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Abstract
Using Monte Carlo simulations, this study compared the performance of various approaches to the 
specification of random effects structures in linear mixed effects models (LMMs), including the 
minimal approach, the maximal approach, the forward search, the backward search, and the all-
possible structures approach. The results showed that if the predictor of interest is at the within-
cluster level or involves a cross-level interaction, the maximal approach, the best-path forward 
search, and the best-path backward search are all desirable methods. If the predictor of interest is 
at the cluster level, it is not essential to specify random slopes of Level-1 predictors. In addition, it 
is important to specify random slopes of within-cluster control variables, as they can increase the 
statistical power for testing the main within-cluster variables, especially when the sample size is 
small and the variance of the random slope of the control variable is large.
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Linear mixed effects models (LMMs) are commonly used to analyze clustered data in 
educational, social, and behavioral sciences. The general form of LMMs is given by 
Y = Xβ + Zu + e, where Y  represents the outcome variable, X  the predictors, β the fixed 
effects, Z  the design matrix for random effects, u the random effects, and e the errors. 
The random effects (u) can be associated with either a random intercept or a random 
slope.
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The specification of LMMs poses a challenge as researchers must not only specify 
the fixed effects but also the random effects. A systematic review of applied multilevel 
modeling research in the past decade revealed that information regarding the specifica
tion of random effects in models is frequently missing or incomplete (Luo et al., 2021). 
Applied researchers often fail to provide clear rationales for the selection of a particular 
random effect structure and tend to default to using random intercept models. However, 
this practice is problematic as research has demonstrated that constraining a randomly 
varying slope of a Level-1 predictor to be constant across Level-2 clusters can lead to 
inflated Type I error in the test of the fixed effect (e.g., Barr et al., 2013).

One challenge in specifying random effects is the lack of sufficient details in sub
stantive theories and previous studies to guide a priori specifications. Therefore, Barr 
et al. (2013) argued for the maximal model approach, which involves using the full 
variance-covariance structure of random effects. However, some researchers argue that 
the maximal approach may lead to overfitting when population variance components are 
close to zero, potentially resulting in reduced power, particularly with small sample sizes 
(Matuschek et al., 2017). Therefore, a model selection approach is recommended, where 
a certain criterion is used to select the random effect structure that is most supported by 
the data (e.g., Matuschek et al., 2017).

Facing the challenges of specifying random effects in LMMs, there is a lack of 
methodological investigations that evaluate the different approaches and provide evi
dence-based guidelines for applied researchers. Hence, the purpose of this study is to 
compare various approaches to random effects specification in terms of their impact on 
the statistical inferences of fixed effects. In the remainder of the paper, we first provide 
a brief review of the maximal and model selection approach. Next we introduce the 
design of the simulation study and report the results. Finally, we discuss the findings and 
provide recommendations for applied researchers.

Literature Review
The Maximal Approach

For confirmatory hypothesis testing, Barr et al. (2013) argued that LMMs should include 
the maximal random effect structure that is justified by the design. Specifically, it is 
recommended to include random slopes for all within-cluster factors. When a within-
cluster variable is involved in a cross-level interaction, a random slope should always be 
included for the within-cluster variable (Heisig & Schaeffer, 2019). For control variables, 
however, it remains unclear whether including random slopes is essential (Barr et al., 
2013).

The rationales behind the maximal approach are twofold. First, random effects are 
crucial for capturing the measurement dependances in the design (Bolker et al., 2009). 
Second, a data-driven approach could incorrectly exclude random effects due to insuffi
cient power, which is particularly relevant for small sample sizes. Through a simulation 

Optimal Random Effects Structures 366

Methodology
2023, Vol. 19(4), 365–386
https://doi.org/10.5964/meth.9601

https://www.psychopen.eu/


study, Barr et al. (2013) showed that the maximal model can control Type I error rate 
without a significant loss of power, whereas the model selection approach tended to be 
anticonservative with minimal power gains. However, it is important to note that the 
model used for data generation in Barr et al. (2013) was based on a two-way random 
effects ANOVA design (i.e., involving items and subjects) with a single within-subject 
treatment factor. Hence it remains unclear whether their findings can be generalized to 
models with more predictors at both the within-cluster and between-cluster levels.

The Model Selection Approach

In contrast, other researchers have recommended using model selection approaches to 
determine an optimal random effect structure (e.g., Stroup, 2012). To investigate the po
tential power loss associated with the maximal model, Matuschek et al. (2017) compared 
the maximal approach with two model selection approaches, namely backward selection 
based on likelihood ratio test (LRT) and AIC-based selection from all possible subset 
models. The results showed that the backward selection based on LRT can achieve higher 
power without inflated Type I error rates. The AIC-based all subset model selection 
can achieve similar power to the LRT-based backward selection, but may suffer from 
slightly inflated Type I error rates in conditions with small sample sizes. However, the 
maximal approach leads to a significant loss of statistical power when the true value of 
the variance components is small.

Although Matuschek et al. (2017) used similar data generation models and sample 
size conditions as Barr et al. (2013), the conclusions drawn from the two studies were 
quite different. Two potential reasons may explain the contradictory findings. First, the 
relative magnitudes of the variance components in the two studies differed significantly. 
Barr et al. (2013) selected all variance components from a uniform distribution ranging 
from 0 to 3, allowing for a wide range of intraclass correlation coefficients (ICCs) from 
0 to 1. In contrast, Matuschek et al. (2017) had a narrower range of ICC from 0 to 0.35. 
Secondly, the empirical power was calculated differently between the two studies. Barr 
et al. (2013) corrected the empirical power to account for anticonservativeness, while 
Matuschek et al. (2017) directly compared the power of different approaches that varied 
in their Type I error rates.

Model Selection Criteria

In model selection, researchers must strike a balance between goodness of fit and parsi
mony. Many model comparison methods aim to address the trade-off between goodness 
of fit and model complexity (Kuha, 2004; Vandekerckhove et al., 2015). Among these 
methods, the most popular model selection criteria are the Akaike information criterion 
(AIC; Akaike, 1973, 1974), the Bayesian information criterion (BIC; Schwarz, 1978) and 
likelihood ratio tests (LRT).
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Information Criterion (IC) Indexes — AIC and BIC incorporate a goodness-of-fit term 
along with a penalty term for overfitting. Hence, each criterion selects the model with 
best penalized log-likelihood, given by −2lnp y |θ + Ank. The first term, −2lnp y |θ , 
quantifies the goodness of fit, where y  is the dataset and θ is the maximum likelihood 
estimate. The second term, Ank, is a penalty for model complexity, where An is a constant 
or a function of the sample size (n) and k is the number of parameters. The information 
criteria, such as AIC and BIC, differ in the choice of An, indicating different degrees of 
penalty for model complexity.

For AIC, An = 2, and thus it is expressed as −2lnp y |θ + 2k, which estimates the 
degree of information loss due to the probability distribution associated with the true 
data generation mechanism approximated by the probability distribution with the fitted 
model. Therefore, the model with the lowest AIC is considered most likely to provide a 
data generation mechanism close to the true mechanism in the population.

For BIC, the information criterion is expressed as −2lnp y |θ + kln n , with 
An = ln n , where n is the number of observations. BIC is an estimate of a function of 
the posterior probability of a model being true with the unit information prior, so a 
lower BIC means that a model is considered closer to the true model (Dziak et al., 2020). 
When n ≥ 8, BIC places more weight on the penalty for model complexity compared to 
AIC. There is evidence that AIC tends to select complex models that over fit the data, 
whereas BIC tends to select simpler models that underfit data (Burnham & Anderson, 
2002; O’Hagan & Forster, 2004). Matuschek et al. (2017) showed that the model selection 
approach based on AIC was slightly anticonservative, with empirical Type I error rates 
exceeding the nominal level. However, the performance of BIC was not investigated in 
the study.

Likelihood Ratio Test (LRT) — To select an optimal random effect structure, the LRT is 
another promising approach. Because the regular LRT is overconservative when testing a 
variance component (Ryoo, 2011). To address this issue, Crainiceanu and Ruppert (2004) 
derived a spectral representation of the exact finite null distribution of the restricted 
likelihood ratio test (RLRTCR). Using spectral decomposition, the null distribution of the 
RLRTCR statistic can be simulated rapidly because the distribution only depends on the 
design matrix of the fixed and random effects. This procedure can be implemented via 
the RLRsim package in R (Scheipl et al., 2008).

Model Search Algorithms

In the context of selecting random effect structures in LMMs, three search algorithms 
have been used in prior research: forward selection, backward elimination, and all pos
sible structures. The all-possible structures technique involves examining LMMs with 
every conceivable random effects structure. The best model can be determined based on 
AIC or BIC. However, if the number of potential random effects is large, this algorithm 
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could rapidly become expensive to compute and difficult to evaluate. For example, when 
there are two within-cluster predictors, the number of all possible random effects struc
tures would increase to 14 (see Table 1 for all the possible structures).

Table 1

Candidate Random Effect Structure

M1: 

τ00
0 0
0 0 0

M2: 

0
0 τ11
0 0 0

M3: 

0
0 0
0 0 τ22

M4: 

τ00
0 τ11
0 0 0

M5: 

τ00
0 0
0 0 τ22

M6: 

0
0 τ11
0 0 τ22

M7: 

τ00
τ10 τ11
0 0 0

M8: 

τ00
0 0
τ20 0 τ22

M9: 

0
0 τ11
0 τ21 τ22

M10: 

τ00
0 τ11
0 0 τ22

M11: 

τ00
τ10 τ11
0 0 τ22

M12: 

τ00
0 τ11
τ20 0 τ22

M13: 

τ00
0 τ11
0 τ21 τ22

M14: 

τ00
τ10 τ11
τ20 τ21 τ22

In the forward selection method, variances and covariances of random effects are added 
to a model sequentially based on statistical significance of LRTs. In the context of model 
selection, the significance level should be interpreted as the relative weight of goodness 
of fit and model complexity (Matuschek et al., 2017), similar to the trade-off between 
goodness of fit and model complexity with information criteria. Both Barr et al. (2013) 
and Matuschek et al. (2017) used the significance level of 0.2 for LRT in model selection.

When using the forward selection method, researchers also need to determine the 
sequence of adding variances or covariances. For example, when there are two within-
cluster predictors (X1 and X2), starting from a random intercept model, one could first 
add the random slope of X1 or the random slope of X2. If the random slope of X1 is 
included in the model, in the subsequent step, one can add the covariance between the 
random intercept and random slope of X1, or add the random slope of X2. However, Barr 
et al. (2013) found that using an arbitrary sequence led to poor results and, therefore, 
suggested the “best path” algorithm, which involves testing all possible random effects 
that are not currently in the model and including any that pass the LRT.

Finally, in the backward elimination method, one starts with the maximal random 
effects structure, and sequentially eliminates variances and covariances based on LRT. 
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Similar to the forward selection method, there are multiple sequences that can be used in 
the backward elimination method. The backward “best-path” algorithm tests all random 
effects in the maximal model and excludes the statistically non-significant ones. Barr et 
al. (2013) found that when using the “best path” algorithm, the backward elimination 
method performed equally well as the forward selection method, but outperformed the 
latter when using arbitrary sequences.

The Current Study

Existing studies have only included a few approaches for comparison and have used 
different evaluation criteria, making it challenging to draw definitive conclusions about 
the best approach. In addition, previous studies have used overly simplistic data genera
tion models, failing to consider Level-2 predictors and control variables. As a result, the 
generalizability of their findings to more complex models is questionable. Therefore, the 
current study aims to address the gap by comparing a broader range of approaches and 
generating data using more complex models.

First, we compare the maximal approach, forward selection, backward elimination, 
and the all-possible structure approach in terms of their performance in achieving opti
mal empirical Type I error and power when testing fixed effects associated with Level-1 
predictors, Level-2 predictors, and cross-level interactions. Second, we examine whether 
it is essential to correctly model the random slope of a Level-1 control variable.

Method

Data Generation and Design Factors
We generated data using the following LMM to simulate cross sectional clustering, such 
as students nested within schools. The model includes five predictors, consisting of 
two Level-1 predictors, two Level-2 predictors, and one cross-level interaction term. Ad
ditionally, multiple random effects were included to represent the complexity of models 
observed in empirical studies.

Level-1:
Y ij = β0j + β1jX1j + β2jX2j + eij
Level-2:
β0j = γ00 + γ01W1j + γ02W2j + μ0j
β1j = γ10 + γ11W1j + μ1j
β2j = γ20 + μ2j
μ0j
μ1j
μ2j

MVN
0
0
0

,
τ00 τ01 τ02
τ10 τ11 τ12
τ20 τ21 τ22

  eij     N 0, σe2 ,
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where i and j are indexes of participants and clusters, respectively; X1 is the main Level-1 
predictor, X2 is the Level-1 control variable, and W1 and W2 are the Level-2 predictors; 
μ0j, μ1j, and μ2j are the random effects associated with the intercept, X1, and X2 for 
cluster j, respectively; and eij is the within-cluster error term. X1 and X2 are generated 
from a multivariate normal distribution with a mean vector of zeros and a variance of 
1.0. The bivariate correlation between X1 and X2 is set to 0.3. The same specifications 
apply to the Level-2 predictors W1 and W2. The random effects μ0j, μ1j, and μ2j are 
assumed to follow a multivariate normal distribution with a mean vector of zeros. The 
variances of the random effects are indicated by τ00, τ11, and τ22, and the covariances 
by the off-diagonal components τ10, τ20 and τ21. The Level-1 error term eij is assumed 
to follow an independent and identically normally distributed (i.i.d.) distribution with a 
mean of zero and a variance of σe2.

The number of clusters (J ) was set to 10, 50 or 100, and the cluster size (I ) was 
set to 10, 25, or 50. These values represent the typical range of sample sizes at Level-1 
and Level-2 as found in the review of empirical studies using MLMs (Luo et al., 2021). 
The intercept (γ00) was fixed at 0 since it is typically not of interest. All the other fixed 
effects (γ10, γ20, γ01, γ02, and γ11) were assigned values of either 0 (no effect) or 0.5 
(medium effect). The Level-1 error variance was set to 1, and the variance of the random 
intercept (τ00) was set to 0.25. We chose to fix τ00 at a specific value because the impact 
of misspecifying the random intercept is not the focus of the investigation, given that 
researchers typically include a random intercept in their model specifications (Luo et al., 
2021).

On the other hand, the variance components associated with random slopes of X1 
and X2 (τ11 and τ22) were set to 0.05, 0.25 or 0.5, representing conditions where the 
variance component was trivial, medium, or large. The correlation among random effects 
was set to 0.5. These specific variance-covariance values were selected to ensure that 
the intraclass correlations ranged between 0.25 and 0.55, as found to be common in 
cross-sectional clustered studies in behavioral science by Hedges and Hedberg (2007). 
Taking into account all the design factors, a total of 162 conditions were considered. 
In each condition, 1000 independent data sets (i.e., replications) were simulated using R 
4.0.3 (R Core Team, 2021).

Model Selection Algorithms
In the all-possible structure approach, we fitted 14 possible random effects structures as 
shown in Table 1, and the model with the smallest value of AIC or BIC was adopted as 
the final model.

For the forward selection method, we started with the random intercept model (M1) 
and used the “best path” algorithm (FWB) as well as 9 arbitrary sequences (FW1-FW9) to 
construct the model. In the backward elimination method, we started with the maximal 
model (M14) and used the “best path” algorithm (BWB) as well as 5 arbitrary sequences 
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(BW1-BW5) to trim the model. The flow charts for all the arbitrary sequences in the for
ward selection and backward elimination methods are presented in the Supplementary 
Materials.

All the models were estimated in the R package lme4 (Bates et al., 2015) through re
stricted maximum likelihood estimation. In the forward and backward search algorithms, 
the RLRTCR approach was adopted for the significance test of variance components to 
address the boundary issue. The test was implemented using the R package RLRsim 
(Scheipl et al., 2008). To test covariance components, the regular LRT was performed 
using the R package lmtest (Zeileis & Hothorn, 2002). The significance level for these 
tests was set at α = .20.

The minimum approach (i.e., random-intercept model, M1) and the maximum ap
proach (i.e., full variance-covariance structure, M14) were also examined. The corre
sponding R codes for all the models (M1 to M14), along with the best-path forward and 
backward search, are provided in the Supplementary Materials.

Empirical Type I Error Rate and Power
Significance tests for all five predictors were performed using the t-test with Sat
terthwaite approximation (Satterthwaite, 1946) to correct the degrees of freedom, ensur
ing more accurate inferential results in conditions with small sample sizes. To evaluate 
the performance, empirical Type I error rate and power were calculated. With 1000 
replications, we expected the empirical Type I error rate to range from .037 to .063 
(.05 ± 1.96 × 0.05 * 0.95/1000).

Because the empirical power of an anticonservative approach is inflated, directly 
comparing the empirical power of approaches that differ in Type I error rate can be 
misleading. Hence, we adopted the method used in Barr et al. (2013) to compute the 
corrected empirical power.

Results

Arbitrary Forward Search and Backward Search (FWA and BWA)
The arbitrary sequences used in the forward search approach exhibited similar empirical 
Type I error rates and corrected power for the significance tests of all the fixed effects. 
Similarly, minimal differences were found among the sequences used in the arbitrary 
backward search approach. Therefore, the mean Type I error rate and corrected power 
across the sequences within the arbitrary forward and backward search approaches were 
computed and used in the subsequent comparisons with the other approaches.
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Empirical Type I Error Rates
Overall Performance

For X1 and X2, the MAX, FWB, BWB, and AIC approaches showed acceptable Type 
I error rate overall. The FWA, BWA, and BIC approaches exhibited slightly inflated 
Type I error rates, while the random intercept model (RI) resulted in severely inflated 
Type I error rate (ranging between 0.08 and 0.75). Regarding W1 and W2, all methods 
demonstrated slight inflation in the Type I error rate, except for RI. For X1W1, RI showed 
a significant inflation in the Type I error rate, while the other methods exhibited only 
slight inflations. The specific observed Type I error rates under different data generation 
conditions are elaborated upon and presented in Table 2, Table 3, Table 4, and Table 51. 
More detailed results of the Type I error rate and power for each combination of the 
design factors were available in Supplementary Materials.

Effect of Sample Size

For the slopes of X1 and X2, FWA, BWA, and BIC all had a slightly inflated Type I 
error rate when the number of clusters was 10. However, the Type I error rate became 
acceptable when the number of clusters increased to 25 or above. When the number of 
clusters increased to 50, all of the approaches (except for RI) had similar Type I error 
rates.

For W1 and W2, only RI had an acceptable Type I error rate across all conditions. 
For the other approaches, when the number of clusters was 10, they all had unacceptably 
high Type I error rates, especially when the approach was MAX, FWB, BWB, AIC, or 
BIC. However, the Type I error rate became acceptable when the number of clusters 
increased to 25 or above, and the differences among the approaches diminished when the 
number of clusters increased to 50.

For X1W1, all of the methods had unacceptably high Type I error rates when the 
number of clusters was 10, among which RI, AIC, and BIC were the worst. However, the 
Type I error rate decreased and became similar among the approaches (except for RI) 
when the number of clusters increased to 25 or above.

On the other hand, the cluster size (CS) had little impact on the Type I error rate 
of the coefficients of X1 and X2, except when the approach was RI or BIC. For RI, the 
Type I error rate notably increased when CS increased. For BIC, the Type I error rate 
was unacceptably high when CS = 10, and decreased to an acceptable range when CS 
increased to 50 or above.

For W1 and W2, regardless of the cluster size, RI had the best performance, followed 
by FWA and BWA which had slightly inflated but acceptable Type I error rates. The 
other approaches all had unacceptably high Type I error rate, which tended to increase as 

1) Because the results for W1 and W2 were similar, we only presented those for W1.
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CS increased. The only exception was BIC, which had a smaller Type I error rate for W1 
and W2 when the CS increased.

For X1W1, FWA and BWA had the best performance, with an acceptable Type I error 
rate regardless of the cluster size. MAX, FWB, and BWB had an acceptable Type I error 
rate only when CS was 50 or below. AIC and BIC all had unacceptably high Type I error 
rates regardless of CS.

Effect of Variance Components (τ11 and τ22)

The magnitude of τ11 and τ22 had little impact on the Type I error rate across all the 
methods, except for BIC and RI. Specifically, BIC had an unacceptably high Type I error 
rate for X1 when τ11 was small (0.05), and similarly for X2 when τ22 was small. For 
RI, which had the highest Type I error rate among all methods, the Type I error rate 
for a level-1 predictor (e.g., X1) was positively related to the magnitude of its variance 
component (e.g., τ11) and negatively related to the variance component of the slope of 
the other level-1 predictor (e.g., τ22).

For X1W1, only FWA and BWA had an acceptable Type I error rate regardless of the 
magnitude of τ11 and τ22. MAX, FWB and BWB had an acceptable Type I error rate 
when τ11 and τ22 were small. AIC and BIC had an unacceptably high Type I error rate, 
especially when τ11 was small and τ22 was large. RI had an unacceptably high Type I 
error rate in all conditions, which was exacerbated as τ11 increased.
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Corrected Power
The Slope of X1 and X2

Because the Type I error rate of the RI approach was unacceptably high when testing 
the slopes of X1 and X2 across the board, it was not considered when examining the 
corrected power. Among the remaining methods, in general, MAX had the best perform
ance across all conditions because it achieved higher corrected power while maintaining 
the Type I error rate at the nominal level. Although the other methods did not perform 
as well as MAX, the differences were less than 0.10 among the conditions with an 
acceptable Type I error rate. It was noted that BIC had the worst performance as it 
tended to have lower corrected power as well as unacceptably high Type I error rate 
when the sample size was small.

The Slopes of W1 and W2

When the number of clusters was small (i.e., 10 clusters), the RI approach performed the 
best because it had the highest corrected power among all the methods with acceptable 
Type I error rates. Under this condition, BIC generally had the worst performance 
because it had an unacceptably high Type I error rate and the lowest corrected power. 
When the number of clusters increased to 25, MAX showed small advantages over RI. 
Although MAX had the highest corrected power most frequently, while RI had the lowest 
corrected power most frequently, the differences between the two approaches were 
small, ranging from 0.010 to 0.065 with an average of 0.029. Finally, when the number of 
clusters increased to 50, all methods reached the maximum power.

The Slope of X1W1

Among the methods that can maintain an acceptable Type I error rate, no single method 
stood out in terms of the corrected power as the differences between these methods 
were negligible (i.e., less than 0.03). However, it is worth noting that BIC had the worst 
performance because it not only had an unacceptably high Type I error rate but also the 
lowest corrected power, especially when the number of clusters was not large (i.e., 25 or 
less).

The Impact of Under-Specifying the Random Effects of the Level-1 
Control Variable
When the random slope of the control variable (X2) was misspecified as fixed (i.e., Model 
4 or Model 7), the Type I error rate of the slope of X1 was unacceptably low when the 
number of clusters was small (i.e., 10) and the magnitude of τ22 was large (i.e., τ22 = 0.5), 
which led to decreased power in those conditions. As shown in Table 62, the difference 
in the corrected power for the slope of X1 between Model 4 and the MAX approach (i.e., 
Model 14) ranged between 0.09 and 0.21 when the number of clusters was small and the 
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magnitude of τ22 was large. However, when the number of clusters increased to 25 or 
above, there was no noteworthy differences between the two models.

For the slope of X1W1, although the under-specification of the random effect of 
X2 did not negatively affect the Type I error rate, the corrected power was more than 
10% lower than that under Model 14 when the number of clusters was small and the 
magnitude of τ22 was large.

2) The results based on Model 7 were almost identical to Model 4, hence only Model 4 results were presented in Table 
6.
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Discussion
The present study examined statistical inferences of fixed effects in MLM when the 
random effect structure was specified based on the minimal approach, the maximal 
approach, and the model selection approach. Our findings regarding the fixed effects 
of Level-1 predictors were consistent with Barr et al. (2013), which showed that (1) the 
maximal model can control the Type I error rate without a significant loss of power, and 
(2) the best-path algorithm in the forward search and backward elimination approach 
performed equally well as the maximal approach.

Our findings also corroborated Matuschek et al. (2017)’s finding regarding the per
formance of AIC-based all-subset model selection, which has been shown to suffer from 
slightly inflated Type I error rates in conditions with small sample sizes. Although 
Matuschek et al. (2017) did not examine BIC, our findings showed that BIC had similar 
and sometimes worse performance compared to AIC.

On the other hand, unlike Matuschek et al. (2017), we did not find noticeable advan
tages in the statistical power for testing the fixed effect of X1 and X2 when using the 
arbitrary backward elimination or forward selection approach. This is likely to be due to 
the use of corrected power in the evaluation.

Regarding the cross-level interaction effect, our findings were consistent with Heisig 
and Schaeffer (2019) in that the minimal approach led to severely inflated Type I error 
rates. However, we did not find clear evidence to show that the maximal approach 
significantly outperformed the model selection approach. Other than AIC- and BIC-based 
model selection, which had higher Type I error rates and lower corrected power, there 
was little difference among the other methods.

Regarding Level-2 predictors, we found that it is sufficient to use the minimal ap
proach (i.e., a random intercept model) to obtain a controlled Type I error rate, which is 
consistent with the finding from a recent study by Huang and Li (2022). On the contrary, 
the maximal approach and model selection approach tended to cause inflated Type I 
error rates, especially when the number of clusters is small.

Finally, our findings showed that it is important to consider random slopes of control 
variables. If the random slope of the Level-1 control variable (X2) was misspecified as 
fixed, the tests of the slope of the main Level-1 predictor (X1) and the cross-level interac
tion (X1W1) became too conservative, leading to decreased power, especially when the 
number of clusters was small (i.e., 10) and the magnitude of τ22 was large (i.e., τ22 = 0.5). 
Correctly specifying the random slope of a Level-1 control variable can reduce the error 
variance, thus enhancing the statistical power of the tests for the main Level-1 predictor. 
Hence, the working assumption proposed by Barr et al. (2013) that it is not essential 
to specify random effects for control variables to avoid anticonservative inference did 
not fully capture the role of control variables and should be revised based on the new 
findings.
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Implications
First, if the predictor of interest is at the within-cluster level or involves a cross-level 
interaction, the maximal approach, the best-path forward search, and the best-path 
backward elimination are all desirable methods for specifying random effect structures. If 
there are convergence issues with estimating the maximal model, the best-path forward 
search is recommended. Second, if the predictor of interest is at the cluster level, it is 
not essential to specify random slopes of Level-1 predictors. Third, it is important to 
specify random slopes of within-cluster control variables, especially when the sample 
size is small and the variance of the random slope is large. Lastly, researchers should 
avoid using AIC- and BIC-based approaches, especially when the sample size is small.

Limitations and Future Directions
The findings of the current study should be interpreted in light of the limitations. First, 
our study focused on cross-sectional clustered data. It is not safe to directly apply 
our findings to studies with panel/longitudinal data, which may involve more complex 
Level-1 error structures (e.g., auto-correlated Level-1 errors). Second, we generated data 
in which the distributional assumptions of random effects were satisfied. It is unknown 
whether the performance of these approach would differ when there are violations of the 
normality assumptions of the random effects. These could be the directions for future 
studies.

Funding: The authors have no funding to report.

Acknowledgments: The authors have no additional (i.e., non-financial) support to report.

Competing Interests: The authors have declared that no competing interests exist.

Supplementary Materials
For this article, the materials provided are the arbitrary sequences flowcharts for the forward 
selection and backward elimination methods, and the corresponding R codes for the study's models 
and best-path forward and backward searches (see Luo & Li, 2023).

Index of Supplementary Materials

Luo, W., & Li, H. (2023). Supplementary materials to "A comparison of methods for specifying optimal 
random effects structures" [Flowcharts, R code]. PsychOpen GOLD. 
https://doi.org/10.23668/psycharchives.13976 

Optimal Random Effects Structures 384

Methodology
2023, Vol. 19(4), 365–386
https://doi.org/10.5964/meth.9601

https://doi.org/10.23668/psycharchives.13976
https://www.psychopen.eu/


References

Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. In B. N. 
Petrov & F. Csaki (Eds.), Second International Symposium on Information Theory (pp. 267–281). 
Akadémiai Kiadó.

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic 
Control, 19(6), 716–723. https://doi.org/10.1109/TAC.1974.1100705

Barr, D. J., Levy, R., Scheepers, C., & Tily, H. J. (2013). Random effects structure for confirmatory 
hypothesis testing: Keep it maximal. Journal of Memory and Language, 68(3), 255–278. 
https://doi.org/10.1016/j.jml.2012.11.001

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using 
lme4. Journal of Statistical Software, 67(1), 1–48. https://doi.org/10.18637/jss.v067.i01

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J. 
S. S. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. 
Trends in Ecology & Evolution, 24(3), 127–135. https://doi.org/10.1016/j.tree.2008.10.008

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical 
information–theoretic approach (2nd ed.). Springer.

Crainiceanu, C. M., & Ruppert, D. (2004). Likelihood ratio tests in linear mixed models with one 
variance component. Journal of the Royal Statistical Society: Series B. Statistical Methodology, 
66(1), 165–185. https://doi.org/10.1111/j.1467-9868.2004.00438.x

Dziak, J. J., Coffman, D. L., Lanza, S. T., Li, R., & Jermiin, L. S. (2020). Sensitivity and specificity of 
information criteria. Briefings in Bioinformatics, 21(2), 553–565. 
https://doi.org/10.1093/bib/bbz016

Hedges, L. V., & Hedberg, E. C. (2007). Intraclass correlation values for planning group randomized 
trials in education. Educational Evaluation and Policy Analysis, 29(1), 60–87. 
https://doi.org/10.3102/0162373707299706

Heisig, J. P., & Schaeffer, M. (2019). Why you should always include a random slope for the lower-
level variable involved in a cross-level interaction. European Sociological Review, 35(2), 258–279. 
https://doi.org/10.1093/esr/jcy053

Huang, F. L., & Li, X. (2022). Using cluster-robust standard errors when analyzing group-
randomized trials with few clusters. Behavior Research Methods, 54(3), 1181–1199. 
https://doi.org/10.3758/s13428-021-01627-0

Kuha, J. (2004). AIC and BIC: Comparisons of assumptions and performance. Sociological Methods & 
Research, 33(2), 188–229. https://doi.org/10.1177/0049124103262065

Luo, W., Li, H., Baek, E., Chen, S., Lam, K. H., & Semma, B. (2021). Reporting practice in multilevel 
modeling: A revisit after 10 years. Review of Educational Research, 91(3), 311–355. 
https://doi.org/10.3102/0034654321991229

Matuschek, H., Kliegl, R., Vasishth, S., Baayen, H., & Bates, D. (2017). Balancing Type I error and 
power in linear mixed models. Journal of Memory and Language, 94, 305–315. 
https://doi.org/10.1016/j.jml.2017.01.001

Luo & Li 385

Methodology
2023, Vol. 19(4), 365–386
https://doi.org/10.5964/meth.9601

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.1016/j.jml.2012.11.001
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1016/j.tree.2008.10.008
https://doi.org/10.1111/j.1467-9868.2004.00438.x
https://doi.org/10.1093/bib/bbz016
https://doi.org/10.3102/0162373707299706
https://doi.org/10.1093/esr/jcy053
https://doi.org/10.3758/s13428-021-01627-0
https://doi.org/10.1177/0049124103262065
https://doi.org/10.3102/0034654321991229
https://doi.org/10.1016/j.jml.2017.01.001
https://www.psychopen.eu/


O’Hagan, A., & Forster, J. (2004). Kendall’s advanced theory of statistics, Vol. 2B: Bayesian inference 
(2nd ed.). Arnold.

R Core Team. (2021). R: A language and environment for statistical computing [Computer software]. 
R Foundation for Statistical Computing. https://www.R-project.org/

Ryoo, J. H. (2011). Model selection with the linear mixed model for longitudinal data. Multivariate 
Behavioral Research, 46(4), 598–624. https://doi.org/10.1080/00273171.2011.589264

Satterthwaite, F. E. (1946). An approximate distribution of estimates of variance components. 
Biometrics Bulletin, 2(6), 110–114. https://doi.org/10.2307/3002019

Scheipl, F., Greven, S., & Küchenhoff, H. (2008). Size and power of tests for a zero random effect 
variance or polynomial regression in additive and linear mixed models. Computational Statistics 
& Data Analysis, 52(7), 3283–3299. https://doi.org/10.1016/j.csda.2007.10.022

Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464. 
https://doi.org/10.1214/aos/1176344136

Stroup, W. W. (2012). Generalized linear mixed models: Modern concepts, methods and applications. 
CRC Press.

Vandekerckhove, J., Matzke, D., & Wagenmakers, E.-J. (2015). Model comparison and the principle 
of parsimony. In J. R. Busemeyer, Z. Wang, J. T. Townsend, & A. Eidels (Eds.), Oxford handbook 
of computational and mathematical psychology (pp. 300–320). Oxford University Press.

Zeileis, A., & Hothorn, T. (2002). Diagnostic checking in regression relationships. R News, 2(3), 7–
10. https://CRAN.R-project.org/doc/Rnews/

Methodology is the official journal 
of the European Association of 
Methodology (EAM).

PsychOpen GOLD is a publishing 
service by Leibniz Institute for 
Psychology (ZPID), Germany.

Optimal Random Effects Structures 386

Methodology
2023, Vol. 19(4), 365–386
https://doi.org/10.5964/meth.9601

https://www.R-project.org/
https://doi.org/10.1080/00273171.2011.589264
https://doi.org/10.2307/3002019
https://doi.org/10.1016/j.csda.2007.10.022
https://doi.org/10.1214/aos/1176344136
https://CRAN.R-project.org/doc/Rnews/
https://www.psychopen.eu/

	Optimal Random Effects Structures
	(Introduction)
	Literature Review

	Method
	Data Generation and Design Factors
	Model Selection Algorithms
	Empirical Type I Error Rate and Power

	Results
	Arbitrary Forward Search and Backward Search (FWA and BWA)
	Empirical Type I Error Rates
	Corrected Power
	The Impact of Under-Specifying the Random Effects of the Level-1 Control Variable

	Discussion
	Implications
	Limitations and Future Directions

	(Additional Information)
	Funding
	Acknowledgments
	Competing Interests

	Supplementary Materials
	References


