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Abstract

Factor mixture modeling (FMM) has been widely adopted in health and behavioral sciences to
examine unobserved population heterogeneity. Covariates are often included in FMM as predictors
of the latent class membership via multinomial logistic regression to help understand the
formation and characterization of population heterogeneity. However, interaction effects among
covariates have received considerably less attention, which might be attributable to the fact that
interaction effects cannot be identified in a straightforward fashion. This study demonstrated the
utility of structural equation model or SEM trees as an exploratory method to automatically search
for covariate interactions that might explain heterogeneity in FMM. That is, following FMM
analyses, SEM trees are conducted to identify covariate interactions. Next, latent class membership
is regressed on the covariate interactions as well as all main effects of covariates. This approach
was demonstrated using the Traumatic Brain Injury Model System National Database.
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I Factor mixture modeling (FMM) has been increasingly used in social, behavioral, and

2 health sciences to examine unobserved population heterogeneity. It enables researchers
3 to model both dimension and typology simultaneously by integrating common factor

4 model and latent class analysis. such that latent classes (i.e., unobserved subgroups)

5 would emerge to capture differences in the common factor model. Latent classes that
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encapsulate differences in the common factor model among individuals would emerge
from the FMM analyses. FMM has been applied with behavioral and health outcomes

to examine heterogeneity among psychological trauma victims based on posttraumatic
stress disorder symptoms (Elhai et al., 2011), breast cancer patients that reported fatigue
symptoms (Ho et al., 2014), and patients with eating disorders based on their emotion
regulation profiles (Nordgren et al., 2022), just to list a few.

Among FMM application, covariates (e.g., gender, race) play a critical role in FMM as
they are essential to understanding the formation and characterization of latent classes.
Specifically, covariates serve as the predictors of latent class membership via multinomial
logistic regression in which the log odds of the probability of belonging to a certain
class as opposed to a reference class are predicted by covariates. For example, Elhai et
al. (2011) found that patients that experienced more traumas and female patients were
more likely to be in a more severely symptomatic class as compared with the least
symptomatic class.

Despite the prevalence of covariate inclusion, interaction effects among covariates
have received considerably less attention. In the context of FMM, covariate interaction
refers to the interplay between covariates in affecting latent class membership. In oth-
er words, the relationship between latent class membership and one covariate might
depend on one or more other covariates. Take children’s executive function skills as
a hypothetical example. From a developmental perspective, older children have more
developed executive function skills compared to their younger counterparts and thus are
more likely to be classified into a high executive function class versus a low executive
function class. However, this gap in classification between age groups might be smaller
for children with severe traumatic brain injuries (TBIs) as executive function skills of
both age groups would be negatively affected by the injuries. Therefore, examining
covariate interaction effects on latent class membership can offer us a more accurate
and nuanced understanding of population heterogeneity, as it is often the complex
and multifaceted interplay among factors that impact the outcome. In addition, the
identification of covariate interactions can guide the development and implementation
of tailored intervention programs that can improve individual outcomes more effectively.
For instance, an intervention program to improve the executive function of children
with TBIs can leverage the age by TBI severity interaction and tailor its design and/or
implementation accordingly.

Although it is critical to identify covariate interactions, they have not been consid-
ered or tested in substantive research based on a non-exhaustive review of fifty-nine
FMM applications we conducted. Such lack of investigation into covariate interactions
in FMM stands in stark contrast to the common testing of interaction effects in other
statistical models (e.g., regression) across applied research (Babikian et al., 2011; Ware
et al., 2020; Yeates et al., 2010). The lack of attention on covariate interactions in FMM
might be attributable to the fact that interaction effects cannot be identified in a straight-
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forward fashion. That is, a major source of covariate selection has been theories or
substantive knowledge of researchers; however, it can be a challenging task for applied
researchers to come up with hypotheses regarding potential covariate interactions given
the unobserved nature of heterogeneity in FMM (Brandmaier et al., 2013; Jacobucci et
al., 2017). On the other hand, if an exploratory approach is taken to test all possible in-
teractions, the number of interactions (including higher-order interactions) will increase
exponentially as the number of covariates increases, which leads to a complicated model
that is difficult to fit and interpret (Moons et al., 2015).

To address this gap in the literature, this study demonstrates the utility of a machine
learning approach to identifying covariate interactions that might potentially explain
the heterogeneity identified by FMM. Specifically, this study adopted the structural
equation model or SEM trees which was proposed by Brandmaier et al. (2013) as a
model-based decision tree approach to finding covariates and covariate interactions
that impact parameter estimates of the specified model. SEM trees, as other decision
tree approaches, have the capacity of automatically searching for covariate interactions
(Arnold et al., 2021; Jacobucci et al., 2017). Leveraging this capacity, this study presents
a novel integration of SEM trees into FMM for the purpose of identifying potential
covariate interactions that explain latent class membership in FMM. This approach
was demonstrated using the Traumatic Brain Injury Model System National Database
(TBIMS-NDB) April 2020 version), the country’s largest multi-center database tracking
the rehabilitation trajectories for individuals at least 16 years old treated for inpatient
TBI rehabilitation. Through this demonstration, this study aims to provide an
exploratory tool for FMM users to identify potential covariate interactions, which offers
a more nuanced and sophisticated interpretation of heterogeneity and furthers the
understanding of intersectionality.

Factor Mixture Modeling

Factor mixture modeling (FMM) is a combination of common factor model and latent
class analysis (LCA), allowing us to model unobserved heterogeneity in parameters of
the common factor model. The common factor model can be written as:

Vi = T + Ay + - (1)
Yy is a J x 1 vector of responses for an individual i that is assigned to class k (k = 1, 2,
... K), with J denoting the number of items; 1, is a J x 1 vector of item intercepts; A,
is a J x R matrix of factor loadings and R refers to the number of factors; n; is a R x
1 vector of factor scores; and ¢, a J x 1 vector of item residuals that are assumed to be
normally distributed with a mean of zero and variance of ©,. According to Equation (1),
item response is a function of intercepts, factor loadings, factor scores, and residuals, as
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Integrating SEM Trees and FMM 306

in a typical common factor model. However, the subscript k associated with the model
parameters indicates that they are allowed to vary across latent classes except some
constraints needed for model identification. That is, a commonly used identification
strategy is to fix the first item loading to be one across classes and the factor mean of
the last class is fixed to be zero. Factor scores are assumed to be normally distributed
with oy, representing the vector of factor means and ¥, the covariance matrix of factors.

Thus, the class-specific mean vectors and class-specific variance-covariance matrices can
be expressed as:

He = Tk + Ak(xk, (2)

= MY AL+ O (3)

In FMM, the number of classes is often unknown a priori and needs to be determined
by fitting models with varying numbers of classes and comparing model fit using infor-
mation criteria (ICs), including Akaike information criterion (AIC; Akaike, 1974), Baye-
sian information criterion (BIC; Schwarz, 1978), and sample size adjusted BIC (saBIC;
Sclove, 1987). In addition to evaluating model fit, these ICs penalize model complexity
by accounting for the number of parameters. Smaller IC values indicate a better trade-off
between model fit and model complexity. Additionally, likelihood-based tests can be
used in model selection, such as the Lo-Mendell-Rubin test (LMR; Lo et al., 2001), the
adjusted LMR (aLMR; Lo et al., 2001), and the bootstrap likelihood ratio test (BLRT;
McLachlan & Peel, 2000). These tests compare the fit of models with k and (k-1) classes
and a significant test result (e.g., p < .05) support the k classes over the (k-1) classes.

In addition to the number of classes, measurement invariance (MI) is an important
assumption of valid factor mean comparison across classes that needs to be tested (Clark
et al., 2013; Kim et al., 2017; Lubke & Muthén, 2005; Wang et al., 2021). Models with
different levels of equality constraints on measurement parameters can be constructed
and compared, including configural invariance which requires the same factor structure
across classes but factor loadings and intercepts are freely estimated, metric invariance
that imposes the equality constraints on factor loadings across classes, and scalar invari-
ance which adds additional equality constraints on intercepts. Note that scalar invariance
is often considered as a sufficient prerequisite to factor mean comparison in FMM and
multiple-group analyses (Lubke & Muthén, 2005; Meredith, 1993). Beyond MI testing on
measurement parameters, the equality of other model parameters (i.e., residual variances,
factor variances and covariances) across classes can also be tested to facilitate the under-
standing and interpretation of latent classes and their differences (Clark et al., 2013).
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Structural Equation Model (SEM) Trees

SEM trees integrate SEM into a model-based decision tree paradigm in which the data
set is recursively partitioned into subsets based on the splitting of covariates so that
differences in SEM parameter estimates are maximized across subsets (Brandmaier et
al., 2013; Jacobucci et al., 2017). SEM trees are useful when researchers are interested in
finding the influence of covariates and covariate interactions on the SEM model. SEM is
a family of statistical procedures that has been widely adopted in social and behavioral
sciences to model the relationships among multiple variables (Kline, 2015). One of the
key features of SEM is its capacity to model latent constructs (or factors) that are meas-
ured by a set of items (or observed variables) and take into account measurement errors.
Examples of commonly used SEM procedures include path analysis, the common factor
model, structural equation modeling (relationships among multiple factors), and latent
growth curve models. Built on the SEM model, SEM trees serve as a tool for exploratory
discovery of influences and interactions of covariates on SEM model parameters via the
decision tree paradigm.

The decision tree is a supervised machine learning algorithm for prediction and
classification (Gupta, 2014; Song & Lu, 2015). It grows a tree structure via recursive
partitioning of the covariate space so that individuals classified into the same subset are
relatively homogenous in terms of the outcome variable. Figure 1 presents an illustrative
example of a scatterplot of a binary outcome variable, diagnosis of the Alzheimer's
disease (triangles for Alzheimer's and squares for non-Alzheimer's) on the left and the
resultant tree structure on the right, using age and education level as the covariates. The
tree structure can be interpreted as a set of “if-then” statements. For instance, if age <
65 and education level < 2, the predicted outcome is Alzheimer’s diagnosis. The splitting
of the data set can occur based on multiple criteria and the figure demonstrates a simple
rule that constructs a decision tree with a minimal misclassification rate which is also
referred to as an incorrect prediction rate (Gupta, 2014).

Algorithms

Integrating features of SEM and decision tree, Brandmaier et al. (2013) proposed SEM
trees to partition the data set with respect to covariates to maximize difference in

SEM parameters across subsets. SEM trees are performed in three steps. First, define a
template SEM which is referred to as M, and fit M to the data set. The following equation
shows the minimization of a fit function with g degrees of freedom via maximum
likelihood estimation (Arnold et al., 2021):

FylY, 5, 1(6), X (6)]

=7 —w@)]"20)'[Y — u(@)]+1r[SE(0) '] ~ Infdet[ s (0) ']} - p w
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Figure 1

Example of Decision Tree
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In this equation, Y is a vector of observed means; S is the observed covariance matrix;
p indicates the number of observed variables in SEM; 0 is a vector of model parameter
estimates; Y, (0) is the model-implied covariance matrix; and p(0) is a vector of model-
implied means.

Second, to evaluate a possible split based on a covariate, the full data is partitioned
into [ subsets where Il =1, 2, ..,L,and the template SEM model is fitted to each
subset. Given that the subsets are non-overlapping, the fit of all SEMs across subsets is
evaluated independently based on Equation (4) and these models are referred to as Mg
Then the fit of Mg,z and M is compared using the likelihood ratio test:

LR=(N- 1)§FML[YF’ Sp u(éF)’z(éF)] - é:l %F ML[Y_I’ Sp “(61)’2(61)]1 (5)

N and n; refer to the sample size for the full data set and the subset L LR follows the
chi-square distribution with (I — 1)q degrees of freedom. All possible splits are evaluated
for each covariate, and the split with maximum increase in the LR is chosen.

Lastly, repeat the steps for each subset due to the chosen split to find further parti-
tions that significantly improve the model fit; if the partition does not improve the model
fit, then further partitioning is terminated. Results of SEM trees can be visualized as a
tree structure with nodes. The inner node (i.e., node that has successors) represents a
cut point with respect to a covariate, and leaf nodes are associated with an SEM that
represents the induced subsamples of the data (Brandmaier et al., 2013).
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Model Constraints

Similar to FMM, constraints on SEM model parameters can be imposed in SEM trees.
Specifically, there are two types of restrictions in a tree: a global restriction and a local
restriction. A global restriction can be imposed on any parameter(s) in the SEM model

in which the value for the constrained parameter is estimated with the full data set

and fixed across all subsequent models. A local restriction is imposed only for split
evaluation such that the parameters are equal across all models that share the same inner
node, but the resultant leaf nodes can have different values of the parameters. In other
words, parameters are allowed to be different across models, but their differences do not
contribute to the split evaluation.

Integrating SEM Trees Into FMM

Among a few applications of SEM trees that have been identified (Ammerman et al.,
2019; de Mooij et al., 2018; Li et al., 2021; Sagan & Lapczynski, 2020), interaction among
covariates was present. For instance, Li et al. (2021) included a total of 33 covariates
to examine their associations with students’ attitudes towards collaboration, and found
that student gender affected the CFA model parameters of students’ attitudes towards
collaboration, but only for those with above-average home educational resources, which
indicated an interaction effect between gender and home educational resources. Given
the advantage of SEM trees in automatically searching for covariate interactions, this
study proposes an integrated use of SEM trees and FMM such that covariate interactions
that are identified by SEM trees might potentially explain heterogeneity in FMM.

The proposed integrated use consists of the following five steps:

1. Identify constructs and items for the FMM analyses, as well as covariates that might
potentially explain the distinction among latent classes. Constructs refer to the
latent factors that are measured by a set of items, which is the basis of FMM analyses
as shown in Equation (1).

2. Conduct unconditional FMM analyses (without covariates) based on the identified
constructs and items. Specifically, given that the number of classes and the class-
varying parameters are unknown, a series of FMMs can be specified and fitted to the
data, including 1-class, 2-class configural, metric, and scalar invariance models, 3-
class configural, metric, and scalar invariance models, etc. The fitted models can be
compared in terms of fit based on multiple ICs, such as AIC, BIC, and saBIC'. Model
with the smallest ICs can be chosen as the best-fitting model.

1) LMR, aLMR, and BLRT were not used because they are appropriate for determining the number of classes;
however, compared models in the analysis involves different class-varying parameters in addition to the number of
classes. Thus, the likelihood-based tests were not appropriate.
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Integrating SEM Trees and FMM 310

3. Examine the substantive interpretability of the best-fitting model based on
parameter estimates.

4. Conduct SEM trees analyses to identify covariate interactions that could potentially
explain latent class membership in FMM. To maximize the chance that covariate
interactions selected by the SEM trees would explain latent class membership in
FMM, we propose that the specification of parameter restrictions between these two
approaches should be matched. That is, the level of invariance (i.e., configural,
metric, or scalar) that is identified in FMM is also adopted in SEM trees via the global
constraint function.

5. Multinomial logistic regression is conducted with covariate interactions that are
detected by the SEM trees as well as all main effects to examine correlates of latent
classes. The three-step approach to covariate inclusion is adopted here, given that
the identification of latent classes is done without the influence of covariates, and
the impact of covariates and covariate interactions is examined while taking into
account classification errors (Asparouhov & Muthén, 2014; Vermunt, 2010).

Demonstration

This demonstration serves as example of the integrated use of FMM and SEM trees

via the five steps proposed above. The sample came from the Traumatic Brain Injury
Model System National Database (TBIMS-NDB) obtained as public datasets with version
date of April 2020. TBIMS-NDB was funded by the National Institute on Disability, Inde-
pendent Living, and Rehabilitation Research (NIDILRR) as a prospective, longitudinal,
multicenter database to examine the health outcomes of more than 17,000 individuals
who experienced TBIs that require inpatient rehabilitation in the United States. All data
were collected using surveys, with baseline data collected at the time of discharge from
inpatient rehabilitation settings and follow-up data collected at 1-, 2-, 5-, 10-, 15-, 20-,
25-, and 30-years post-injury. This demonstration used the 1-year post-injury data that
consisted of 9,741 individuals. A full description of the sociodemographic characteristics
of the sample as well as other descriptive statistics of the variables is provided in Table 1.
Annotated codes for the following analyses are included in the electronic Supplementary
Materials.

For Step 1, the 5-item Satisfaction with Life Scale (SWLS) was used as the outcome as-
sessment for life satisfaction levels among individuals following TBI (Diener et al., 1985;
Pavot & Diener, 1993). Each item scored from 1 (lowest life satisfaction) to 7 (highest life
satisfaction) asking different aspects of a patient’s perception of his/her life conditions.
A total of seven covariates were identified, including Functional Independence Measure
(FIM) Cognitive on Admission (Linacre et al., 1994), pre-injury disability and pre-injury
limitations (National Research Council, 2004), TBI severity (Teasdale & Jennett, 1976) as
measured by patients’ total Glasgow Coma Scores, age at injury, biological sex, race,
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Table 1

Descriptive Statistics of Variables and Sample Sociodemographic Characteristics

Variable/Characteristic Statistic
Life Satisfaction N M SD
1. Ideal life 9717 4.06 2.08
2. Excellent life conditions 9728 4.06 2.08
3. Satisfaction with life 9729 4.60 2.05
4. Important things in life 9723 4.71 1.99
5. Life lived over 9709 3.84 2.22
Continuous Covariates N M SD
TBI severity 5529 11.21 4.06
FIM Cognition 9695 16.03 7.58
Categorical Covariates N %
Sex

Females 2751 28.25

Males 6988 71.75
Race

White 6897 70.82

Black 1596 16.39

Hispanic 849 8.72

Others 397 4.08
Age Group

AYAs 2994 30.74

Adults 5108 52.44

Older Adults 1639 16.83
Pre-Injury Employment Status

Employed 6389 66.12

Student 706 7.31

Unemployed 2568 26.58
Pre-Injury Impairment

Yes 368 5.49

No 6333 94.51
Pre-Injury Physical Limitation

Yes 491 7.33

No 6206 92.67

Note. Ideal life = In most ways my life is close to my ideal; Excellent life conditions = The conditions of my
life are excellent; Satisfaction with life = I am satisfied with my life; Important things in life = I have gotten
important things I want in life; Life lived over = If I could live my life over, I would change almost nothing.
AYAs = adolescents and young adults.

236 and pre-injury employment status. All covariates were collected at baseline visit. Age at
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injury was recoded as a categorical variable: adolescents and young adults (AYAs; < 25),
adults (26-59), and older adults or seniors (= 60).

For Step 2, unconditional FMM analyses were conducted with life satisfaction in
Mplus 8.4* (Muthén & Muthén, 1998-2017). Table 2 presents model fit comparisons of
FMMs. All fitted models converged except the 4-class configural and scalar models.
Among converged models, AIC, BIC, and saBIC consistently showed that the 4-class
metric model had a superior fit.

Table 2

Model Fit Comparison of Factor Mixture Modeling

Model Parm LL AIC BIC saBIC  Entropy Class Proportions
1-class 15 -94483 188996 189104 189056

2-class conf 31 -88689 177440 177663 177565 .90 .72/.28

2-class metric 27 -88795 177644 177838 177753 .90 .73/.27

2-class scalar 18 -93401 186838 186967 186910 92 .38/.62

3-class conf 47 -85263 170619 170957 170807 91 .14/.58/.28
3-class metric 39 -85345 170769 171049 170925 91 .14/.58/.28
3-class scalar 21 -93411 186863 187014 186947 .65 .40/.39/.21
4-class conf Non-convergence

4-class metric 51 -84430 168961 169328 169166 .87 .14/.25/.33/.28
4-class scalar Non-convergence

Note. conf = configural invariance; metric = metric invariance; scalar = scalar invariance; Parm = number of

free parameters; LL = log-likelihood; AIC = Akaike information criterion; BIC = Bayesian information criterion;
saBIC = sample size adjusted BIC.

For Step 3, interpretability of the 4-class metric model was examined. Table 3 presents
the parameter estimates of this model by latent class. While loadings were constrained to
be equal across classes, intercepts, factor mean, and factor variance were allowed to be
freely estimated.’ Factor means were estimated to be -4.61, -3.01, and -1.98 for Classes 1,
2, and 3 respectively, with Class 4 serving as the reference group (factor mean 0). Note
that although factor mean comparison is not permitted with a metric invariance model,
factor means of Classes 1, 2, and 3 were statistically significantly different from zero.
Class 3 had the largest proportion, .33, followed by Class 4 (.28), Class 2 (.25), and Class 1
(.14).

2) The EM algorithm was used to find the optimal parameter estimates via an iterative process until the convergence
criterion (.00005 by default of Mplus) was met.

3) Exceptions were that intercept of the first item was constrained to be equal across classes and the factor mean of
the last class (i.e., Class 4) in Mplus was fixed to be zero, for the identification purpose.
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Table 3

Parameter Estimates of the Four-Class Metric Invariance FMM

Intercept
Item/Statistic Loading Class 1 Class 2 Class 3 Class 4
Item
Ideal 1.00 6.12 6.12 6.12 6.12
Cond 1.15 6.87 6.47 6.48 6.13
Satisfied 1.05 6.45 5.78 8.00 6.24
Important .94 6.90 6.79 6.74 6.21
Live again .88 5.57 6.16 5.64 5.23
Statistic
Factor mean -4.61 -3.01 -1.98 0
Factor variance .23 .43 34 .32
Class proportion .14 .25 .33 .28

Distinction of the latent classes was further interpreted based on the life satisfaction
item mean by class, as illustrated in Figure 2. ANOVAs with Bonferroni adjustment were
conducted to compare the item means across classes and results showed statistically
significant mean differences between any two groups. Class 4 had the highest mean
across all items, followed by Class 3, Class 2, and Class 1. Of note is that Class 3 had
relatively high mean on the item, “I am satisfied with my life”, which might correspond
to the high item intercept in the 4-class metric invariance FMM.

For Step 4, SEM trees were performed in the semtree package in R (Brandmaier et
al., 2021; R Core Team, 2021). A CFA model of life satisfaction measured by five items
was specified and a total of 12 covariates were included. Given that a 4-class metric
invariance model was supported in FMM, metric invariance was also established in SEM
trees via the global constraints function such that factor structures and loadings were
constrained to be equal across groups whereas intercepts, factor mean, and residual
variances were freely estimated. The resulting tree was displayed in Figure 3. There were
four splits among which the first two occurred on age and the other two on race. The
first split divided the whole sample into two, older adults (n = 1639) versus the rest (n =
8102). The second split further divided those that were not older adults into two, adults
(n =5108) versus AYAs (n = 2994). Each of these two groups was split again on whether
or not the patient was Black. Therefore, there were a total of five groups as a result of
SEM trees, older adults, Black adults, adults that were not Black, Black AYAs, and AYAs
that were not Black, n = 1639, 921, 4187, 502, 2490 respectively.
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Figure 2

Life Satisfaction Iltem Mean by Latent Class

~

Life Satisfaction Item Mean

o 3 — ~
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282 Note. N refers to the sample size at each split; LR is the likelihood ratio statistic with the difference in degrees of
283 freedom (df); ages and agem refer to older adults and adults, respectively; black refers to the race group of

284 Black.
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Table 4

Results of Multinomial Logistic Regression via the Three-Step Approach

Class 1 Class 2 Class 3

Covariate Est (SE) OR Est (SE) OR Est (SE) OR
TBI severity -.04 (.02) 0.96* -.01 (.01) 0.99 -01(.01)  0.99
FIM cognition -01 (.01) 0.99 -.02 (.01) 0.98* -01(.01)  0.99
Adults 63 (.18) 1.87°* 51 (.14) 1.66* -21(13) 081
Older Adults -56 (.24) 0.57* -.06 (.18) 0.94 -63(16) 054
Female .04 (.14) 1.04 12 (11) 1.12 10 (.11) 1.10
Black 72 (.18) 2.06™** 81 (.16) 2.24%* 54 (.16) 1.71%
Hispanic .05 (.20) 1.05 22 (.16) 1.24 -10(.16)  0.90
OtherRace -58 (.39) 0.56 37 (.22) 1.44 -28(24) 076
Student -10 (.33) 0.91 07 (.24) 1.07 04 (.22) 1.04
Unemployed 64 (.15) 1.89°** 28 (.12) 1.32* 29(.11) 1.34**
Pre-impairment -.22(.27) 0.80 -.002 (.20) 1.00 .02 (.19) 1.02
Pre-phylimit 38 (.22) 1.47 16 (.18) 1.18 18 (.18) 1.19
Older Adults*Black -.82 (.52) 0.44 -.88 (.35) 0.42* -29(32) 075

Note. Pre-impairment = pre-injury impairment; pre-phylimit = pre-injury physical limitation; the missing
groups for categorical covariates are the reference groups (i.e., AYAs, Male, White, and Employed). Est (SE) =
estimated regression coefficient (standard error); OR = odds ratio.

*p<.05.*p< .01 **p< .00l

Given that split occurred on whether or not the patient was Black for both adults and
AYAs but not older adults, an interaction effect was signified between the race category
of Black and older adults. In other words, the impact of being Black on CFA model
parameters was absent for older adults and present for the rest of the sample.

For Step 5, the interaction effect between older adults and Black that was detected
by SEM trees was included in the multinomial logistic regression on top of all main
effects. Results (see Table 4) showed that the interaction effect was significant for Class
2, B(SE) = -.88(.35), p = .013, which indicates that the impact of race on the likelihood
of being assigned to Class 2, a somewhat satisfaction class, depended upon age group.
That is, for individuals that were AYAs, the odds of being in Class 2 (versus Class 4, the
reference group) for Black people were 2.24 times that of White people, controlling for all
other covariates in the model. However, for older adults, Black individuals experienced a
reduction of 7% in the odds of being in Class 2 compared to the White. In other words,
seniority positively related with life satisfaction for Black individuals, and the Black
AYAs were at a higher risk for life dissatisfaction.

The interaction between age group and race is further illustrated in Table 5 in which
the composition of Classes 2 and 4 with regards to age group and race is presented.
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Table 5

Age Group by Race Interaction Effect

Race and Age Group Class 2 Class 4
Black
AYAs 119 (27.36%) 80 (29.52%)
Adults 283 (65.06%) 135 (49.82)
Older Adults 33 (7.59%) 56 (20.66%)
Total 435 (100.00%) 271 (100.00%)
White
AYAs 378 (23.46%) 664 (31.77%)
Adults 929 (57.67%) 926 (44.31%)
Older Adults 304 (18.87%) 500 (23.92%)
Total 1611 (100.00%) 2090 (100.00%)

Note. AYAs = adolescents and young adults.

That is, among 435 Black people that were assigned to Class 2, the somewhat satisfaction
class, only 7.59% were senior, whereas 20.66% of Black people in Class 4, the high
satisfaction class, were senior. The discrepancy in percentages was not as substantial

as above for the Black AYAs, the White seniors, or the White AYAs. In addition to the
interaction effect, adults were more likely to be in Class 2 than AYAs and those that were
unemployed were associated with a higher likelihood of being in Class 2 than those that
were employed.

For the other classes (i.e., Classes 1 and 3), despite the absence of a significant interac-
tion effect, age, race, and unemployment all had significant impact on the latent class
membership. That is, adults were more likely to be in Class 1 which were characterized
by low life satisfaction, compared with AYAs. Older adults were less likely to be in
Classes 1 and 3 which were the low and moderate life satisfaction classes, respectively,
compared with AYAs. Individuals who were Black were more likely to be in Classes 1 and
3 than Class 4, compared with those that were White. Those that were unemployed were
associated with a higher likelihood of being in Classes 1 and 3 compared with those that
were employed.
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Discussion

This study aimed to demonstrate the utility of a machine learning approach, SEM trees,
for the identification of covariate interactions that potentially explain latent classes in
FMM. Specifically, this study tapped into the advantage of SEM trees in automatically
searching for covariate interactions and showed that covariate interaction that was
detected by SEM trees can be incorporated into FMM to explain the distinction among
latent classes. As demonstrated, SEM trees revealed the interaction between race and age
group, which provided a more nuanced understanding of how these factors interplayed
to affect life satisfaction. That is, the impact of being Black on individuals’ likelihood

of being assigned to a somewhat satisfaction versus a high satisfaction class depended
on age group, which clearly indicates seniority as a protective factor against life dissatis-
faction. Retrospectively, this interaction effect is in alignment with the prior literature
on life satisfaction and other psychological and health outcomes (Ajrouch et al., 2001;
George et al., 1985; Phatak et al., 2013; Shaw et al., 2010). Overall, this demonstration
provides an example of how intersectionality can be examined and understood with an
integration of FMM and SEM trees.

Despite the utility of the SEM trees in identifying covariate interactions, there is no
guarantee that the interaction terms will turn out to be the sources of heterogeneity in
FMM. For example, the race by age group interaction was statistically significant in one
latent class, but not for the other two classes. This possible discrepancy between FMM
and SEM Trees occurred due to the drastic differences between the two approaches in
how heterogeneity is modeled (Jacobucci et al., 2017). That is, in FMM, latent classes
formed on the basis of the estimated model parameters (e.g., intercepts, loadings, factor
mean, factor variance), whereas splits of the sample in SEM trees depend upon covari-
ates. Note that although a conditional FMM might be more comparable to SEM trees
given that the contribution of covariates to the formation of latent classes is allowed,
we adopted unconditional FMM in our study which allows researchers to first examine
heterogeneity based on the outcome of interest and subsequently explore the impact
of covariates. This has been aligned with the vast majority of FMM applications (e.g.,
Babusa et al., 2015; Bernstein et al., 2013; Elhai et al., 2011).

The possible discrepancy between FMM and SEM trees in identifying covariate inter-
actions does not undermine the utility of SEM trees in suggesting potential interactions.
Especially when intersectionality is of interest to applied researchers but substantive
theories or knowledge regarding the form of interactions are lacking, SEM trees offers a
data-driven and exploratory approach that can be adopted to identify possible interaction
effects that explain latent classes in FMM. As demonstrated in the paper, an uncondi-
tional FMM can be conducted first to identify latent classes and the level of equality
constraints on parameters across classes. Next, the SEM trees can be conducted with a
comparable level of constraints to FMM (e.g., loadings are equal across classes) and the
suggested covariate interactions could be added to the multinomial logistic regression on
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top of the main effects via the three-step approach. Alternatively, if hypothesis regarding
interaction effects is available, the two modeling approaches can be used concurrently
and SEM trees at least offer an alternative perspective into how heterogeneity is shaped
by covariates.

While we highlight the utility of SEM trees in suggesting covariate interactions, a few
caveats are worth mentioning. First, future Monte Carlo simulation studies are needed to
systematically evaluate the efficacy of this approach of integrating SEM trees with FMM.
For example, multiple splitting methods and options to control the growth of the tree
are available in the implementation of the SEM trees approach, and simulation studies
are needed to examine which method and option would be optimal under which data
conditions (Jacobucci et al., 2017). Additional factors that can be considered in simulation
studies include numbers of latent classes, degrees of class separation, number of covari-
ates, forms of interactions (e.g., two-way or higher-order interactions), etc. Second, the
SEM trees approach should not be considered as a replacement of substantive theories
or knowledge in identifying covariate interactions (Brandmaier et al., 2013). Covariate
interactions suggested by the SEM trees should be meaningful and interpretable through
a retrospective check with theories or knowledge of researchers, prior to the addition
of interactions into the multinomial logistic regression. Third, this study demonstrated
the utility of the SEM trees for FMM and future research is needed to examine the
potential of this approach for other mixture models (e.g., growth mixture model, latent
class analysis) via demonstrations and Monte Carlo simulations. Despite these caveats,
we encourage FMM users to tap into the advantage of the SEM trees in identifying
potential covariate interactions that advance their understanding of intersectionality and
heterogeneity.
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The supplementary materials provided are the annotated codes for unconditional FMM analyses,
annotated codes for SEM Trees, and the annotated codes for the three-step approach to estimate
covariate and covariate interaction effect on latent class membership (see Wang et al., 2023).
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