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Abstract
Random effects contain crucial information to understand the variability of the processes under 
study in mixed-effects models with crossed random effects (MEMs-CR). Given that model selection 
makes all-or-nothing decisions regarding to the inclusion of model parameters, we evaluated if 
model averaging could deal with model uncertainty to recover random effects of MEMs-CR. 
Specifically, we analyzed the bias and the root mean squared error (RMSE) of the estimations of the 
variances of random effects using model averaging with Akaike weights and Bayesian model 
averaging with BIC posterior probabilities, comparing them with two alternative analytical 
strategies as benchmarks: AIC and BIC model selection, and fitting a full random structure. A 
simulation study was conducted manipulating sample sizes for subjects and items, and the variance 
of random effects. Results showed that model averaging, especially Akaike weights, can adequately 
recover random variances, given a minimum sample size in the modeled clusters. Thus, we endorse 
using model averaging to deal with model uncertainty in MEMs-CR. An empirical illustration is 
provided to ease the usability of model averaging.
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Mixed-effects models with crossed random effects (MEMs-CR) are an affordable statis
tical model to analyze data with complex random structures where the levels of the 
random effects are crossed (e.g., Baayen et al., 2008; Hoffman & Rovine, 2007; Martínez-
Huertas & Ferrer, 2022; Martínez-Huertas et al., 2022; Quené & van den Bergh, 2004; 
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Raudenbush, 1993). The usefulness of crossed random effects can be seen in different 
contexts like, for example, the sampling of participants and items in experimental re
search, or the sampling of students in neighborhoods and schools. In the first scenario, 
crossed random effects could capture variability within subjects and items in reaction 
times, as all the items are usually responded by all the participants (e.g., Baayen et al., 
2008). In the second scenario, we could find more complex random structures where 
students would be nested within the crossed random effects of neighborhoods and 
schools, when schools can have students from different neighborhoods and students 
from the same neighborhood can go to different schools (e.g., Raudenbush, 1993). As 
we are going to explain later, these random effects also contain crucial substantive 
information to understand the variability of the processes under study. Please consider 
a hypothetical experimental design where response time (milliseconds -ms-) of multiple 
items by different participants were analyzed in two different conditions (control vs. 
experimental). Equation 1 presents a MEMs-CR that could be used to analyze such study:

Ytsi = γ000 + γ100(Wtsi) + U0s0 + U00i + U1s0(Wtsi) + U10i(Wtsi) + etsi (1)

where Ytsi is the response time of participant s for item i in condition t, and Wtsi (control 
vs. experimental conditions) is a within factor where the items were presented in both 
control (Wtsi = 0) and experimental (Wtsi = 1) conditions. Fixed effects are represented 
with gamma (γ) letters and random effects are represented with U letters. γ000 is the 
mean of the control condition (intercept), γ100 is the experimental effect, U0s0 and U00i 

are the random intercepts for subjects and items, U1s0 and U10i are the random slopes 
for subjects and items, and etsi is the error term. Equation 1 assumes that there is a 
complex random structure with both random slopes for items and subjects, but there are 
many other intermediate parametrizations that could be considered for the same data by 
imposing null random slopes in each cluster. For example, there could be variability in 
the intercepts of both subjects and items, but we could find that all the items present 
the same experimental effect (i.e., null random slopes for items) or that the experimental 
effect tend to affect all the subjects in a similar way (i.e., null random slopes for subjects). 
The presence of not-null random slopes would mean that the estimated experimental 
effect is different for subjects and/or items.

It is common to know the fixed effects of the study when the experimental design is 
simple, like the one of the present simulation study. This allows to focus on the analysis 
of the variances of random effects and their implications for the target fixed effects 
(although, usually, the inclusion of random effects is used just as a way of statistical 
control). But more complex designs with different between and/or within effects, or 
crossed and/or nested effects, would require to, firstly, know the target fixed effects and, 
secondly, to test them after estimating the target random structure. Thus, even when 
researchers know the fixed effects of their study, some decisions must be made about 
the specification of the random structure. This could lead to important bias and errors of 
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statistical inference in MEMs if inadequate random structures are fitted (e.g., Hoffman, 
2015; Hox et al., 2018; Martínez-Huertas et al., 2022; Meyers & Beretvas, 2006; McNeish 
& Kelley, 2019; McNeish et al., 2017). Moreover, there is consensus about the necessity 
of including all relevant variability dimensions in conditions to potentiate ecological 
validity (Hoffman, 2015). Consequently, researchers have been studying the performance 
of different model selection strategies to establish random structures in MEMs and 
MEMs-CR (e.g., Barr et al., 2013; Martínez-Huertas et al., 2022; Matuschek et al., 2017). 
But model selection based on likelihood ratio tests, AIC and BIC of MEMs-CR seems to 
reach, approximately, an 80% of true random structure selection (see Martínez-Huertas et 
al., 2022). This result is promising and shows that model selection is undoubtedly a good 
practice for researchers, but also means that researchers would select an incorrect model 
20% of the times, and that more complex designs are expected to present lower rates of 
true random structure selection. In these contexts, model selection would mean to make 
an all-or-nothing decision regarding to the inclusion of parameters like random slopes.

Model averaging attempts to use all the available information in the competing 
models to increase the precision of the model estimations and to deal with model uncer
tainty (e.g., Burnham & Anderson, 2002, 2004; Claeskens & Hjort, 2008; Kaplan & Lee, 
2018; Konishi & Kitagawa, 2008). Model averaging would fit all the possible models and 
generate an average estimation for the target parameters by weighting the information 
from all possible models. This weighting is based on the relative fit index of each model. 
It is known that model averaging can reduce overconfidence avoiding threshold-based 
all-or-nothing decision making and is expected to be relatively robust against model 
misspecification (Hinne et al., 2020), and have been found to be a less risky option than 
model selection in terms of the bias of standard errors of fixed effects (Martínez-Huertas 
et al., 2022). Thus, these methodological tools are supposed to deal with the uncertainty 
of random effects and avoid errors of statistical inference, comparing to model selection 
that makes an all-or-nothing decision.

In the following lines, we present two model averaging perspectives: model averaging 
with Akaike weights and Bayesian model averaging (BMA) with BIC posterior probabili
ties.

Model Averaging With Akaike Weights
Model averaging with Akaike weights uses the AIC index to compute an average esti
mate of the target parameters (e.g., Akaike, 1979; Burnham & Anderson, 2002; Claeskens 
& Hjort, 2008; Kishino et al., 1991; Steele et al., 2014). This procedure involves fitting the 
competing models, M1, M2, …, Mr, and computing the so-called Akaike weights using the 
AIC index (e.g., Akaike, 1974) for each competing model as relative evidence in favor of 
each one among all the competing models (Burnham & Anderson, 2002). As explained, 
the AIC indices of all R models are ranked as follows:

Model Averaging to Recover Random Effects in MEMs-CR 300

Methodology
2022, Vol. 18(4), 298–323
https://doi.org/10.5964/meth.9597

https://www.psychopen.eu/


∆r = AICr - AICmin (2)

where ∆r represents the difference between the AIC of each r competing model and that 
of the best fitting model (AICmin). Then, Akaike weights are then calculated as:

ωr =   exp − ∆r /2
∑r = 1

R exp − ∆R /2
(3)

where ωr is the resulting Akaike weight for each competing model based on ∆r of all 
R competing models (Burnham & Anderson, 2002). Next, a weighted estimation of the 
target parameters is obtained by weighting the estimations of each model r using its 
ωr. These averaged estimations have been found to generate estimations of SEs of fixed 
effects of MEMs-CR with small bias, being a less risky approach than model selection 
strategies (Martínez-Huertas et al., 2022). In the present study, model averaging was 
applied on the estimation of the random effects of MEMs-CR.

Bayesian Model Averaging With BIC Posterior Probabilities
BMA shares the same rationale than model averaging with Akaike weights about the 
computation of averaged estimates for target parameters, but using a Bayesian frame
work (e.g., Chatfield, 1995; Draper, 1995; Fragoso et al., 2018; Kaplan & Lee, 2018; Hinne 
et al., 2020; Steel, 2020). It is worth mentioning that this approach works with posterior 
probabilities and that Bayes factor is one of the most accurate approximations to them, 
but in this study we are going to use BIC as an approximation to the posterior probability 
of the competing models due to its computational simplicity and effective performance 
(see Schwarz, 1978, and Neath & Cavanaugh, 2012 for a demonstration of the derivation 
of prior distributions based on BIC). Once different competing models M1, M2, …, Mr, 
have been fitted to the data set D, we can extract their BIC indices (BIC1, BIC2, …, BICr). 
Again, it is necessary to rank all the R competing models using:

∆r = BICr - BICmin (4)

where ∆r represents the difference between the BIC of each r competing model and 
that of the best fitting model (BICmin). Then, it is possible to approximate the posterior 
probability of each r model given data D as:

Pr Mj D =   exp − ∆r /2
∑r = 1

R exp − ∆R /2
(5)

where Pr Mj D  is an approximation to the posterior probability of each competing 
model, and shares an important equivalence with Akaike weights as they are based on 
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∆r of all R competing models. Similarly, a weighted estimation of the target parameters is 
obtained weighting the estimations of each model r using its posterior probability.

The Present Study
Random effects should be understood as informative parameters of the target process
es under study, making them a relevant substantive part of the results report (Barr, 
2013 presented a similar rationale on the use of random effects from a confirmatory 
perspective). Large intercept variances for subjects or items would indicate that there are 
important differences in the mean (e.g., some participants could be slower than others, 
or some items could be more difficult than others). Similarly, large slope variances for 
subjects or items would indicate that there are important differences in how the fixed 
effect and the dependent variable are related (e.g., some participants or items could be 
more sensitive to the experimental conditions than others). Thus, random effects should 
not be understood as of secondary interest, but as relevant and substantive information 
about the modeled processes. That is one of the main reasons to study the performance 
of model averaging, which aims to deal with model uncertainty, and to compare it 
with model selection all-or-nothing decision making about the inclusion of such random 
effects. In this line, it is known that the estimation of fixed effects does not present 
bias regardless of whether the random effects of the fitted model are correct or not, and 
that they are very similar across different random structures (Hoffman, 2015; Hox et 
al., 2018; Meyers & Beretvas, 2006). Previous research found that the estimation of the 
standard errors of fixed effects was more efficient for model averaging than for model 
selection (Martínez-Huertas et al., 2022). We think that such efficiency is related with the 
consideration of random effects.

In this line, there is a handicap when researchers want to recover the random 
structure of MEMs-CR using model averaging. This procedure uses all the available 
information from the competing models but, unfortunately, some models do not include 
all the parameters of interest. This is the case of random effects. Researchers could try 
to average random intercepts or random slopes when some of the competing models do 
not include such parameters by weighting null information (a zero) in model averaging. 
Thus, the usefulness of model averaging could be compromised recovering different ran
dom structures. The present study aims to evaluate the bias of averaged crossed random 
effects in simulation scenarios where the random structure of various competing models 
is incomplete. For this purpose, we are going to compare the average estimates of the 
two model averaging strategies introduced previously (Akaike weights and BMA with 
BIC posterior probabilities), with model selection of AIC and BIC indices as benchmarks. 
We think that there will be relevant differences between both perspectives because 
model averaging is supposed to deal with model uncertainty while model selection 
always does an all-or-nothing decision making. Given that all the MEMs-CR of the study 
are nested, the maximal MEM-CR (Barr et al., 2013; which is a MEM-CR with random 
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intercepts and random slopes for both subjects and items in this study) was used as an 
additional benchmark to compare with the averaged estimations. All these conditions 
were studied in two different simulation scenarios under the presence of symmetric 
and asymmetric variances of random intercepts and slopes of subjects and items, that 
is, when both random effects present the same or different variability. Although the 
simulation scenario of symmetric variances of random effects is more artificial, it is 
useful to analyze if the quality of the estimations of variances of random intercepts and 
random slopes tends to be similar. The simulation scenario of asymmetric variances of 
random effects is more ecologic because of usually the random effects present different 
variabilities in real data sets.

Method

Simulation Study
An experimental design in psycholinguistics was simulated using Equation 1 as the gen
erating model. Specifically, response time (ms) of multiple items by different participants 
were analyzed in two different conditions (control vs. experimental). Thus, a within-sub
ject effect was simulated here. Two different sources of variability were simulated: par
ticipants and items. These random effects were fully crossed due to all the participants 
answered all the items. In our simulation study, we used similar fixed and random effects 
population parameters as those in previous related work (Baayen et al., 2008; Barr et 
al., 2013; Matuschek et al., 2017; Martínez-Huertas et al., 2022). Table 1 presents the 
simulation parameters. The within-subject effect was set to 0 in all simulation conditions 
(fixed effects do not present bias as has been evidenced previously: Hoffman, 2015; Hox 
et al., 2018; Meyers & Beretvas, 2006). The mean of the control condition (intercept) was 
set to 2,000 ms. The residual level-1 variance σe2 was 90,000, so a 300 standard deviation 
should be understood as the residual level-1 error. Given that the focus of this study 
was the study of random effects, almost all the random structure of this model was 
manipulated in the simulation. The cluster-specific random effects for subjects and items 
intercepts are represented by U0s0 and U00i, respectively, and their variances σ0s02  and σ00i2 , 
respectively) were set to 0, 10,000 and 40,000 ms (standard deviations equal to 0, 100 
and 200 ms). The subject and item cluster-specific random slopes are represented by U1s0 

and U10i. Two different variances σ1s02  and σ10i2 , respectively) were simulated for subjects 
and items random slopes (0 and 10,000 ms; standard deviations equal to 0 and 100 ms). 
An intercept-slope covariance for subjects (σU0s0, U1s0) and items (σU00i, U10i) was simulated 
equivalent to an intercept-slope correlation equal to 0 and .60. The random effects and 
the error term were normally distributed. Different sample sizes were simulated for 
subjects and items (sample size for subjects: 15, 30, 60, and 90 subjects; and sample size 
for items: 5, 10, 30, and 60 items). A total of 1,152 simulation conditions were considered 
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in the present study, and 1,000 replications were generated for each simulation condition 
using R software. This makes a total of 1,152,000 replications.

Table 1

Simulation Parameters

Simulation conditions Parameter Values

Fixed conditions Intercept γ000 2,000 ms

Within-subject effect γ100 0 ms

Residual level 1 variance σe2 300 ms

Manipulated conditions Random intercepts for subjects σ0s0 0; 100; 200 ms

Random intercepts for items σ00i 0; 100; 200 ms

Random slopes for subjects σ1s0 0; 100 ms

Random slopes for items σ10i 0; 100 ms

Intercept-slope correlation for subjects and items r01 0; 0.60

Sample size for subjects N1 15; 30; 60; 90 subjects

Sample size for items N2 5; 10; 30; 60 items

Note. Random effects are presented as standard deviations. r01 represents the standardized intercept-slope 
covariance for subjects (σU0s0, U1s0) and items (σU00i, U10i).

Data Analysis
We assume that MEMs-CR naturally have random intercepts for both subjects and items. 
Also, we consider that the most complex MEM-CR will be the one with random inter
cepts and random slopes for both subjects and items. The former is called here minimal, 
whilst the latter is called here maximal MEMs-CR. Two intermediate random structures 
were also considered here: a MEM-CR with random intercepts for both subjects and 
items and random slopes for subjects (here, subject random slopes), and a MEM-CR with 
random intercepts for both subjects and items and random slopes for items (here, item 
random slopes). Thus, four MEMs-CR were fitted to the data using the restricted maxi
mum likelihood (REML) approach. This makes a total of 4,608,000 analyses (1,152,000 
replications x 4 MEMs-CR). All MEMs were fitted with the lme4 package (Bates et al., 
2015) in R software. lme4’s AIC and BIC fit indices were used to compute model selection 
and model averaging. Approximately, 99.79% of the estimated models converged. Please 
note that the simulated data was analyzed with random intercepts even when some sim
ulation conditions set those parameters to zero to emulate a natural analytical strategy, 
and to compare the recovery of random intercepts and random slopes under the same 
simulation conditions.

First, model selection performance of AIC and BIC fit indices was evaluated. It was 
computed as the proportion of true model selection: if the model used to simulate the 
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data was selected, it was considered a correct model selection. Otherwise, it was consid
ered as incorrect (please note that selecting the minimal MEMs-CR was also considered 
correct in those simulation conditions that set intercepts to zero to ease the simulation 
design). In the present study, these results are useful to contextualize the mean true 
model selection of each fit index as benchmarks.

Second, the estimations of model averaging with Akaike weights and BMA with BIC 
posterior probabilities were computed. For this purpose, we applied the above-mentioned 
procedures using the four competing models of this simulation study, namely: minimal, 
subject random slopes, item random slopes, and maximal MEMs-CR. Specifically, we 
computed the average estimations of the random effects.

Third, the bias of the estimations of the variances of the random effects was compu
ted using different measures. Bias was computed for all the random effects using the 
following formula:

1
R∑r = 1

R θr − θ , (6)

where θ is the population parameter and θr is the sample estimate of each R replicate. 
The interpretability of bias was done considering the simulated random variance in 
not-null variance conditions, that is, calculating the percentage of bias regarding the 100 
or 200 simulated variances. Root mean squared error (RMSE) was also computed for all 
the random effects using the following formula:

∑r = 1
R θr − θ 2

R , (7)

where θ is the population parameter and θr is the sample estimate of each R replicate. 
To ease the interpretability of the results, the analyses were conducted in different 
simulation scenarios depending on (1) symmetric vs. asymmetric simulated population 
variances of random intercepts and slopes; and (2) zero vs. not-zero simulated population 
random effects.

Results
Model selection with AIC and BIC and fitting a full random structure (maximal model) 
were used as benchmarks to compare with model averaging performance. As we will 
see in the results, the worse performance of model selection could be attributed to 
incorrect model selections that do not include the target random effects. Given that all 
the MEMs-CR of this simulation study were nested (they just have different random 
structures), fitting a full random structure (here, the maximal MEM-CR) is used as 
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another benchmark to compare with model averaging because it contains all the random 
effects under study.

First Simulation Scenario: Symmetric Variances of Random 
Intercepts and Slopes
AIC and BIC Model Selection

Table 2 presents the proportion (and standard deviation) of true model selection in the 
conditions of the simulation study. True model selection was higher for AIC in small 
sample sizes of subjects and items, comparing to BIC, when there were random slopes. 
These differences decrease as the number of subjects and items increase, and BIC obtains 
slightly higher true model performances in larger sample sizes. In general, BIC infra-par
ametrized the random structure of the model in almost all the simulation conditions 
(which favored the selection of MEMs-CR without random slopes), while AIC showed 
more accurate true model selections in demanding conditions with smaller sample sizes 
being more sensible to the presence of variability in random slopes. In this line, medium 
to large sample sizes were required in both clusters to obtain appropriate true model 
selection. These results show that researchers would select an important proportion 
of incorrect models in many of these simulation conditions (which means that true 
variances of random effects would be incorrectly set to zero). A similar pattern of results 
was found in the second simulation scenario (simulation conditions with asymmetric 
variances of random intercepts and slopes), but true model selection was even worse 
than in the first simulation scenario (simulation conditions with symmetric variances of 
random intercepts and slopes). As we will see, this could explain the advantages of model 
averaging in front of model selection.
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Table 2

Proportion (and Standard Deviation) of True Model Selection in the Simulated Conditions

Fit index
Number of 

subjects
Number of 

items Minimal
Subject 

random slopes
Item 

random slopes Maximal

AIC 15 5 .91 (.28) .25 (.43) .20 (.40) .07 (.25)

15 10 .90 (.29) .45 (.50) .42 (.49) .22 (.41)

15 30 .90 (.30) .81 (.39) .85 (.37) .78 (.41)

15 60 .90 (.30) .92 (.28) .92 (.27) .96 (.18)

30 5 .91 (.28) .44 (.50) .31 (.46) .18 (.39)

30 10 .91 (.29) .72 (.45) .63 (.48) .51 (.50)

30 30 .90 (.31) .92 (.26) .92 (.26) .98 (.14)

30 60 .89 (.31) .94 (.23) .93 (.26) .99 (.02)

60 5 .91 (.28) .67 (.47) .51 (.50) .41 (.49)

60 10 .91 (.29) .88 (.32) .82 (.38) .84 (.36)

60 30 .89 (.31) .93 (.25) .94 (.24) .99 (.01)

60 60 .89 (.31) .93 (.26) .93 (.26) 1.00 (.00)

90 5 .91 (.29) .77 (.42) .60 (.49) .57 (.49)

90 10 .90 (.30) .92 (.27) .88 (.33) .92 (.27)

90 30 .88 (.31) .93 (.25) .94 (.24) 1.00 (.00)

90 60 .88 (.32) .93 (.25) .94 (.24) 1.00 (.00)

BIC 15 5 .99 (.06) .05 (.22) .03 (.16) .00 (.04)

15 10 .99 (.05) .11 (.32) .09 (.28) .01 (.11)

15 30 .99 (.02) .42 (.49) .52 (.49) .24 (.42)

15 60 .99 (.02) .79 (.41) .87 (.34) .69 (.46)

30 5 .99 (.04) .15 (.36) .05 (.21) .00 (.08)

30 10 .99 (.02) .34 (.47) .20 (.40) .07 (.26)

30 30 .99 (.02) .86 (.34) .87 (.34) .75 (.43)

30 60 .99 (.02) .99 (10) .99 (.08) .99 (.12)

60 5 .99 (.03) .34 (.47) .11 (.32) .04 (.20)

60 10 .99 (.03) .68 (.47) .48 (.50) .34 (.47)

60 30 .99 (.01) .99 (.08) .99 (.08) .98 (.13)

60 60 1.00 (.00) .99 (.01) 1.00 (.00) 1.00 (.00)

90 5 .99 (.02) .49 (.50) .19 (.39) .10 (.30)

90 10 .99 (.02) .83 (.38) .68 (.47) .59 (.49)

90 30 .99 (.01) .99 (.03) .99 (.01) .99 (.03)

90 60 1.00 (.00) 1.00 (.00) 1.00 (.00) 1.00 (.00)
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Bias and RMSE of the Estimations of the Variances of Random Effects of 
Subjects and Items

In the first simulation scenario, symmetric variances of random intercepts and slopes 
(100 and 100 standard deviations, respectively) were considered for the two clusters 
(subjects and items). Figure 1 presents the mean of bias and RMSE of the estimations 
of null symmetric variances of random effects of subjects and items in model averaging 
and model selection with AIC and BIC, and fitting a full random structure (maximal 
model). Given that a standard deviation = 100 was simulated in this section of the study, 
the bias can be easily interpreted as percentage of bias. Regarding to bias, it was found 
that fitting a full random structure (that is, fitting the maximal model) presented the 
largest bias in almost all the simulation conditions. The worse performance of fitting a 
full random structure was highlighted in the estimations of null random slopes, as the 
model would not be able to correctly distribute the variability of the random effects. 
Model selection and model averaging presented a similar pattern of results in these 
simulation conditions, being the main differences of bias related to the AIC and BIC 
indices. The variances of random slopes were found to present small bias in almost all 
the conditions for model selection and model averaging (that is, bias tend to present less 
than 10% of bias), while the variances of random intercepts showed larger bias in the 
most demanding conditions (reaching a 35% of bias in the most demanding conditions). 
Probably, this result is related to the lack of capacity to distribute the variability of 
not-null random slopes when the models are also estimating random intercepts whose 
true variance is null (note that this is an artifact of the simulation design where the less 
complex MEM-CR used to analyze the data—the minimal MEM-CR—included random 
intercepts of subjects and items). Given that BIC tend to infra-parametrize the random 
structure of the model, both Bayesian model averaging with BIC posterior probabilities 
and model selection with BIC presented relatively accurate results for the estimations 
of null symmetric variances of random effects of subjects and items. But, as we will 
see later, the same reason generates more bias in the estimates of not-null symmetric 
variances of random effects. Model averaging with Akaike weights and model selection 
with AIC showed a similar pattern of results, reaching appropriate levels of bias (less 
than 10%) in almost all the conditions of the random slopes. RMSE presented a similar 
pattern of results. In this sense, the sample variance decreases as both sample sizes 
increase. Similarly, sample variance was larger for the procedures using AIC than for the 
ones using BIC for the estimation of null symmetric variances of these random effects.

Figure 2 presents the mean of bias and RMSE of the estimations of not-null symmet
ric variances of random effects of subjects and items in model averaging and model 
selection with AIC and BIC, and fitting a full random structure (maximal model). As 
introduced above, a different pattern of results was found for the estimations of not-null 
symmetric variances in these simulation conditions. Regarding to bias, accurate estimates 
of variances of random intercepts of subjects and items were found for model averaging 
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and model selection with AIC and BIC indices. That is, we found small bias (less than 
10%) even in the most demanding conditions of the study. On the contrary, important 
bias was found for the estimations of the variances of random slopes when there are 
small sample sizes. In general, Bayesian model averaging with BIC posterior probabilities 
and model selection with BIC presented inappropriate bias (surrounding the 90% of 
bias in different conditions), requiring medium to large sample sizes in both clusters 
to obtain accurate results. Model averaging with Akaike weights and model selection 
with AIC obtained significantly better performances, but medium to large sample sizes 
of subjects (e.g., 60–90 subjects) were required to obtain accurate estimates of variances 
of random slopes when the number of items was equal or larger than ten. None of 
the conditions with five items reached an appropriate level of bias (being the bias of 
subjects random slopes larger than the bias of items random slopes). Moreover, fitting a 
full random structure (that is, fitting the maximal model) presented accurate estimations 
of the variances of random slopes and the random intercepts of items. But it showed 
a relevant underestimation of random intercepts of subjects (reaching a 30% of bias in 
some conditions) when there were only five items. In any case, the combination of the 
results of Figure 1 and Figure 2 present a negative balance for fitting a full random 
structure because of this strategy would generate significantly biased estimates when 
there are null random effects and requires medium to large sample sizes in both clusters 
to obtain accurate results. It is worth mentioning here that model averaging with Akaike 
weights presented less bias than model selection with AIC (approximately, a difference 
of 10–15% of bias was found in favor of model averaging) when there were small sample 
sizes. Again, it was found that RMSE decreases as both sample sizes increase.

While Figure 2 showed the central tendency of bias and RMSE of the estimations 
of not-null symmetric variances of random effects of subjects and items, it is worth 
mentioning that the distribution of bias was substantively different for model averaging 
and model selection. Figure 3 presents different histograms of bias of model averaging 
with Akaike weights and model selection with AIC for some simulation conditions of 
not-null symmetric variances of random slopes of subjects and items (1000 replications 
each). The mean performance of both procedures was very similar in the different simu
lation conditions (although we saw slight advantages around the 5–10% in favor of model 
averaging), but the distribution of the performances revealed that making incorrect 
all-or-nothing decisions in model selection would be very harmful for model estimations. 
These differences are highlighted in the most demanding conditions with small sample 
sizes (in fact, the median showed the maximum bias in such conditions, that is, a 100% 
of bias). In this line, model averaging weights all the available information of the model 
and, thus, its estimations present a relevant level of uncertainty, but it is a less risky 
option than model selection to estimate crossed random effects in mixed-effects models.
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Figure 3

Histograms of Bias of Model Averaging With Akaike Weights and Model Selection With AIC for Some Simulation 
Conditions (1000 Replications Each)

Note. N1 = Number of subjects. N2 = Number of items. x axis ranges from -110 to 150. y axis ranges from 0 to 
700 replications. Continuous lines represent the mean. Discontinuous lines represent the median.

Second Simulation Scenario: Asymmetric Variances of Random 
Intercepts and Slopes
In the second simulation scenario, asymmetric variances of random intercepts and slopes 
(200 and 100 standard deviations, respectively) were considered for the two clusters (sub
jects and items). Additionally, we only considered the estimations of not-null variances 
because of their results did not present large differences with those of null symmetric 
variances of random effects.
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Thus, we only present the estimations of not-null asymmetric variances of random 
effects of subjects and items in model averaging and model selection in this section for 
the sake of brevity. Figure 4 presents the mean of bias and RMSE of the estimations 
of not-null asymmetric variances of random effects of subjects and items in model 
averaging and model selection with AIC and BIC.

First, it was found an absence of bias of the estimations of the random variances of 
the intercepts of subjects and items. In the most demanding conditions, the most severe 
bias was found to be around the 6% (that is, approximately, -12.5 bias was for the estima
tion of the 200 standard deviations). Similarly, we found more bias of the estimations of 
random intercepts in items than in subjects. The comparison of bias and RMSE of the 
random intercepts of subjects and items show that there is a relevant sample variance of 
the estimates that decreases as the sample sizes of both clusters increase.

Second, important bias was found for the estimations of the variances of the random 
slopes in the more demanding conditions. Again, the model averaging and the model 
selection derived from the BIC index presented a significantly worse performance than 
the ones of AIC index (the results of both indices are only comparable when there 
are larger sample sizes in both clusters). Given that the simulated random slopes had 
a standard deviation of 100, we can easily interpret the results as the percentage of 
bias. Bias was large in all the conditions where the sample sizes of both clusters were 
small, that is, for 5–10 items and 15–30 subjects. When one of the clusters presented 
a medium/large sample size (e.g., 60–90 subjects or 30–60 items), the recovery of the 
variances of both random effects was accurate (bias was around 8%), and the results 
were near (but larger than) the 10% of bias even in the more extreme conditions of small 
sample sizes of items. On the contrary, none of the conditions with 5 items reached 
an appropriate level of bias (being the bias of subjects random slopes larger than the 
bias of items random slopes), and the 10 item conditions presented a similar pattern of 
results with lower bias. Again, RMSE of the random slopes of subjects and items decrease 
as the sample sizes of both clusters increase. In this line, it is worth mentioning that 
model averaging with Akaike weights presented a significantly lower bias and RMSE 
than model selection with AIC index in the most demanding conditions, that is, when the 
sample sizes were smaller in both clusters. This means that the bias of model averaging 
with Akaike weights, although relevant, was lower than the one of model selection with 
AIC, and that the sample variance of the estimates followed the same pattern of results.
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Empirical Illustration
In this section, we present an empirical illustration about the use of model averaging 
with Akaike weights in one of the simulated data sets of this study. In this data set, 90 
subjects answered 60 items. Given that this is a simulated data set, we know that the 
population model has a standard deviation of 100 (a variance equal to 10,000 ms was 
simulated) for the random slopes of subjects, and a zero-variance for the random slopes 
of items. Then, the correct model that should be fitted to the data is a MEM-CR with 
not-null variances for the intercepts of both clusters, a not-null variance for random 
slopes of subjects and a null variance for random slopes of items. But the reality is 
that applied researchers typically do not know the population model of the random 
structure underlying their data. Imagine that a researcher aiming to analyze this data set 
is considering four possible MEMs-CR with different random variances (e.g., minimal, 
subject random slopes, item random slopes, and maximal). Such researcher would fit the 
four competing models to obtain their estimates and their AIC indices. The minimal 
MEM-CR presents an AIC = 77309.33, the model with subject random slopes has an AIC 
= 77207.52, the model with item random slopes presents an AIC = 77311.59, and the 
maximal MEM-CR has an AIC = 77209.74. Considering that the model with item random 
slopes presented the lower AIC, then it is possible to apply Equation 2 to obtain a 
measure of the relative fit of each model comparing to the best fitting model: 101.81, .00, 
104.07, and 2.23, respectively. These measures are used to compute the Akaike weights 
for each of the competing models using Equation 3:

ωminimal ≃ .000, ωsubject randon slopes ≃ .753, ωitem random slopes ≃ .000, and ωmaximal ≃ .247.

Then, we can compute the average estimate for all the parameters of the model. For 
example, consider that we want to compute the average estimate of the variances of the 
random slopes. To do so, we would multiply the estimation of the variance of the random 
slopes of each of the competing models by their respective Akaike weight, and then the 
resulting weighted estimates would be summed. Considering this example, the averaged 
variance of the subject random slopes would be:

Averaged σ1s0 = .000*.000 + .753*95.800 + .000*.000 + .247*95.814 = 95.804.

Similarly, the averaged variance of the item random slopes would be:

Averaged σ10i = .000*.000 + .753*.000 + .000*13.953 + .247*11.382 = 2.817.

Table 3 presents a summary of the elements used to compute model averaging with 
Akaike weights, and the averaged estimates for each variance of the target random 
effects of this simulation study.
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The resulting estimates of random slopes of model averaging with Akaike weights are 
close to the simulated parameters. In this example, there was important evidence in favor 
of the model with subject random slopes, and the models with null subject random slopes 
were very unlikely given the estimated variability in the data set. In more demanding 
scenarios with less evidence in favor of a model, Akaike weights would be less extreme 
weighting the estimations of all the competing models. The same procedure would apply 
for the estimation of any of the parameters of the model, including the fixed effects and 
their standard errors.

Discussion
Whilst random effects are usually considered of secondary interest, they contain crucial 
substantive information to understand the processes that are being modeled in MEMs-
CR. For example, random intercepts mean that there are individual differences in the 
mean process, and random slopes mean that there are individual differences in the 
target fixed effect of the researchers. Here, we endorse the use of random effects as a 
confirmatory hypothesis testing approach (see also Barr, 2013). Thus, finding substantive 
variability in the modeled processes is relevant from both theoretical and methodological 
point of views. Given that model selection makes all-or-nothing decisions regarding to 

Table 3

Empirical Illustration of the Use of Model Averaging With Akaike Weights in a Simulated Data Set

Model fit and Akaike weights (ωr)

Estimated models Minimal
Subject 
rand. slopes

Item rand. 
slopes Maximal

AIC 77309.33 77207.52 77311.59 77209.74

AICr–AICmin 101.81 .00 104.07 2.23

ωr .000 .753 .000 .247

Estimates of competing models

Random effects Minimal
Subject 
rand. slopes

Item rand. 
slopes Maximal

Averaged 
estimates

σ0s0 152.80 112.79 152.80 112.80 112.79

σ00i 84.13 84.21 78.57 78.52 82.80

σ1s0 .00 95.80 .00 95.81 95.80

σ10i .00 .00 13.95 11.38 2.82

Note. N1 = 90. N2 = 60.
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the inclusion of model parameters, we evaluated if model averaging could deal with 
model uncertainty and to unbiasedly recover random effects of MEMs-CR. We found 
a relevant influence of the strategy on the bias of random effects, in favor of model 
averaging comparing to both model selection and fitting the maximal MEM-CR. Addi
tionally, an empirical illustration was provided to ease the usability of model averaging 
for applied researchers.

Summary of Findings
We compared the bias of the average estimations of random effects of MEMs-CR using 
Akaike weights and BIC posterior probabilities, using AIC and BIC model selection and 
fitting a full random structure (here, maximal model) as benchmarks. Additionally, two 
simulation scenarios were considered where the random variances of intercepts and 
slopes of subjects and items were symmetrical or asymmetrical. The first simulation 
scenario was more artificial but allows to study the recovery of the variances of random 
intercepts and slopes with the same metric, while the second simulation scenario was 
more ecological as usually the variances of random intercepts tend to be larger than 
the ones of random slopes in experimental psychology. In general, AIC index obtained 
higher true model selection performances than BIC in different demanding conditions 
like having small sample sizes in any of the clusters (subjects and/or items), but incorrect 
random structures were selected in many cases (specially, under-parametrizing the ran
dom structure, that is, setting random effects equal to zero when they are different from 
zero). This was found to be crucial to comprehend the advantages of model averaging in 
front of model selection.

In scenarios with null random effects, no relevant differences were found between 
model averaging and model selection. Bias was larger in more demanding conditions 
(e.g., small sample sizes), but it was not alarming. This means that both model averaging 
and model selection provide virtually unbiased estimates of population random effects 
that do not differ from zero, once minimal sample sizes are raise. Presumably, this 
simulation scenario is not very common in empirical research.

In scenarios with not-null random effects, which are, presumably, the most common 
empirical scenario, interesting differences were found between model averaging and 
model selection. First, no relevant differences were found between them when random 
intercepts were estimated. This means that random intercepts were estimated unbiased
ly in almost all conditions of the simulation study, that is, including the presence of 
symmetrical and asymmetrical variances of random intercepts and slopes. Second, some 
differences were found between model averaging and model selection when random 
slopes were simulated, especially in random slopes of subjects. That is, given a minimum 
sample size, model averaging could estimate random slopes more accurately than model 
selection (the differences between the two strategies mainly appeared in random slopes 
of subjects, but their differences were less important for random slopes of items). But the 
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main advantage of model averaging was using all the available information while model 
selection made all-or-nothing decisions that were incorrect on many occasions (in some 
scenarios, we even found a median of the 100% percent of bias in random slopes when a 
null variance was settled to a cluster). These differences were dependent of the smaller 
sample sizes, as they probably limited the available information for the fit indices, being 
model averaging capable of overcoming, at least in part, this limitation.

Some relevant differences were also found between the versions of model averaging, 
that is, Akaike weights and BIC posterior probabilities. In general, it was found that 
Akaike weights obtained a better performance than BIC posterior probabilities when 
there are not-null random effects (which is, in fact, the most common scenario in applied 
research). Again, once minimum sample sizes were raised, Akaike weights could estimate 
unbiased random effects while BIC posterior probabilities obtained larger bias. In any 
case, the estimations of both versions of model averaging were affected by lower sample 
sizes in any of the simulated clusters.

Additionally, interesting differences were found between model averaging with 
Akaike weights and fitting a full random structure (here, maximal model). Model 
averaging was capable of recovering the random effects under conditions with large 
sample sizes in the target clusters. But fitting a full random structure (without using 
a model selection strategy; see for example Barr et al., 2013; Martínez-Huertas et al., 
2022; Matuschek et al., 2017 for different model selection strategies) was found to present 
large bias in the random effects that were analyzed in this simulation study if there 
are null population variances for random effects. Thus, fitting a full random structure 
(without a previous model selection) would lead to large bias in the estimation of random 
effects. Probably, the variability of the different clusters would be incorrectly distributed 
among the estimated random effects (e.g., the model could not be able to determine if the 
variability of a cluster is related to the intercepts or the slopes, and also the model could 
mix the variability between clusters). In any case, the estimates of fitting a full random 
structure were accurate when all the estimated random effects exist at the population 
level, which is not always known by applied researchers. Thus, we would like to endorse 
the use of model selection and model averaging instead of just fitting a full random 
structure to the data. In this sense, model averaging would consider all the available 
information of the different competing models based on their model fits, being more 
robust against model misspecification (see also Hinne et al., 2020) than fitting a full 
random structure.

Theoretical and Methodological Considerations
Applying a MEM-CR assumes decisions about their parametrization given that true 
population models are not known. Model averaging proposals use all the available infor
mation of different models to deal with uncertainty. Two general conclusions can be 
made from our analyses: model averaging and model selection show similar results for 
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recovering null random effects, and model averaging shows less bias than model selec
tion for recovering not-null random effects, especially for Akaike weights and random 
slopes of subjects. These conclusions are conditioned to minimum sample sizes in both 
clusters (that is, subjects and items). Thus, we would like to endorse model averaging 
with Akaike weights as a relevant tool to recover random effects in studies with medium 
to large sample sizes.

There is consensus about the necessity of including all relevant dimensions in experi
mental conditions to potentiate ecological validity (Hoffman, 2015). Thus, the importance 
of these methodological tools that allow to deal with the uncertainty of random effects is 
significantly emphasized. Therefore, model averaging approaches could have important 
theoretical implications for empirical research because they can avoid errors of statistical 
inference and to unbiasedly estimate random effects. Thus, model averaging allows to 
use the evidence in favor of each possible model without losing relevant information of 
their random effects by making questionable decisions about the random structure of 
MEMs-CR. The empirical illustration of this study aims to provide an example of the 
applicability of model averaging to the estimation of crossed random effects for applied 
researchers.

Limitations and Future Directions
The present study simulated different random structures for MEMs-CR, but only two 
population parameters (a null vs. not-null value) were considered to analyze the recov
ery of random effects. Also, a simple experimental design with two fixed effects (the 
intercept and the within-effect) was simulated due to our objective was to evaluate 
the recovery of random effects using model averaging. However, we think that model 
averaging would be an affordable tool to recover small random effects, which are more 
difficult to estimate, avoiding all-or-nothing decisions of model selection strategies. Also, 
given the importance of the design of the study to establish model random structures, it 
would be interesting to expand these results to other relevant designs like longitudinal 
studies (see Martínez-Huertas & Ferrer, 2022, for an illustration of the use of MEMs-CR 
in different longitudinal designs). Other complex designs, like models that use cross-level 
interaction effects or level-2 predictors, could be benefited of using model averaging 
approaches because these effects are largely influenced by the variability around the 
fixed effects. Moreover, these complex models would require considering more compet
ing models that: (1) would generate a very complex model selection scenario, and (2) 
could bias all the results of fixed effects if incorrect random structures were selected 
(e.g., setting some random effects equal to zero). Also, future research should explore 
other average estimates like evidence ratios, which can be understood as the evidence in 
favor of a model as the ratio of the weights (Burnham & Anderson, 2002). Additionally, 
some readers might find some parallelism of model averaging with ensemble methods 
and other statistical procedures that combine the predictions of different models or 
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estimators into a single estimate to improve the generalizability or robustness of the 
predictions of algorithms. Model averaging and other ensemble methods share a common 
underlying logic of computing a single estimate from different sources of information. 
In this study, we analyzed the usefulness of model averaging using AIC and BIC fit 
indices in MEMs-CR, but the research area of ensemble methods is more broaden. In 
this sense, the rationale of the present simulation study could be generalized to other 
interesting statistical procedures that use penalized estimation criteria to compute model 
estimations like penalized least squares for structural equation modeling (Huang, 2022), 
or regularized partial correlation networks (Epskamp & Fried, 2018).

Conclusions and Recommendations
Model averaging attempts to use all the available information of the competing models 
to deal with model uncertainty, beyond model selection based on AIC and BIC. Unbiased 
estimates of random effects were found in both model averaging with Akaike weights 
and BMA with BIC posterior probabilities under conditions with sufficient sample sizes 
in the target clusters. In general, 60 units per cluster were found to be an appropriate 
sample size to obtain very accurate estimations of the variances of random effects in the 
conditions of the present simulation study. But some differences were found in favor of 
model averaging with Akaike weights in demanding conditions like small sample sizes, 
which was also capable of estimating unbiased variances of random effects if one of the 
clusters presented large sample sizes. This means that larger number of subjects (e.g., 
60 subjects) could lead to compensate the handicaps of smaller sample sizes of items 
(e.g., 10 items). Whilst the performance of model averaging is questionable under some 
simulation conditions, it supposes an alternative to deal with model uncertainty even 
in those scenarios where using model selection would require a risky all-or-nothing deci
sion regarding to the inclusion of parameters like random slopes. Thus, we recommend 
using model averaging Akaike weights, and to use both model averaging approaches 
with small sample sizes to analyze their convergences and divergences.
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