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Abstract
Factor mixture modeling (FMM) has been widely adopted in health and behavioral sciences to 
examine unobserved population heterogeneity. Covariates are often included in FMM as predictors 
of the latent class membership via multinomial logistic regression to help understand the 
formation and characterization of population heterogeneity. However, interaction effects among 
covariates have received considerably less attention, which might be attributable to the fact that 
interaction effects cannot be identified in a straightforward fashion. This study demonstrated the 
utility of structural equation model or SEM trees as an exploratory method to automatically search 
for covariate interactions that might explain heterogeneity in FMM. That is, following FMM 
analyses, SEM trees are conducted to identify covariate interactions. Next, latent class membership 
is regressed on the covariate interactions as well as all main effects of covariates. This approach 
was demonstrated using the Traumatic Brain Injury Model System National Database.
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Factor mixture modeling (FMM) has been increasingly used in social, behavioral, and 
health sciences to examine unobserved population heterogeneity. It enables researchers 
to model both dimension and typology simultaneously by integrating common factor 
model and latent class analysis. such that latent classes (i.e., unobserved subgroups) 
would emerge to capture differences in the common factor model. Latent classes that 
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encapsulate differences in the common factor model among individuals would emerge 
from the FMM analyses. FMM has been applied with behavioral and health outcomes 
to examine heterogeneity among psychological trauma victims based on posttraumatic 
stress disorder symptoms (Elhai et al., 2011), breast cancer patients that reported fatigue 
symptoms (Ho et al., 2014), and patients with eating disorders based on their emotion 
regulation profiles (Nordgren et al., 2022), just to list a few.

Among FMM application, covariates (e.g., gender, race) play a critical role in FMM as 
they are essential to understanding the formation and characterization of latent classes. 
Specifically, covariates serve as the predictors of latent class membership via multinomial 
logistic regression in which the log odds of the probability of belonging to a certain 
class as opposed to a reference class are predicted by covariates. For example, Elhai et 
al. (2011) found that patients that experienced more traumas and female patients were 
more likely to be in a more severely symptomatic class as compared with the least 
symptomatic class.

Despite the prevalence of covariate inclusion, interaction effects among covariates 
have received considerably less attention. In the context of FMM, covariate interaction 
refers to the interplay between covariates in affecting latent class membership. In oth­
er words, the relationship between latent class membership and one covariate might 
depend on one or more other covariates. Take children’s executive function skills as 
a hypothetical example. From a developmental perspective, older children have more 
developed executive function skills compared to their younger counterparts and thus are 
more likely to be classified into a high executive function class versus a low executive 
function class. However, this gap in classification between age groups might be smaller 
for children with severe traumatic brain injuries (TBIs) as executive function skills of 
both age groups would be negatively affected by the injuries. Therefore, examining 
covariate interaction effects on latent class membership can offer us a more accurate 
and nuanced understanding of population heterogeneity, as it is often the complex 
and multifaceted interplay among factors that impact the outcome. In addition, the 
identification of covariate interactions can guide the development and implementation 
of tailored intervention programs that can improve individual outcomes more effectively. 
For instance, an intervention program to improve the executive function of children 
with TBIs can leverage the age by TBI severity interaction and tailor its design and/or 
implementation accordingly.

Although it is critical to identify covariate interactions, they have not been consid­
ered or tested in substantive research based on a non-exhaustive review of fifty-nine 
FMM applications we conducted. Such lack of investigation into covariate interactions 
in FMM stands in stark contrast to the common testing of interaction effects in other 
statistical models (e.g., regression) across applied research (Babikian et al., 2011; Ware 
et al., 2020; Yeates et al., 2010). The lack of attention on covariate interactions in FMM 
might be attributable to the fact that interaction effects cannot be identified in a straight­
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forward fashion. That is, a major source of covariate selection has been theories or 
substantive knowledge of researchers; however, it can be a challenging task for applied 
researchers to come up with hypotheses regarding potential covariate interactions given 
the unobserved nature of heterogeneity in FMM (Brandmaier et al., 2013; Jacobucci et 
al., 2017). On the other hand, if an exploratory approach is taken to test all possible in­
teractions, the number of interactions (including higher-order interactions) will increase 
exponentially as the number of covariates increases, which leads to a complicated model 
that is difficult to fit and interpret (Moons et al., 2015).

To address this gap in the literature, this study demonstrates the utility of a machine 
learning approach to identifying covariate interactions that might potentially explain 
the heterogeneity identified by FMM. Specifically, this study adopted the structural 
equation model or SEM trees which was proposed by Brandmaier et al. (2013) as a 
model-based decision tree approach to finding covariates and covariate interactions 
that impact parameter estimates of the specified model. SEM trees, as other decision 
tree approaches, have the capacity of automatically searching for covariate interactions 
(Arnold et al., 2021; Jacobucci et al., 2017). Leveraging this capacity, this study presents 
a novel integration of SEM trees into FMM for the purpose of identifying potential 
covariate interactions that explain latent class membership in FMM. This approach 
was demonstrated using the Traumatic Brain Injury Model System National Database 
(TBIMS-NDB) April 2020 version), the country’s largest multi-center database tracking 
the rehabilitation trajectories for individuals at least 16 years old treated for inpatient 
TBI rehabilitation. Through this demonstration, this study aims to provide an
exploratory tool for FMM users to identify potential covariate interactions, which offers 
a more nuanced and sophisticated interpretation of heterogeneity and furthers the
understanding of intersectionality.

Factor Mixture Modeling

Factor mixture modeling (FMM) is a combination of common factor model and latent 
class analysis (LCA), allowing us to model unobserved heterogeneity in parameters of 
the common factor model. The common factor model can be written as:

Y ik = τk + Λkηik + εik . (1)

Y ik is a J × 1 vector of responses for an individual i that is assigned to class k (k = 1, 2, 
…, K), with J denoting the number of items; τk is a J × 1 vector of item intercepts; Λk
is a J × R matrix of factor loadings and R refers to the number of factors; ηik is a R × 
1 vector of factor scores; and εik a J × 1 vector of item residuals that are assumed to be 
normally distributed with a mean of zero and variance of Θk. According to Equation (1), 
item response is a function of intercepts, factor loadings, factor scores, and residuals, as 
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in a typical common factor model. However, the subscript k associated with the model 
parameters indicates that they are allowed to vary across latent classes except some 
constraints needed for model identification. That is, a commonly used identification 
strategy is to fix the first item loading to be one across classes and the factor mean of 
the last class is fixed to be zero. Factor scores are assumed to be normally distributed 
with αk representing the vector of factor means and Ψk the covariance matrix of factors. 
Thus, the class-specific mean vectors and class-specific variance-covariance matrices can 
be expressed as:

μk = τk + Λkαk, (2)

Σk = ΛkΨkΛk′ + Θk . (3)

In FMM, the number of classes is often unknown a priori and needs to be determined 
by fitting models with varying numbers of classes and comparing model fit using infor­
mation criteria (ICs), including Akaike information criterion (AIC; Akaike, 1974), Baye­
sian information criterion (BIC; Schwarz, 1978), and sample size adjusted BIC (saBIC; 
Sclove, 1987). In addition to evaluating model fit, these ICs penalize model complexity 
by accounting for the number of parameters. Smaller IC values indicate a better trade-off 
between model fit and model complexity. Additionally, likelihood-based tests can be 
used in model selection, such as the Lo–Mendell–Rubin test (LMR; Lo et al., 2001), the 
adjusted LMR (aLMR; Lo et al., 2001), and the bootstrap likelihood ratio test (BLRT; 
McLachlan & Peel, 2000). These tests compare the fit of models with k and (k-1) classes 
and a significant test result (e.g., p < .05) support the k classes over the (k-1) classes.

In addition to the number of classes, measurement invariance (MI) is an important 
assumption of valid factor mean comparison across classes that needs to be tested (Clark 
et al., 2013; Kim et al., 2017; Lubke & Muthén, 2005; Wang et al., 2021). Models with 
different levels of equality constraints on measurement parameters can be constructed 
and compared, including configural invariance which requires the same factor structure 
across classes but factor loadings and intercepts are freely estimated, metric invariance 
that imposes the equality constraints on factor loadings across classes, and scalar invari­
ance which adds additional equality constraints on intercepts. Note that scalar invariance 
is often considered as a sufficient prerequisite to factor mean comparison in FMM and 
multiple-group analyses (Lubke & Muthén, 2005; Meredith, 1993). Beyond MI testing on 
measurement parameters, the equality of other model parameters (i.e., residual variances, 
factor variances and covariances) across classes can also be tested to facilitate the under­
standing and interpretation of latent classes and their differences (Clark et al., 2013).
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Structural Equation Model (SEM) Trees

SEM trees integrate SEM into a model-based decision tree paradigm in which the data 
set is recursively partitioned into subsets based on the splitting of covariates so that 
differences in SEM parameter estimates are maximized across subsets (Brandmaier et 
al., 2013; Jacobucci et al., 2017). SEM trees are useful when researchers are interested in 
finding the influence of covariates and covariate interactions on the SEM model. SEM is 
a family of statistical procedures that has been widely adopted in social and behavioral 
sciences to model the relationships among multiple variables (Kline, 2015). One of the 
key features of SEM is its capacity to model latent constructs (or factors) that are meas­
ured by a set of items (or observed variables) and take into account measurement errors. 
Examples of commonly used SEM procedures include path analysis, the common factor 
model, structural equation modeling (relationships among multiple factors), and latent 
growth curve models. Built on the SEM model, SEM trees serve as a tool for exploratory 
discovery of influences and interactions of covariates on SEM model parameters via the 
decision tree paradigm.

The decision tree is a supervised machine learning algorithm for prediction and 
classification (Gupta, 2014; Song & Lu, 2015). It grows a tree structure via recursive 
partitioning of the covariate space so that individuals classified into the same subset are 
relatively homogenous in terms of the outcome variable. Figure 1 presents an illustrative 
example of a scatterplot of a binary outcome variable, diagnosis of the Alzheimer's 
disease (triangles for Alzheimer's and squares for non-Alzheimer's) on the left and the 
resultant tree structure on the right, using age and education level as the covariates. The 
tree structure can be interpreted as a set of “if-then” statements. For instance, if age ≤ 
65 and education level ≤ 2, the predicted outcome is Alzheimer’s diagnosis. The splitting 
of the data set can occur based on multiple criteria and the figure demonstrates a simple 
rule that constructs a decision tree with a minimal misclassification rate which is also 
referred to as an incorrect prediction rate (Gupta, 2014).

Algorithms

Integrating features of SEM and decision tree, Brandmaier et al. (2013) proposed SEM 
trees to partition the data set with respect to covariates to maximize difference in 
SEM parameters across subsets. SEM trees are performed in three steps. First, define a 
template SEM which is referred to as M , and fit M to the data set. The following equation 
shows the minimization of a fit function with q degrees of freedom via maximum 
likelihood estimation (Arnold et al., 2021):

FML Y , S, μ θ , ∑ θ
= Y − μ θ T∑ θ −1 Y − μ θ +tr S∑ θ −1 − ln det S∑ θ −1 − p (4)
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In this equation, Y  is a vector of observed means; S is the observed covariance matrix; 
p indicates the number of observed variables in SEM; θ  is a vector of model parameter 
estimates; ∑ θ  is the model-implied covariance matrix; and μ θ  is a vector of model-
implied means.

Second, to evaluate a possible split based on a covariate, the full data is partitioned 
into l subsets where l = 1,   2,   …, L, and the template SEM model is fitted to each 
subset. Given that the subsets are non-overlapping, the fit of all SEMs across subsets is 
evaluated independently based on Equation (4) and these models are referred to as MSUB. 
Then the fit of MSUB and M is compared using the likelihood ratio test:

LR = N − 1 FML Y F , SF , μ θF , Σ θF − ∑
l = 1

L nl
N FML Y l, Sl, μ θl , Σ θl (5)

N and nl refer to the sample size for the full data set and the subset l. LR follows the 
chi-square distribution with L − 1 q degrees of freedom. All possible splits are evaluated 
for each covariate, and the split with maximum increase in the LR is chosen.

Lastly, repeat the steps for each subset due to the chosen split to find further parti­
tions that significantly improve the model fit; if the partition does not improve the model 
fit, then further partitioning is terminated. Results of SEM trees can be visualized as a 
tree structure with nodes. The inner node (i.e., node that has successors) represents a 
cut point with respect to a covariate, and leaf nodes are associated with an SEM that 
represents the induced subsamples of the data (Brandmaier et al., 2013).

Figure 1

Example of Decision Tree
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Model Constraints

Similar to FMM, constraints on SEM model parameters can be imposed in SEM trees. 
Specifically, there are two types of restrictions in a tree: a global restriction and a local 
restriction. A global restriction can be imposed on any parameter(s) in the SEM model 
in which the value for the constrained parameter is estimated with the full data set 
and fixed across all subsequent models. A local restriction is imposed only for split 
evaluation such that the parameters are equal across all models that share the same inner 
node, but the resultant leaf nodes can have different values of the parameters. In other 
words, parameters are allowed to be different across models, but their differences do not 
contribute to the split evaluation.

Integrating SEM Trees Into FMM

Among a few applications of SEM trees that have been identified (Ammerman et al., 
2019; de Mooij et al., 2018; Li et al., 2021; Sagan & Łapczyński, 2020), interaction among 
covariates was present. For instance, Li et al. (2021) included a total of 33 covariates 
to examine their associations with students’ attitudes towards collaboration, and found 
that student gender affected the CFA model parameters of students’ attitudes towards 
collaboration, but only for those with above-average home educational resources, which 
indicated an interaction effect between gender and home educational resources. Given 
the advantage of SEM trees in automatically searching for covariate interactions, this 
study proposes an integrated use of SEM trees and FMM such that covariate interactions 
that are identified by SEM trees might potentially explain heterogeneity in FMM.

The proposed integrated use consists of the following five steps:

1. Identify constructs and items for the FMM analyses, as well as covariates that might 
potentially explain the distinction among latent classes. Constructs refer to the 
latent factors that are measured by a set of items, which is the basis of FMM analyses 
as shown in Equation (1).

2. Conduct unconditional FMM analyses (without covariates) based on the identified 
constructs and items. Specifically, given that the number of classes and the class-
varying parameters are unknown, a series of FMMs can be specified and fitted to the 
data, including 1-class, 2-class configural, metric, and scalar invariance models, 3-
class configural, metric, and scalar invariance models, etc. The fitted models can be 
compared in terms of fit based on multiple ICs, such as AIC, BIC, and saBIC1. Model 
with the smallest ICs can be chosen as the best-fitting model.

1) LMR, aLMR, and BLRT were not used because they are appropriate for determining the number of classes; 
however, compared models in the analysis involves different class-varying parameters in addition to the number of 
classes. Thus, the likelihood-based tests were not appropriate.
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3. Examine the substantive interpretability of the best-fitting model based on 
parameter estimates.

4. Conduct SEM trees analyses to identify covariate interactions that could potentially 
explain latent class membership in FMM. To maximize the chance that covariate 
interactions selected by the SEM trees would explain latent class membership in 
FMM, we propose that the specification of parameter restrictions between these two 
approaches should be matched. That is, the level of invariance (i.e., configural, 
metric, or scalar) that is identified in FMM is also adopted in SEM trees via the global 
constraint function.

5. Multinomial logistic regression is conducted with covariate interactions that are 
detected by the SEM trees as well as all main effects to examine correlates of latent 
classes. The three-step approach to covariate inclusion is adopted here, given that 
the identification of latent classes is done without the influence of covariates, and 
the impact of covariates and covariate interactions is examined while taking into 
account classification errors (Asparouhov & Muthén, 2014; Vermunt, 2010).

Demonstration

This demonstration serves as example of the integrated use of FMM and SEM trees 
via the five steps proposed above. The sample came from the Traumatic Brain Injury 
Model System National Database (TBIMS-NDB) obtained as public datasets with version 
date of April 2020. TBIMS-NDB was funded by the National Institute on Disability, Inde­
pendent Living, and Rehabilitation Research (NIDILRR) as a prospective, longitudinal, 
multicenter database to examine the health outcomes of more than 17,000 individuals 
who experienced TBIs that require inpatient rehabilitation in the United States. All data 
were collected using surveys, with baseline data collected at the time of discharge from 
inpatient rehabilitation settings and follow-up data collected at 1-, 2-, 5-, 10-, 15-, 20-, 
25-, and 30-years post-injury. This demonstration used the 1-year post-injury data that 
consisted of 9,741 individuals. A full description of the sociodemographic characteristics 
of the sample as well as other descriptive statistics of the variables is provided in Table 1. 
Annotated codes for the following analyses are included in the electronic Supplementary 
Materials.

For Step 1, the 5-item Satisfaction with Life Scale (SWLS) was used as the outcome as­
sessment for life satisfaction levels among individuals following TBI (Diener et al., 1985; 
Pavot & Diener, 1993). Each item scored from 1 (lowest life satisfaction) to 7 (highest life 
satisfaction) asking different aspects of a patient’s perception of his/her life conditions. 
A total of seven covariates were identified, including Functional Independence Measure 
(FIM) Cognitive on Admission (Linacre et al., 1994), pre-injury disability and pre-injury 
limitations (National Research Council, 2004), TBI severity (Teasdale & Jennett, 1976) as 
measured by patients’ total Glasgow Coma Scores, age at injury, biological sex, race, 
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and pre-injury employment status. All covariates were collected at baseline visit. Age at 

Table 1

Descriptive Statistics of Variables and Sample Sociodemographic Characteristics

Variable/Characteristic Statistic

Life Satisfaction N M SD
1. Ideal life 9717 4.06 2.08

2. Excellent life conditions 9728 4.06 2.08

3. Satisfaction with life 9729 4.60 2.05

4. Important things in life 9723 4.71 1.99

5. Life lived over 9709 3.84 2.22

Continuous Covariates N M SD
TBI severity 5529 11.21 4.06

FIM Cognition 9695 16.03 7.58

Categorical Covariates N %
Sex

Females 2751 28.25

Males 6988 71.75

Race

White 6897 70.82

Black 1596 16.39

Hispanic 849 8.72

Others 397 4.08

Age Group

AYAs 2994 30.74

Adults 5108 52.44

Older Adults 1639 16.83

Pre-Injury Employment Status

Employed 6389 66.12

Student 706 7.31

Unemployed 2568 26.58

Pre-Injury Impairment

Yes 368 5.49

No 6333 94.51

Pre-Injury Physical Limitation

Yes 491 7.33

No 6206 92.67

Note. Ideal life = In most ways my life is close to my ideal; Excellent life conditions = The conditions of my 
life are excellent; Satisfaction with life = I am satisfied with my life; Important things in life = I have gotten 
important things I want in life; Life lived over = If I could live my life over, I would change almost nothing. 
AYAs = adolescents and young adults.
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injury was recoded as a categorical variable: adolescents and young adults (AYAs; ≤ 25), 
adults (26–59), and older adults or seniors (≥ 60).

For Step 2, unconditional FMM analyses were conducted with life satisfaction in 
Mplus 8.42 (Muthén & Muthén, 1998-2017). Table 2 presents model fit comparisons of 
FMMs. All fitted models converged except the 4-class configural and scalar models. 
Among converged models, AIC, BIC, and saBIC consistently showed that the 4-class 
metric model had a superior fit.

Table 2

Model Fit Comparison of Factor Mixture Modeling

Model Parm LL AIC BIC saBIC Entropy Class Proportions

1-class 15 -94483 188996 189104 189056

2-class conf 31 -88689 177440 177663 177565 .90 .72/.28

2-class metric 27 -88795 177644 177838 177753 .90 .73/.27

2-class scalar 18 -93401 186838 186967 186910 .92 .38/.62

3-class conf 47 -85263 170619 170957 170807 .91 .14/.58/.28

3-class metric 39 -85345 170769 171049 170925 .91 .14/.58/.28

3-class scalar 21 -93411 186863 187014 186947 .65 .40/.39/.21

4-class conf Non-convergence

4-class metric 51 -84430 168961 169328 169166 .87 .14/.25/.33/.28

4-class scalar Non-convergence

Note. conf = configural invariance; metric = metric invariance; scalar = scalar invariance; Parm = number of 
free parameters; LL = log-likelihood; AIC = Akaike information criterion; BIC = Bayesian information criterion; 
saBIC = sample size adjusted BIC.

For Step 3, interpretability of the 4-class metric model was examined. Table 3 presents 
the parameter estimates of this model by latent class. While loadings were constrained to 
be equal across classes, intercepts, factor mean, and factor variance were allowed to be 
freely estimated.3 Factor means were estimated to be -4.61, -3.01, and -1.98 for Classes 1, 
2, and 3 respectively, with Class 4 serving as the reference group (factor mean 0). Note 
that although factor mean comparison is not permitted with a metric invariance model, 
factor means of Classes 1, 2, and 3 were statistically significantly different from zero. 
Class 3 had the largest proportion, .33, followed by Class 4 (.28), Class 2 (.25), and Class 1 
(.14).

2) The EM algorithm was used to find the optimal parameter estimates via an iterative process until the convergence 
criterion (.00005 by default of Mplus) was met.

3) Exceptions were that intercept of the first item was constrained to be equal across classes and the factor mean of 
the last class (i.e., Class 4) in Mplus was fixed to be zero, for the identification purpose.
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Distinction of the latent classes was further interpreted based on the life satisfaction 
item mean by class, as illustrated in Figure 2. ANOVAs with Bonferroni adjustment were 
conducted to compare the item means across classes and results showed statistically 
significant mean differences between any two groups. Class 4 had the highest mean 
across all items, followed by Class 3, Class 2, and Class 1. Of note is that Class 3 had 
relatively high mean on the item, “I am satisfied with my life”, which might correspond 
to the high item intercept in the 4-class metric invariance FMM.

For Step 4, SEM trees were performed in the semtree package in R (Brandmaier et 
al., 2021; R Core Team, 2021). A CFA model of life satisfaction measured by five items 
was specified and a total of 12 covariates were included. Given that a 4-class metric 
invariance model was supported in FMM, metric invariance was also established in SEM 
trees via the global constraints function such that factor structures and loadings were 
constrained to be equal across groups whereas intercepts, factor mean, and residual 
variances were freely estimated. The resulting tree was displayed in Figure 3. There were 
four splits among which the first two occurred on age and the other two on race. The 
first split divided the whole sample into two, older adults (n = 1639) versus the rest (n = 
8102). The second split further divided those that were not older adults into two, adults 
(n = 5108) versus AYAs (n = 2994). Each of these two groups was split again on whether 
or not the patient was Black. Therefore, there were a total of five groups as a result of 
SEM trees, older adults, Black adults, adults that were not Black, Black AYAs, and AYAs 
that were not Black, n = 1639, 921, 4187, 502, 2490 respectively.

Table 3

Parameter Estimates of the Four-Class Metric Invariance FMM

Intercept

Item/Statistic Loading Class 1 Class 2 Class 3 Class 4

Item
Ideal 1.00 6.12 6.12 6.12 6.12

Cond 1.15 6.87 6.47 6.48 6.13

Satisfied 1.05 6.45 5.78 8.00 6.24

Important .94 6.90 6.79 6.74 6.21

Live again .88 5.57 6.16 5.64 5.23

Statistic
Factor mean -4.61 -3.01 -1.98 0

Factor variance .23 .43 .34 .32

Class proportion .14 .25 .33 .28

Wang, Xu, & Shen 313

Methodology
2023, Vol. 19(3), 303–322
https://doi.org/10.5964/meth.9487

https://www.psychopen.eu/


Figure 3

Tree Plot of SEM Trees



Note. N refers to the sample size at each split; LR is the likelihood ratio statistic with the difference in degrees of 
freedom (df); ages and agem refer to older adults and adults, respectively; black refers to the race group of 
Black.

Figure 2

Life Satisfaction Item Mean by Latent Class

Integrating SEM Trees and FMM 314

Methodology
2023, Vol. 19(3), 303–322
https://doi.org/10.5964/meth.9487

https://www.psychopen.eu/


Given that split occurred on whether or not the patient was Black for both adults and 
AYAs but not older adults, an interaction effect was signified between the race category 
of Black and older adults. In other words, the impact of being Black on CFA model 
parameters was absent for older adults and present for the rest of the sample.

For Step 5, the interaction effect between older adults and Black that was detected 
by SEM trees was included in the multinomial logistic regression on top of all main 
effects. Results (see Table 4) showed that the interaction effect was significant for Class 
2, B(SE) = -.88(.35), p = .013, which indicates that the impact of race on the likelihood 
of being assigned to Class 2, a somewhat satisfaction class, depended upon age group. 
That is, for individuals that were AYAs, the odds of being in Class 2 (versus Class 4, the 
reference group) for Black people were 2.24 times that of White people, controlling for all 
other covariates in the model. However, for older adults, Black individuals experienced a 
reduction of 7% in the odds of being in Class 2 compared to the White. In other words, 
seniority positively related with life satisfaction for Black individuals, and the Black 
AYAs were at a higher risk for life dissatisfaction.

The interaction between age group and race is further illustrated in Table 5 in which 
the composition of Classes 2 and 4 with regards to age group and race is presented. 

Table 4

Results of Multinomial Logistic Regression via the Three-Step Approach

Class 1 Class 2 Class 3

Covariate Est (SE) OR Est (SE) OR Est (SE) OR

TBI severity -.04 (.02) 0.96* -.01 (.01) 0.99 -.01 (.01) 0.99

FIM cognition -.01 (.01) 0.99 -.02 (.01) 0.98* -.01 (.01) 0.99

Adults .63 (.18) 1.87*** .51 (.14) 1.66*** -.21 (.13) 0.81

Older Adults -.56 (.24) 0.57* -.06 (.18) 0.94 -.63 (.16) 0.54***

Female .04 (.14) 1.04 .12 (.11) 1.12 .10 (.11) 1.10

Black .72 (.18) 2.06*** .81 (.16) 2.24*** .54 (.16) 1.71**

Hispanic .05 (.20) 1.05 .22 (.16) 1.24 -.10 (.16) 0.90

OtherRace -.58 (.39) 0.56 .37 (.22) 1.44 -.28 (.24) 0.76

Student -.10 (.33) 0.91 .07 (.24) 1.07 .04 (.22) 1.04

Unemployed .64 (.15) 1.89*** .28 (.12) 1.32* .29 (.11) 1.34**

Pre-impairment -.22 (.27) 0.80 -.002 (.20) 1.00 .02 (.19) 1.02

Pre-phylimit .38 (.22) 1.47 .16 (.18) 1.18 .18 (.18) 1.19

Older Adults*Black -.82 (.52) 0.44 -.88 (.35) 0.42* -.29 (.32) 0.75

Note. Pre-impairment = pre-injury impairment; pre-phylimit = pre-injury physical limitation; the missing 
groups for categorical covariates are the reference groups (i.e., AYAs, Male, White, and Employed). Est (SE) = 
estimated regression coefficient (standard error); OR = odds ratio.
*p < .05. **p < .01. ***p < .001.
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That is, among 435 Black people that were assigned to Class 2, the somewhat satisfaction 
class, only 7.59% were senior, whereas 20.66% of Black people in Class 4, the high 
satisfaction class, were senior. The discrepancy in percentages was not as substantial 
as above for the Black AYAs, the White seniors, or the White AYAs. In addition to the 
interaction effect, adults were more likely to be in Class 2 than AYAs and those that were 
unemployed were associated with a higher likelihood of being in Class 2 than those that 
were employed.

For the other classes (i.e., Classes 1 and 3), despite the absence of a significant interac­
tion effect, age, race, and unemployment all had significant impact on the latent class 
membership. That is, adults were more likely to be in Class 1 which were characterized 
by low life satisfaction, compared with AYAs. Older adults were less likely to be in 
Classes 1 and 3 which were the low and moderate life satisfaction classes, respectively, 
compared with AYAs. Individuals who were Black were more likely to be in Classes 1 and 
3 than Class 4, compared with those that were White. Those that were unemployed were 
associated with a higher likelihood of being in Classes 1 and 3 compared with those that 
were employed.

Table 5

Age Group by Race Interaction Effect

Race and Age Group Class 2 Class 4

Black
AYAs 119 (27.36%) 80 (29.52%)

Adults 283 (65.06%) 135 (49.82)

Older Adults 33 (7.59%) 56 (20.66%)

Total 435 (100.00%) 271 (100.00%)

White
AYAs 378 (23.46%) 664 (31.77%)

Adults 929 (57.67%) 926 (44.31%)

Older Adults 304 (18.87%) 500 (23.92%)

Total 1611 (100.00%) 2090 (100.00%)

Note. AYAs = adolescents and young adults.
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Discussion

This study aimed to demonstrate the utility of a machine learning approach, SEM trees, 
for the identification of covariate interactions that potentially explain latent classes in 
FMM. Specifically, this study tapped into the advantage of SEM trees in automatically 
searching for covariate interactions and showed that covariate interaction that was 
detected by SEM trees can be incorporated into FMM to explain the distinction among 
latent classes. As demonstrated, SEM trees revealed the interaction between race and age 
group, which provided a more nuanced understanding of how these factors interplayed 
to affect life satisfaction. That is, the impact of being Black on individuals’ likelihood 
of being assigned to a somewhat satisfaction versus a high satisfaction class depended 
on age group, which clearly indicates seniority as a protective factor against life dissatis­
faction. Retrospectively, this interaction effect is in alignment with the prior literature 
on life satisfaction and other psychological and health outcomes (Ajrouch et al., 2001; 
George et al., 1985; Phatak et al., 2013; Shaw et al., 2010). Overall, this demonstration 
provides an example of how intersectionality can be examined and understood with an 
integration of FMM and SEM trees.

Despite the utility of the SEM trees in identifying covariate interactions, there is no 
guarantee that the interaction terms will turn out to be the sources of heterogeneity in 
FMM. For example, the race by age group interaction was statistically significant in one 
latent class, but not for the other two classes. This possible discrepancy between FMM 
and SEM Trees occurred due to the drastic differences between the two approaches in 
how heterogeneity is modeled (Jacobucci et al., 2017). That is, in FMM, latent classes 
formed on the basis of the estimated model parameters (e.g., intercepts, loadings, factor 
mean, factor variance), whereas splits of the sample in SEM trees depend upon covari­
ates. Note that although a conditional FMM might be more comparable to SEM trees 
given that the contribution of covariates to the formation of latent classes is allowed, 
we adopted unconditional FMM in our study which allows researchers to first examine 
heterogeneity based on the outcome of interest and subsequently explore the impact 
of covariates. This has been aligned with the vast majority of FMM applications (e.g., 
Babusa et al., 2015; Bernstein et al., 2013; Elhai et al., 2011).

The possible discrepancy between FMM and SEM trees in identifying covariate inter­
actions does not undermine the utility of SEM trees in suggesting potential interactions. 
Especially when intersectionality is of interest to applied researchers but substantive 
theories or knowledge regarding the form of interactions are lacking, SEM trees offers a 
data-driven and exploratory approach that can be adopted to identify possible interaction 
effects that explain latent classes in FMM. As demonstrated in the paper, an uncondi­
tional FMM can be conducted first to identify latent classes and the level of equality 
constraints on parameters across classes. Next, the SEM trees can be conducted with a 
comparable level of constraints to FMM (e.g., loadings are equal across classes) and the 
suggested covariate interactions could be added to the multinomial logistic regression on 

Wang, Xu, & Shen 317

Methodology
2023, Vol. 19(3), 303–322
https://doi.org/10.5964/meth.9487

https://www.psychopen.eu/


top of the main effects via the three-step approach. Alternatively, if hypothesis regarding 
interaction effects is available, the two modeling approaches can be used concurrently 
and SEM trees at least offer an alternative perspective into how heterogeneity is shaped 
by covariates.

While we highlight the utility of SEM trees in suggesting covariate interactions, a few 
caveats are worth mentioning. First, future Monte Carlo simulation studies are needed to 
systematically evaluate the efficacy of this approach of integrating SEM trees with FMM. 
For example, multiple splitting methods and options to control the growth of the tree 
are available in the implementation of the SEM trees approach, and simulation studies 
are needed to examine which method and option would be optimal under which data 
conditions (Jacobucci et al., 2017). Additional factors that can be considered in simulation 
studies include numbers of latent classes, degrees of class separation, number of covari­
ates, forms of interactions (e.g., two-way or higher-order interactions), etc. Second, the 
SEM trees approach should not be considered as a replacement of substantive theories 
or knowledge in identifying covariate interactions (Brandmaier et al., 2013). Covariate 
interactions suggested by the SEM trees should be meaningful and interpretable through 
a retrospective check with theories or knowledge of researchers, prior to the addition 
of interactions into the multinomial logistic regression. Third, this study demonstrated 
the utility of the SEM trees for FMM and future research is needed to examine the 
potential of this approach for other mixture models (e.g., growth mixture model, latent 
class analysis) via demonstrations and Monte Carlo simulations. Despite these caveats, 
we encourage FMM users to tap into the advantage of the SEM trees in identifying 
potential covariate interactions that advance their understanding of intersectionality and 
heterogeneity.
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