtain 
an unbiased estimate of the component path, and thus of the total effect of X on Y.

• No confounding between M and Y. The third assumption relates to the conditional 
unconfoundedness between the mechanism M and the outcome Y, adjusting for X. 
There can be no additional back-door paths that do not traverse X. Unmeasured 
confounders of this component path will also make it impossible to estimate the total 
effect of X on Y without bias.

• No measurement error. An additional potential source of bias is measurement error 
in variables. Measuring only a noisy proxy variable, instead of the true underlying 
variable, is known to induce bias in causal effects (Greenland & Robins, 1985; Kuroki 
& Pearl, 2014). In the case of the standardized linear front-door model, measurement 
error in any of the three variables, X, M, or Y, can induce bias.

Derivation of Bias
We will derive bias for violations of all assumptions, first considering the most general 
case, and then reducing the complexity of violations. Discussions are restricted to purely 
linear models, with completely standardized, continuous variables (formulas for unstan
dardized variables can be found in the Appendix).

Bias Formulas

We consider a situation in which the violations that we described appear simultaneously, 
as shown in Figure 2. The component paths from X to M, and from M to Y, are both 
confounded, and a direct path between X and Y is present. The only violation that we 
do not consider yet is measurement error, which we will discuss separately in a later 
section. Note that in this model, we simply use numerated subscripts on the confounding 
terms, labeled δ1, δ2, and δ3. These bi-directed arrows could have been presented with a 
latent variable and two arrows emanating from this latent variable. In our simulations, 
we always include the latent variable. In the model in Figure 2, the true total effect of 
X on Y is the sum of the two causal paths αβ and γ. A naive estimator, which simply 
regresses Y on X, will be biased due to the presence of confounding. The naive estimator 
is

bYX = Cov(X , Y )/Var(X) = ρXY
= (αβ + γ) + δ1 + δ2β .

(3)
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Figure 2

Front-Door Model With a Direct Path and Confounding on Both Component Paths

The derivation of ρXY  can be easily obtained from Equation (A4) in the Appendix. Bias 
is added due to the presence of the confounding path between X and Y (X ↔ Y ), but 
also due to the confounder between X and M, and its product with β (X ↔ M → Y ). By 
subtracting the true total effect of X on Y (i.e., αβ + γ), we can write the bias of the naive 
estimator as

BiasN = δ1 + δ2β, (4)

where the superscript N denotes the naive estimator. Note that δ3 does not appear in 
Equation (4) because the assumption of no confounding between M and Y is not required 
for the estimation of the total effect of X on Y. The non-causal path via δ3 remains 
blocked unless M is conditioned on because M is a collider in the path via δ3 (Elwert & 
Winship, 2014).

The bias of the front-door estimator can be derived by using path-tracing rules to 
compute all implied correlations between two variables, and then the recursive formula 
to estimate the coefficients from the regression equations that are used for the two 
component paths. A detailed derivation of this is provided in the Appendix. The first 
component path from the simple regression of M on X is

bMX = α + δ2, (5)

indicating that δ2 induces bias in this component path.
The second component path from M to Y is estimated by the regression of Y on M, 

adjusting for X, and resolves to

bYM |X = β + δ3 − δ1δ2
1 − (α + δ2)2

. (6)
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The amount of bias in the second component path can be further parsed into two 
components. The first bias component of the numerator is δ3, which is the unobserved 
confounding via the path M ↔ Y . The second bias component of the numerator is the 
product of δ1 and δ2, but is subtracted. This is due to conditioning on the collider X 
in the path M ↔ X ↔ Y . These two bias components are divided by 1 − (α + δ2)2. Note 
that (α + δ2)2 is the amount of explained variance in M, after adjusting on X, and the 
square of the correlation between X and M. This term will always be positive, and 
always increase any existing bias that appears in the numerator. This phenomenon has 
been studied in the presence of (near-)instrumental variables, and is referred to as bias 
amplification (Myers et al., 2011; Pearl, 2011; Steiner & Kim, 2016).

The front-door estimate is the product of the two biased component paths in Equa
tion (5) and (6):

bMX × bYM |X = (α + δ2)(β +
δ3 − δ1δ2

1 − (α + δ2)2
)

= αβ + δ2β +
(α + δ2)(δ3 − δ1δ2)

1 − (α + δ2)2
.

(7)

By subtracting the true total effect (αβ + γ), the bias of the front-door estimator, super
scripted by F, is

BiasF = δ2β +
(α + δ2)(δ3 − δ1δ2)

1 − (α + δ2)2
− γ . (8)

In addition to the bias component δ2β, the bias of the front-door estimator includes 
additional bias sources. First, the amount of the direct effect of X on Y (γ) appears in the 
bias formula and any non-zero value for this parameter influences bias in the front-door 
estimator in a monotonic fashion. The parameter γ appears in the bias formula as a sub
traction, therefore, the direct effect of X on Y can offset the other bias components, and 
thus may decrease the overall bias. Depending on the sign of γ (and other parameters), it 
may also increase overall bias.

Second, the bias amplification term, 1 − (α + δ2)2 appears again in the denominator. 
This is expected because the front-door estimator is the product of Equation (5) and 
(6). We again note that the expression α + δ2 is the correlation between X and M. The 
squared correlation is the amount of variance in M, explained by X, and subtracting 
this from one is the residual variance in Equation (5). Thus, the higher the correlation 
between X and M, the stronger the bias amplification will be.

Third, the impact of bias amplification rests on the numerator because only non-zero 
numerators will be amplified. The numerator consists of two components, (α + δ2) and 
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(δ3 − δ1δ2). If either of those were zero, then the whole fraction becomes zero. The 
first component is the correlation between X and M. The second component, δ3 − δ1δ2, 
concerns the unobserved common causes. If the unobserved common cause between M 
and Y (δ3) takes on the exact same value as the product of the other common causes 
between X and Y, and X and M (δ1δ2), then this bias component vanishes. The product 
term δ1δ2 essentially concerns all back-door paths for the cause X and its effects on either 
M or Y.

Comparisons of Biases

Direction of Bias Change — Both the naive estimator and the front-door estimator 
can yield biases when their assumptions are violated. Each violation impacts each bias 
differently, and this may even result in bias in the opposite direction. In Table 1, we 
summarize signs of the relationship between specific violations and the sign of change 
in the resulting bias for the naive and front-door estimators when holding all other 
parameters constant. It shows that each violation can change each bias for the naive and 
front-door estimators in different directions. The first entry in Table 1 is γ, representing 
the violation of the full mediation assumption. Any value of γ has no effect on the bias of 
the naive estimator (BiasN), hence we denote it by “0”. On the other hand, the relationship 
between γ and the bias of the front-door estimator (BiasF) is negative, meaning that with 
increases in γ, BiasF changes in a negative direction, which we denote with “−”. Thus, a 
positive violation of the full mediation assumption (γ > 0) results in negative bias to the 
front-door estimator.

Table 1

Sign of the Relationship Between Specific Violations for Naive and Front-Door Estimators and Resulting Bias 
Holding All Other Parameters Constant

Bias of naive estimator Bias of front-door estimator 

Violations
δ1 + δ2β δ2β + (α + δ2)(δ3 − δ1δ2)

1 − (α + δ2)2 − γ

Full mediation (γ) 0 −

No confounding between X & Y (δ1) + sgn(−δ2(α + δ2))
No confounding between X & M (δ2) sgn(β) complex

No confounding between M & Y (δ3) 0 sgn(α + δ2)
Note. δ1 = 0 is not required for the front-door model.

The next table entry shows how the violation of no confounding between X and Y 
(δ1) impacts both the naive and the front-door estimators. A positive value of δ1 would 
induce a positive bias for the naive estimator (denoted by “+”). Considering that the 
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front-door adjustment is a way to circumvent the typical confounding problem between 
X and Y like δ1, it might be surprising that δ1 also changes BiasF . This, however, only 
happens when other sources of confounding are also present. The direction of BiasF as a 
function of δ1 is given by the sign of ( − δ2(α + δ2)). Note that due to the negative sign 
of the term, δ1 can induce a negative bias even though all parameters are positive. Only 
if δ2 = 0 (or α + δ2 = 0), will the parameter δ1 not change BiasF . Thus, any confounding 
between X and Y affects the front-door estimator only if the confounding between X and 
M (δ2) is also present.

The next table entry shows the impact of the violation of no confounding between X 
and M (δ2). BiasN  is affected by this violation, and the sign of the bias is determined by 
the effect of M on Y (β). This is because δ2 is part of confounding between X and Y, which 
will be combined with the path M → Y . However, the impact of δ2 on BiasF is complicated 
and its sign is not easily formulated even in linear models because δ2 appears in multiple 
components in the bias formula of the front-door estimator in Equation (8).

Finally, the last entry in Table 1 shows that the violation of no confounding between 
M and Y does not affect BiasN  while it monotonically changes BiasF in the direction of the 
sign of (α + δ2). If one wants to predict in which direction BiasF changes by varying the 
value of δ3, it is sufficient to check the sign of the correlation between X and M.

Magnitude of Absolute Bias — Which of the two estimators incurs larger absolute 
biases? There are many constellations of parameters in which the naive or the front-door 
estimator would be preferable. We first consider a very broad comparison and examine 
absolute bias for both estimators over a range of parameter values for the model in 
Figure 2. We compute bias for a grid of values ranging from −.9 to .9 (evenly spaced 
over 9 values) for all nine parameters in the model. Note that for each δ we specify two 
parameters since the bi-directed arrows are simply a shorthand for “ ← U → ” where 
U is an unknown common cause (see Figure 1). For every combination of parameter 
values, we observe whether the resulting correlation matrix has only positive variances 
and discard combinations of parameters that violate this condition. This is identical to 
discarding correlation matrices that are not positive definite. Finally, we compare bias 
of the two estimators across all parameter values. This broad comparison answers the 
question whether the bias in the naive estimator is on average larger or smaller than the 
bias in the front-door estimator.

Figure 3 shows the bias for both estimators. For presentation purposes, we display 
the discrete bias estimates using a smooth kernel density estimate. The naive estimator 
(solid line) has bias that is concentrated around smaller values. The bias of the front-door 
estimator (dashed line) can become large, even though this is generally rare. In our 
simulation, the absolute bias of the naive estimator is larger than or equal to the absolute 
bias of the front-door estimator (|BiasN | ≥ |BiasF |) in only 27% of cases, indicating that 
the naive estimator is often preferred in terms of absolute bias. An explanation of this 
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pattern is that the front-door estimator is subject to bias amplification, and has more 
potential sources of bias. However, as we shall see in the next section, this pattern is not 
always true, and can reverse under some instances.

Figure 3

Density of Raw Bias of Both Estimators Averaged Over All Parameter Values

Constraining Violations

From our general bias formula, we can derive what would happen if some violations 
would be constrained to be zero, meaning that the violation would not appear. There is a 
total of four constraints that we can consider, namely the three bias terms, δ1, δ2, δ3, and 
the direct effect γ. We will discuss some, but not all of the constraints in some detail, and 
then present a summary of all 16 possible combinations of constraints.

First, we can omit the direct path γ by setting it to zero (γ = 0), that is, we assume 
that the full mediation assumption is met. The naive estimator would still only be biased 
due to the presence of δ1 + δ2β, and the front-door estimator would not incur bias due to 
γ. The two bias formulas are,

Biasγ = 0N = δ1 + δ2β;

Biasγ = 0F = δ2β +
(α + δ2)(δ3 − δ1δ2)

1 − (α + δ2)2
,

(9)

where we denote the constraining condition as a subscript. The comparison of bias under 
this constraint is presented in Figure 4. The naive estimator has the same amount of bias 
as in Equation (4), but the front-door estimator has bias that is more concentrated around 
zero. The front-door estimates now have less or equal bias than the naive estimates in 
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67% of all conditions, which is a reversal of the previous finding. This highlights the 
importance of the full mediation assumption for the front-door adjustment.

Figure 4

Density of Raw Bias of Both Estimator Averaged Over All Parameter Values When γ = 0

We can constrain the violations further. One can assume that in addition to the full 
mediation assumption, there is also no confounding between X and M (γ = 0 & δ2 = 0). 
This simplifies both bias formulas. Equation (9) reduces to

Biasγ = 0, δ2 = 0N = δ1;

Biasγ = 0, δ2 = 0F = αδ3
1 − α2 .

(10)

Under this additional assumption of no confounding between X and M, the front-door 
estimator has less or equal absolute bias than the naive estimator in 70% of all instances.

If we were to constrain both the direct path and the confounding between M and Y 
(γ = 0 & δ3 = 0), the two bias formulas reduce to

Biasγ = 0, δ3 = 0N = δ1 + δ2β;

Biasγ = 0, δ3 = 0F = δ2β +
−δ1δ22 − αδ1δ2
1 − (α + δ2)2

.
(11)

Thoemmes & Kim 267

Methodology
2023, Vol. 19(3), 256–282
https://doi.org/10.5964/meth.9205

https://www.psychopen.eu/


Here, the front-door estimator is less biased than the naive estimator in 90% of all 
conditions. We repeat this bias comparison for every possible combination of violations 
of assumptions. The results are presented in Table 2.

Table 2

Probability That the Absolute Bias of Front-Door Estimators is Less Than (or Equal) to the Absolute Bias of Naive 
Estimators in the Grid of Parameter Values That We Considered

Condition Probability of

γ = 0 δ1 = 0 δ2 = 0 δ3 = 0 |BiasN | ≥ |BiasF | |BiasN | > |BiasF |

Naive estimator better
.27 .25

✓ .14 .09

✓ .25 .24

✓ .28 .24

✓ ✓ .47 .17

✓ ✓ .06 .00

✓ ✓ .20 .05

✓ ✓ ✓ .39 .00

✓ ✓ .27 .23

✓ ✓ ✓ .15 .00

Front-door estimator better
✓ .67 .58

✓ ✓ .70 .60

✓ ✓ .90 .63

✓ ✓ ✓ 1.00 .00

✓ ✓ ✓ 1.00 .74

Both estimators are equal
✓ ✓ ✓ ✓ 1.00 .00

Note. The grid of parameter values we considered ranges from −.9 to .9 (evenly spaced over 9 values). The 
check-mark symbol (✓) indicates that the corresponding condition is constrained in computing the probability.

The information contained in the table is complex, as it spans many different constella
tions of violations of assumptions. To organize the results, we have included sub-head
ings in the table that sort constellations of assumption violations by which estimator is 
better, which simply means that it will produce on average less bias. In the first segment 
of the table are all conditions listed in which the naive estimator performs better. What 
is noteworthy, yet expected, is that the majority of these conditions fulfill the assumption 
that δ1 is zero. This assumption states that there is no confounding between X and Y. In 
the second segment of the table are all conditions in which the front-door estimator is 
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generally preferred. Noteworthy here is that in all instances the assumption that γ is zero 
is fulfilled. As a reminder, this assumption states that there is full mediation between X 
and Y, and no direct path. We conclude form this table that the absence of confounding 
between X and Y is the most critical condition for the naive estimator, and the absence 
of a direct path between X and Y is the most critical assumption for the front-door 
estimator. When neither or both of these conditions are met, the naive estimator tends 
to perform better. Finally, the impact of either δ2 or δ3 being zero is comparatively less 
important. This information can be useful for applied researchers who may have to 
weight the plausibility of the assumptions. Trivially, and only reported for completeness 
is the last segment of the table that states that if all assumptions are met, and there is no 
confounding at all, then both estimators perform equally. R code to replicate our results 
can be found in Thoemmes (2021).

Measurement Error

We consider presence of independent measurement error in the front-door model, as 
shown in Figure 5. We conceptualize measurement error as having an imperfect proxy 
of a variable, with causal relationships among the unobserved latent variables of such 
proxies. More complex forms of measurement error are described in Hernán and Cole 
(2009). In Figure 5, observed variables are shown in squares, and have an asterisk super
script, and latent variables are shown in dashed ellipses. Here, we evaluate the impact of 
measurement error in the absence of the confounding biases, but a fully complex model 
can be found in the Appendix.

Figure 5

Front Door Model With Measurement Error

The bias due to measurement error is multiplicative, and requires knowledge of the value 
of λ. The naive estimator from the regression of Y ∗ on X ∗ is bY ∗X∗ = λ1αβλ3 + λ1δ1λ3, 
indicating that the measurement error is multiplicative and will attenuate the estimate 
(since absolute values of standardized loadings are always equal or lower than 1). We 
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can rearrange this formula to λ1λ3(αβ + δ1) to highlight the fact that the naive estimator 
is identical to the case without measurement error (i.e., λ1 = λ3 = 1), with the only 
exception that all terms are multiplied by the product of the loadings. At the same time, 
we can see trivially that measurement error in M is completely inconsequential to the 
bias in the naive estimator. This is expected, as M is not considered in the estimation of 
the naive effect.

In the front-door adjustment, the first component path is estimated to be 
bM∗X ∗ = λ1αλ2, hence it is also incurring attenuation based on the reliabilities of X ∗ and 
M∗. The second component path is more complicated, and resolves to:

bY ∗M∗ |X ∗ = λ2βλ3(1 − λ12α2) + (1 − λ12)(λ2αδ1λ3)
1 − (λ1αλ2)2

. (12)

This expression yields insights into the impact of measurement error. First, the impact 
of the biasing back-door path M∗ ← M ← X → Y → Y ∗ is only partially removed by 
conditioning on X ∗. The amount of residual bias varies as a function of 1 − λ12. When λ1
equals 1, meaning no measurement error at all on X ∗, the multiplicative terms become 
zero, and there is no bias due to the confounding path. Conversely, if λ1 were to drop to 
zero (meaning that the proxy is pure noise), there would be no reduction in bias at all.

The formula for bias reduces to the following expression if X is measured without 
error (i.e., X ∗ = X , implying λ1 = 1):

bY ∗M∗ |X = λ2βλ3(1 − α2)
1 − (αλ2)2

. (13)

The path between M and Y, labeled as β, is attenuated due to measurement error in 
M∗ and Y ∗. If λ2 were to increase to 1 (meaning no measurement error in M∗), then 
the attenuation would be only due to λ3, and thus the measurement error in Y ∗. The 
multiplicative term 1 − λ12α2 would cancel out of the numerator and denominator in such 
a situation.

The formula would further reduce to the following expression if both X ∗ and M∗

were measured without error (i.e., X ∗ = X  and M∗ = M , implying λ1 = 1 and λ2 = 1, 
respectively):

bY ∗M |X = βλ3(1 − α2)
1 − α2 = βλ3 . (14)

In summary, measurement error complicates the derivation of bias, and tends to attenu
ate relationships between variables. Measurement error in X mostly leads to residual 
confounding bias due to back-door paths that are only closed due to conditioning on 
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noisy proxy variables. Measurement error in all variables tends to attenuate the estimate 
of both component paths. In addition, measurement error in Y, as opposed to in X or 
M, does not create bias in estimation of unstandardized regression weights, only in 
standardized weights by increasing the total variance of Y 1.

Sensitivity Analysis
Using the front-door estimator requires commitment to its untestable assumptions. That 
means that an applied researcher must—on theoretical grounds—argue that the assump
tions hold. A critic could argue that some assumptions might be violated, and in response 
a sensitivity analysis could be produced. VanderWeele (2010) and VanderWeele and Arah 
(2011) argue that every time untestable causal assumptions are invoked, a sensitivity 
analysis is advisable. This analysis can be performed to assess violations of all of the 
previously mentioned assumptions.

The logic of sensitivity analysis is to consider what would happen to an estimate of 
an effect, if an assumption was violated. Often it is of interest to argue how large of a 
violation would have to occur in order for a conclusion to change. This is sometimes 
conceptualized as an effect changing from a significant (positive or negative) value, to 
a value that cannot be significantly distinguished from zero (Rosenbaum, 2005). Alter
natively, a researcher may ask at what level of violation the observed effect becomes 
identical to some pre-specified threshold of smallest effect of interest, or at what point it 
would change to a statistically significant effect of the opposite sign.

Phantom Variable Approach to Sensitivity Analysis
Sensitivity analysis in linear models often relies on analytic solutions to derive closed-
form expressions on how an estimator would change if an unobserved confounder was 
present. The impact of the confounder is typically expressed as a semi-partial R2, but 
standardized path coefficients can also be used. The advantage of closed-form solutions 
is that thresholds of interest (e.g., when an effect ceases to be statistically significant) can 
immediately be found.

We present an alternative approach, that might be less convenient than closed-form 
solutions, but highly accessible to practitioners. Our approach to sensitivity analyses 
uses phantom variables (Rindskopf, 1984) in a linear structural equation model (SEM). A 
phantom variable is a constructed variable whose variances, and covariances are fixed 
by the researcher. The term phantom variable is used because no data on this variable is 
observed. In order for any SEM with a phantom variable to be estimable, all parameters 
that are associated with any phantom variable must be fixed with assumed values. On a 

1) We thank an anonymous reviewer for pointing out this fact.
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conceptual level, a researcher would specify their SEM as usual, and then add phantom 
variables that specifically violate some of the assumptions. Phantom variables have been 
used to conduct sensitivity analyses in SEM (Harring et al., 2017), and our approach 
builds on this work.

In a sensitivity analysis for the front-door estimator, a researcher would define the 
model and then add as many potential violations as desired, in the form of phantom 
variables. If it would be desired to introduce a violation of the assumption that there is 
no unmeasured confounder between X and M, a phantom variable is introduced that has 
an effect on both these variables. If a violation of the full mediation assumption is of 
interest, a phantom variable between X and Y (omitted mechanism) is introduced. This 
process can be repeated for other violations of assumptions, and for joint violations of 
several assumptions. In the case of single violations, it is often sufficient to vary the 
degree of the violation (expressed through the magnitude of the path coefficients), and 
then examine at which values an observed effect ceases to be significant, or alternatively 
drops below a certain threshold, or becomes significant in the opposite direction. In the 
case of two violations, a grid of path coefficients for both violations can be constructed. 
As the number of violations increases, it will often be necessary to explore a large multi-
dimensional grid. Then, one might marginalize results over some sensitivity parameter 
values, or condition on some values of interest. For example, consider a researcher who 
wants to assess sensitivity to all violations simultaneously. Varying sensitivity parameter 
values over a large range will yield an extremely large array. To consider the impact 
of a single violation in this array, the researcher can decide to average over all other 
violations, and then make statements about the impact of one violation, averaged over all 
other violations. Alternatively, the researcher could fix all other violations at particular 
values, and then evaluate the impact of one violation at a time. Computations can be 
performed in any SEM software, including R using the lavaan (Rosseel, 2012), or blavaan 
package (Merkle & Rosseel, 2018). To assist applied researchers, we provide examples of 
sensitivity analyses and their reproducible code in R can be found in Thoemmes (2021).

Illustration
To illustrate the use of the front-door model and associated sensitivity analyses we 
analyze data from the Korean Educational Longitudinal Study (KELS) provided by the 
Korean Educational Development Institute. The KELS contains data from students in 
Korea collected over several years, and in our example we use the KELS 2009 and 
2010 datasets. One possible analysis that we explore here is the relationship between 
self-reported math efficacy (the belief in one’s confidence and proficiency in math) 
and a standardized math assessment score, here the Korean CSAT (College Scholastic 
Ability Test) math score. Self-efficacy in math and standardized math scores are most 
likely confounded through a variety of factors that include person characteristics, school 
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environments, or family upbringing and parental guidance. We consider as a potential 
mechanism for the front-door criterion the amount of hours spent studying on math, 
assessed through student self-report of studying at home, through a tutor, and through 
an educational television show in Korea (Educational Broadcasting System). For the 
front-door model to be valid, we need to assume that there are no further mechanisms 
besides hours studied (M), and further that the relationship between self-efficacy (X) 
and hours studied (M), and likewise the relationship between hours studied (M) and the 
SAT math score (Y) are unconfounded. Potential violations of these assumptions can be 
probed via sensitivity analysis.

Results
For our analysis, we used listwise deletion, resulting in a final sample size of 935. 
Self-efficacy is scored on a scale with a range in the data from 4 to 16, a mean of 9.8 
and standard deviation (SD) of 2.6. Hours studied per week ranged from 3 to 28, with a 
mean of 10.1, and an SD of 4.4. Finally, SAT scores ranged from 56 to 147, with a mean 
of 98.9 and SD of 17.4. We present the results of an unadjusted (naive) model, along with 
the front-door model in Table 3. All standard errors of the front-door model are based on 
1,000 bootstrap samples.

Table 3

Illustrative Results of the Causal Effect of Self-Efficacy on Math Score Analyzing the KELS Dataset

Estimate Unstandardized estimate (SE) Standardized estimate (SE) p
Naive estimate 2.00 (.21) .297 (.03) < .001

Front-door estimate .507 (.09) .075 (.014) < .001

Component path (X on M) .592 (.053) .351 (.031) < .001

Component path (M on Y) .856 (.140) .214 (.035) < .001

The naive estimate is significant, indicating a two point increase in math scores for 
each point increase in self-efficacy, or .297 on a standardized metric. The front-door 
estimate was substantially smaller (however, still significant), with an unstandardized 
estimate of .507 and .075 on a standardized metric. Intuitively this is plausible, because 
we would assume that there is potential for confounders that are both positively related 
to self-efficacy and standardized math scores, such as positive home environment, or 
intrinsic person characteristics.

The assumptions that had to be made for the analysis above to be valid are relatively 
strong. We had to assume no other unmeasured mediators, but it could easily be argued 
that the hours of studying math is not the only mechanism between self-efficacy and 
standardized test scores. Possibly, self-efficacy in math also causes less anxiety during 
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test-taking and thus increases scores on the standardized test. To address this point, 
one may conduct a sensitivity analysis. We used γ to describe this effect in earlier 
models. In a sensitivity analysis, γ could take on many different values. For example, 
if the researcher believes that this unobserved confounding path γ would be .2 (on a 
standardized metric), we would add a phantom variable on a causal pathway between 
X and M. To achieve a direct path γ of magnitude .2, we would set the path from X 
to the intermediary phantom to .447, and the path from the intermediary phantom to 
the outcome Y to .447 as well. These values are chosen because the direct path γ can 
be expressed as a product of the two component paths, which in this case would result 
in .447 × .447 ≈ .2. Typically, we would vary γ over a wide range of values, and in our 
sensitivity analysis we chose a range of −.85 to .85 on a standardized metric. Figure 
6 shows the standardized front-door estimate on the y-axis, and the amount of the 
violation in form of the γ path on the x-axis. In our particular sample, the observed effect 
was .075 on the standardized metric, and this effect is plotted as the dashed line, and it 
is right at γ being zero, which assumes no violation of the assumption. The shaded area 
under the curve designates for which values of γ the estimate remains significant. As 
we can see, for any unobserved mechanism with a negative effect, our observed effect 
would get even larger, and remain significant. For unmeasured mediators with a positive 
effect, our effect would cease to be significant only if this unmeasured mechanism would 
exceed 0.455 on a standardized metric. This effect would thus have to be nearly as strong 
as the one we observed. Arguably, it seems unlikely that an unobserved effect would 
have an effect of this magnitude, and thus this analysis would bolster our faith in our 
observed estimate.

The phantom variable approach allows for more complex scenarios. Consider that 
instead of an unobserved mechanism, we are worried that component paths could be 
biased by unmeasured confounders. Confounding may occur between self-efficacy (X) 
and number of hours studying (M), and hours studying (M) and the math score (Y). 
Intrinsic person characteristics, like conscientiousness, could possibly confound these 
relationships. To address two possible violations at the same time, two phantom variables 
can be included, and a sensitivity analysis can be performed over a whole grid of values 
of δ2 and δ3. The resulting contour plot in Figure 7 shows results of this sensitivity 
analysis. At the intersection where both δ2 and δ3 are at 0 is the actual observed front-
door estimate (.075). The contour lines are labeled with the value of the estimate that 
we would observe for different values of the confounding paths, whereas the axes of 
the plot show the amount of confounding on a standardized metric. The shaded area 
designates estimates that would reach significance. The plot thus shows regions in which 
confounding of the component paths would change the conclusion (in terms of statistical 
significance), or where the conclusions would remain robust. We see that any negative 
values of confounding between X and M, or M and Y only make the estimate larger. 
Likewise, the estimate is somewhat robust against positive confounding between X and 
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M, and only ceases to be significant for δ2 > .2. The observed effect is slightly less 
robust to positive confounding between M and Y and turns to be non-significant for 
approximately δ2 > .1.

Discussion
The aim of this paper was to derive the expected bias of the front-door estimator in 
linear models when necessary assumptions are violated, contrast it with a naive estima
tor, and to provide guidance on dealing with assumption violations through sensitivity 
analysis. In the presence of multiple violations, in which confounding and collider biases 
are introduced, the bias derivation is complex, and depends on a variety of parameters. 
This complex constellation can yield bias that does not monotonically increase with 
increases in paths that are inducing bias to the model. Offsetting or cancellation but also 
amplification of bias can occur. While it is not expected that bias will generally cancel 
out, it highlights the fact that simply considering the amount of potential confounding 
is not sufficient, but that also the direction of confounding should be considered when 
anticipating the amount of bias in a front-door model.

Figure 6

Sensitivity of the Standardized Front-Door Estimate to the Direct Effect

Note. The shaded area under the diagonal designates significant estimates.
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The bias of the front-door estimator was generally larger than that of the naive 
estimator when all assumptions of the front-door model were violated. However, when 
the full mediation assumption was met, the front-door estimator often had smaller bias 
than the naive estimator. This suggests that the front-door model can be preferable 
over adjusted regression models if the full mediation assumption holds, which resembles 
results by Glynn and Kashin (2018).

As a limitation of our work, we only consider the linear, tri-variate front-door model 
with violations of all assumptions, but more complex models that include more than a 
single cause, mechanism, or outcome, with limited dependent variables, and non-linear 
relationships, could be considered in future work.

Applied researchers will seldom know the exact magnitude of biasing paths, and 
therefore it will often be advisable to conduct sensitivity analyses. We offered some 
suggestions on how to conduct sensitivity analyses for the front-door estimator, and 
we provide explanation and computer code to perform these analyses using phantom 
variables. The creation of phantom variables allows convenient and precise modeling 
of unobserved confounding, and allows applied researchers to gauge the influence of 
violations of assumptions. We hope that this paper will further the adoption of the 
front-door adjustment in applied research.

Figure 7

Sensitivity of the Front-Door Estimate to Unobserved Confounding Between X and M, and M and Y

Note. The shaded area designates significant estimates. Note that significant values in the top left of the graph 
are opposite in sign.
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Appendix: Derivation of Front-Door Formulas
Here we present general unstandardized formulas for the two component effects (i.e., the effect of 
X on M and the effect of M on Y) of the front-door formula. We consider a linear data-generating 
model as in Figure A1 where both the confounding and full mediation assumptions are violated, 
and further all variables are unreliably measured due to independent measurement error. For 
simplicity but without loss of generality, we assume all exogenous variables, represented by dashed 
ellipses, such as U1, U2, and U3, which respectively produce the confounding δ1, δ2, and δ3, and eX , 
eM, and eY  have unit variances.
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Figure A1

General Front-Door Model With Measurement Error

The Component Effect of X on M
The population regression coefficient for X ∗ of the regression of M∗ on X ∗ is expressed by 
Cov(X ∗, M∗)/Var(X ∗). As the covariance is expressed as Cov(X ∗, M∗) = λ1λ2{Var(X)α + δ2} (by 
using path-tracing rules), the regression coefficient for X ∗, aiming at the first component effect 
(X → M), is given by

bM∗X ∗ = λ1λ2{Var(X)α + δ2}
Var(X∗) . (A1)

If all variables are standardized, implying that Var(X) = Var(X∗) = 1, then Equation (A1) reduces 
to

bM∗X ∗ = λ1λ2(α + δ2) . (A2)

In addition, if all variables are perfectly measured without error (i.e., X ∗ = X  and M∗ = M), imply
ing that λ1 = λ2 = 1, it further reduces to

bM∗X ∗ = bMX = α + δ2, (A3)

which is then identical to Equation (5).

The Component Effect of M on Y
First, by applying the path-tracing rules to Figure A1, we can obtain the following population 
bivariate correlations between the measured variables X ∗, M∗, and Y ∗:
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ρY ∗M∗ = Cov(Y ∗,M∗)
SD(Y ∗)SD(M∗) =

λ2λ3{Var(M)β + δ3 + Var(X)γα + δ1α + δ2γ}
SD(Y ∗)SD(M∗) ;

ρY ∗X ∗ = Cov(Y ∗,X ∗)
SD(Y ∗)SD(X ∗) =

λ1λ3{Var(X)αβ + δ2β + Var(X)γ + δ1}
SD(Y ∗)SD(X∗) ;

ρX ∗M∗ = Cov(X ∗,M∗)
SD(X ∗)SD(M∗) =

λ1λ2{Var(X)α + δ2}
SD(X∗)SD(M∗) .

(A4)

The unstandardized population partial regression coefficient for M∗ of the regression of Y ∗ on M∗

and X ∗ is expressed as:

bY ∗M∗ |X ∗ = ρY ∗M∗ − ρY ∗X∗ρX ∗M∗

1 − ρX∗M∗2 × SD(Y ∗)
SD(M∗) . (A5)

Plugging the correlations from Equation (A4) into Equation (A5), we can obtain the regression 
coefficient for M∗. First, the denominator part is expressed as:

1 − ρX∗M∗2 = Var(X ∗)Var(M∗) − λ12λ22{Var(X)2α2 + δ22 + 2αδ2Var(X)}
Var(X∗)Var(M∗) . (A6)

Second, the numerator part is expressed as:

ρY ∗M∗ − ρY ∗X∗ρX ∗M∗ = λ2λ3Var(X ∗){Var(M)β + δ3 + Var(X)γα + δ1α + δ2γ}
SD(Y ∗)SD(M∗)Var(X∗)

− λ12λ2λ3{Var(X)2α2β + 2Var(X)δ2αβ + δ22β + Var(X)2αγ + Var(X)δ2γ + Var(X)δ1α + δ1δ2}
SD(Y ∗)SD(M∗)Var(X∗) .

(A7)

Combining the two with the multiplication factor SD(Y ∗)/SD(M∗), and slightly rearranging them, 
we finally have

bY ∗M∗ |X ∗ = β λ2λ3{Var(X ∗)Var(M) − λ12K}
Var(X ∗)Var(M∗) − λ12λ22K

+ λ2λ3{Var(X ∗)δ3 − λ12δ1δ2}
Var(X∗)Var(M∗) − λ12λ22K

+ λ2λ3ϵ12{Var(X)αγ + δ1α + δ2γ}
Var(X∗)Var(M∗) − λ12λ22K

,
(A8)

where K = Var(X)2α2 + δ22 + 2αδ2Var(X) = Cov(X ,M)2. If all variables are standardized, implying 
that Var(X) = Var(X∗) = Var(M) = Var(M∗) = 1, then Equation (A8) reduces to

bY ∗M∗ |X ∗ = β λ2λ3{1 − λ12K}
1 − λ12λ22K

+ λ2λ3{δ3 − λ12δ1δ2}
1 − λ12λ22K

+ λ2λ3ϵ12{αγ + δ1α + δ2γ}
1 − λ12λ22K

,
(A9)
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where K = α2 + δ22 + 2αδ2 = Cov(X ,M)2 = Cor(X ,M)2. In addition, if all variables are perfectly 
measured without error, implying that λ1 = λ2 = λ3 = 1 and ϵ1 = 0, then Equation (A9) further 
reduces to

bY ∗M∗ |X ∗ = bYM |X = β + δ3 − δ1δ2
1 − K , (A10)

where K = (α + δ2)2. This is identical to Equation (6).
Equation (12) in the section on measurement error can be derived from Equation (A9) by 

setting δ2 = δ3 = 0 and γ = 0. That is,

bY ∗M∗ |X ∗ = β λ2λ3(1 − λ12α2)
1 − λ12λ22α2 + λ2λ3ϵ12δ1α

1 − λ12λ22α2

=λ2βλ3(1 − λ12α2) + (1 − λ12)(λ2αδ1λ3)
1 − (λ1αλ2)2

.
(A11)

Note that ϵ12 = 1 − λ12 because Var(X ∗) = Var(λ1X + ϵ1eX) = Var(X) = 1 and Var(eX) = 1 when varia
bles are standardized.
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