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Abstract
In multilevel analysis, Level-1 predictors that also explain variance at a higher level are called 
contextual predictors. In the multilevel manifest covariate model, the Level-2 component is 
modeled as the average of the Level-1 predictor scores within a cluster. In the multilevel latent 
covariate model, the predictor is decomposed into two latent variables at Level-1 and Level-2. 
Performance conditions of these modeling approaches for three-level models are largely 
unexplored. We investigate the two approaches’ performance with respect to bias, coverage, and 
power in a three-level random intercept model. Results reveal differences in estimation quality and 
required sample sizes. We provide sampling recommendations for both approaches.

Keywords
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Three-level clustered data have become increasingly prevalent in behavioral research. 
As clustered observations are no longer independently sampled, applying standard re­
gression analysis yields biased estimates and standard errors (e.g., Chen, 2012; Hox, 
1998). Three-level modeling accounts for dependencies in the data by decomposing the 
outcome variance across data levels. It also allows for the inclusion of predictors at 
each level. While most predictors are assumed to explain variance at a specific level, 
higher-level predictors might also be obtained by aggregating lower-level scores, such as 
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the proportion of boys (Level-1: L1) in a class (Level-2: L2) or school (Level-3: L3), which 
are considered contextual variables (e.g., Enders, 2013; Raudenbush & Willms, 1995; cf. 
also: Stapleton et al., 2016). Oftentimes, the predictor independently explains variance 
at the level it is measured at and at the aggregate level, and both components should 
therefore be modeled as separate variables (e.g., Diez-Roux, 1998). Models including these 
kinds of predictors are called contextual analysis or compositional models (Harker & 
Tymms, 2004; Lüdtke et al., 2008).

Within the context of contextual analysis models, it is important to distinguish
between formative and reflective measurement processes (Lüdtke et al., 2008; cf. also 
Bollen & Lennox, 1991): Formative constructs are directly caused by the aggregate (e.g., 
the proportion of boys in a class). Hence, the number of observations is finite. For 
reflective constructs, lower-level observations are manifest realizations of the construct. 
Hence, the number of observations to measure a reflective construct is potentially
infinite. The modeling approach needs to account for the nature of the higher-level 
construct, especially by correcting for sampling error in the case of reflective constructs.

While there is a strong body of research on contextual predictors in two-level
analysis (e.g., Korendijk et al., 2011; Lüdtke et al., 2008, 2011; Marsh et al., 2009), contex­
tual analysis models are frequently applied to three-level data (e.g., Chen & Cui, 2020; 
Rathmann et al., 2020). However, information on estimation quality in three-level contex­
tual models is still sparse, especially with respect to reflective measurement processes.

In this study, we first describe the two common modeling approaches for contextual 
variables in three-level models. We then analyze and compare estimation quality for 
the two approaches by means of Monte Carlo simulations. Finally, we derive concise 
sampling recommendations.

The Multilevel Manifest Covariate (MMC) Model for Three-Level 
Data
In contextual analysis models, the most widely used approach to obtain higher-level 
predictor variables is to compute the average scores of all L1-units in a L2-subcluster 
or L3-cluster. Modeling averages at higher levels requires centering procedures at the 
lower levels. We follow the notation by Brincks et al. (2017) and differentiate between 
grand-mean centering (GMC) and centering-within-context (CWC). For a linear model 
with k = 1,…, n3 L3-clusters, each with j = 1,…, n2 L2-subclusters, each with i = 1,…, n1 

L1-units, outcome Y ijk, L1-predictor X ijk, L2-predictor X . jk (i.e., the subcluster means), 
and L3-predictor X ..k (i.e., the cluster means), the MMC model can be formulated as:

Y ijk = γ000 + γ100 ⋅ (X ijk − X . jk) + γ010 ⋅ X . jk − X ..k + γ001 ⋅ X ..k − X…
+ v00k + u0jk + eijk

(1)
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On Level-1, (X ijk − X . jk) is the CWC predictor, obtained by subtracting the subcluster-
mean from each L1-score. As a result, the regression coefficient γ100 addresses only the 
L1-specific influence of the predictor on the outcome. eijk~N(0, σe2) is a random effect 
(prediction error) with variance component σe2.

On Level-2, X . jk − X ..k  is the CWC contextual predictor, obtained by subtracting the 
respective cluster mean from the subcluster-means, with respective L2-specific
regression coefficient γ010. u0jk~N(0, σu0

2 ) is a random effect with variance σu0
2 . Note that 

X ..k refers to the average L1-scores within a cluster (not to the average of the subcluster 
averages, which yields different results for unbalanced samples).

On Level-3, X ..k − X…  is the grand-mean centered (GMC) L3-predictor, with respec­
tive L3-specific regression coefficient γ001. v00k ~ N(0, σv0

2 ) is a random effect containing 
the unexplained cluster-level variance component.

Lastly, γ000 is the intercept, and coefficients γ100, γ010, and γ001 are the regression 
coefficients quantifying the level-specific influence of the respective predictor on the 
outcome (Brincks et al., 2017).

This approach has been criticized as insufficient for reflective constructs since it 
assumes a finite population of L1-units. Sampling a finite set of interchangeable indica­
tors for an unobservable construct (e.g., repeated measures of wellbeing in students) 
disregards unreliability due to sampling error and can result in considerable bias and 
underestimated standard errors (e.g., Grilli & Rampichini, 2011; Harker & Tymms, 2004). 
Furthermore, the assumption of perfect reliability in the MMC approach is also violated 
for formative constructs if the sampling rate, i.e., the rate of units sampled from the total 
number of units in a (sub-)cluster, is small (e.g., inhabitants in cities).

The Multilevel Latent Covariate (MLC) Model for Three-Level Data
The alternative approach is the multilevel latent covariate (MLC) approach. It treats the 
observations at L1 as manifest realizations of an underlying latent variable with variance 
at each level (Lüdtke et al., 2008). Extending the two-level notation, the decomposition of 
observed predictor X ijk and outcome Y ijk with means μX and μY  takes the form of:

X ijk = μX + VXk + UX jk + RXijk (2)

Y ijk = μY + VYk + UY jk + RY ijk, with relationships (3)

Level‐3: VYk = βL3 ⋅ VXk + τk (4)

Level‐2: UY jk = βL2 ⋅ UX jk + δjk (5)

Level‐1: RY ijk = βL1 ⋅ RXijk + εijk (6)
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VXk, UX jk, and RXijk are independent, latent representations of predictor X. VXk has a mean 
μX and a variance expressing the L3-specific deviations from μX in the predictor. UX jk and 
RXijk each have mean zero and variances expressing the L2- and L1-specific deviations. 
Regression coefficients βL1, βL2, and βL3 express the level-specific effects of the predictor. 
εijk, δjk and τk are the residual and random intercepts, respectively. Integrating Equations 
3 to 6 yields the combined equation:

Y ijk = μY + βL3 ⋅ VXk + βL2 ⋅ UX jk + βL1 ⋅ RXijk + τk + δjk + εijk (7)

The MLC approach accounts for sampling error by treating the measurements as poten­
tially biased realizations of the latent construct and has therefore been shown to produce 
higher estimation quality for reflective constructs or formative constructs with a low 
(20%) sampling rate (Lüdtke et al., 2008, 2011).

In this study, we compare the approaches regarding their estimation quality in sam­
ples drawn from an infinite population (reflective process), since research fields that 
commonly employ multilevel modeling oftentimes investigate constructs with a concep­
tually infinite number of observations. Additionally, correctly specifying a reflective 
construct might pose a challenge for researchers due to high sampling requirements to 
obtain sound estimation results for latent variables in three-level models.

Evaluating Estimation Quality
The estimation quality of contextual predictors can be assessed in Monte Carlo simula­
tions. Most commonly, estimation quality examinations are based on the point estimates 
and standard errors.

Parameter Estimation Bias (PEB)

For a true parameter θ and estimates θ1, …, θn in n samples, the relative parameter 
estimation bias (rPEB) is defined as:

rPEBθ = ∑1 ≤ i ≤ n
θi − θ

θ
n

(8)

It is interpreted as the average bias rate. Since across samples, negative and positive bias 
values are averaged, the rPEB expresses the direction of bias across samples, but not the 
average strength of bias, which is expressed using an absolute bias measure. In this study, 
we use the absolute PEB (aPEB):

aPEBθ =
∑1 ≤ i ≤ n

θi − θ
θ

n
(9)
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The aPEB measures the rate of absolute misestimation across samples as an alternative 
to common measures such as the root mean squared error (RMSE). Both the RMSE and 
aPEB capture mean bias and variability in estimates, since conditions producing a larger 
variance in estimates (given the same mean estimate) result in increased RMSE and 
aPEB values. We argue, however, that the aPEB is better suited for this study, since it 
is scaled relative to the true value θ, making bias rates more easily comparable across 
parameter sizes. Additionally, interpretation of the aPEB (average strength of bias) well 
complements the interpretation of the relative bias (average rate/direction of bias).

Statistical Power and Coverage

Standard errors are commonly evaluated by means of statistical power and coverage 
rates (e.g., Muthén & Muthén, 2002). For fixed effects, power of an estimate is the rate of 
statistically significant Wald-tests (Wald, 1943) across all analyzed samples. The coverage 
rate expresses the rate of samples with a 95%-confidence interval (CI) that includes θ:

θ − SE θ ⋅ 1.96;   θ + SE θ ⋅ 1.96 (10)

Sample Size Recommendations
Sampling advice for three-level models is still sparse (see Kerkhoff & Nussbeck, 2019, 
for an overview), and research on the estimation quality in three-level contextual models 
is still sparse. Usami (2017) derived power formulas for regression coefficients in three-
level contextual analysis models with manifest means. Comparisons between derived 
and observed power in simulations reveal that observed power may be biased due to 
unreliability of the mean values, and that increasing both L1 and L2 sample sizes reduces 
differences between derived and observed power.

Regarding three-level models, research has shown that estimation quality is mostly 
determined by the number of clusters (L3-sample size) and the sample size at the level 
the coefficient of interest is measured at (de Jong et al., 2010; Dong et al., 2018; Kerkhoff 
& Nussbeck, 2019, 2022; Lee & Hong, 2021; Li & Konstantopoulos, 2016). Regarding 
contextual predictors for reflective constructs in two-level models, Lüdtke et al. (2008, 
2011) found that for the MLC approach, bias remains within 10% in most conditions with 
at least 50 clusters of cluster size 5, while the MMC approach is more heavily biased. 
Due to narrow CIs, the MMC approach suffers from low coverage rates. In contrast, the 
absolute bias is higher for the MLC approach due to high variance in estimates.

Aim of This Study
Since contextual analysis in three-level models is of increasing relevance, we investigate 
the estimation quality for both the MMC and MLC approach to derive answers to the 
following research questions:
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1. How do sample sizes relate to bias, coverage, and power for each modeling 
approach, i.e., (a) what are influential sample characteristics and (b) what patterns 
emerge between sampling conditions and estimation quality indicators?

2. What are (a) minimum required sample sizes and (b) advantageous sampling 
strategies to achieve sound estimation quality for each approach?

Method
Data was drawn from a population with a single predictor variable explaining variance 
at each level. We varied the simulation conditions regarding the number of clusters, n3 = 
15, 30, 50, 100, 150, or 200, the number of subclusters per cluster, n2 = 5, 10, 15, 20, 25, or 
30, and the number of L1-units per subcluster, n1 = 5, 10, 15, 20, 25, or 30. We specifically 
included conditions with a low number of clusters (n3 = 15) to assess if estimation quality 
can be ensured by compensating few clusters with high cluster and subcluster sizes. We 
further varied the higher-level regression coefficient sizes (βL2, βL3) and kept μY = 0 and 
βL1 = 0.1 constant. Group-level variance components are most commonly available for 
educational research constructs and typically range between 10% and 30% (Dong et al., 
2016; Hedges & Hedberg, 2013). Therefore, we specified X~N(0, 1 + 1

3 + 1
3 ), i.e., 20% of 

predictor variance at each higher level. Similarly, we computed σe2, σu02 , and σv02  for the 
full model such that Y~N(0, 1 + 1

3 + 1
3 ), i.e., ICC3 = ICC2 = 0.2 in the empty model.

We selected unstandardized regression weights such that the resulting standardized 
L2 and L3 effect sizes are either small (βstd = 0.1), medium-sized (βstd = 0.3), or large 
(βstd = 0.5), and of different size, such that most of the resulting contextual effects, e.g., 
βL3 − βL1, are not zero. We abbreviate these conditions as shown in Table 1.

Table 1

Population Parameters and Notation

βL1 βL2 βL3 βL1.std βL2.std βL3.std σe2 σu02 σv02 Notation

0.1 0.289 0.058 0.1 0.5 0.1 0.99 0.25 0.33 SLS

0.1 0.173 0.289 0.1 0.3 0.5 0.99 0.303 0.25 SML

0.1 0.058 0.173 0.1 0.1 -0.3 0.99 0.33 0.303 SSM+

0.1 -0.058 -0.173 0.1 -0.1 -0.3 0.99 0.33 0.303 SSM-

Note. βL1, βL2, and βL3 are population fixed effects on Level-1, Level-2, and Level-3, respectively. βL1.std, βL2.std, 
and βL3.std are standardized effects. σv02 , σu02 , and σe2 are population variance components at Level-1, Level-2, and 
Level-3 in the full model.

We also included one effect size combination with negative regression weights to explore 
differences between positive and negative coefficients on a small scale (see Table 1, con­
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dition SSM-). We furthermore evaluated additional effect size combinations, sample sizes, 
and unbalanced designs, but respective results are only reported in the Supplementary 
Materials since they do not meaningfully impact inferences reported below. The calculus 
to obtain conditional variances and regression weights can be found in the R-script in 
the Supplementary Materials. For each generated sample, models were fitted according to 
Equation 1 and Equation 7. Figure 1 shows the conceptual models.

In total, we analyzed 1,728 conditions, each with 1,000 generated samples. Data 
generation and model estimation were done in Mplus 8 (Muthén & Muthén, 1998–2017) 
using maximum likelihood estimation with robust standard errors (MLR). Results were 
imported to R 4.0.5 (R Core Team, 2021) for subsequent analyses. To distinguish between 
conditions, we abbreviate each combination of sample sizes by n3-size/n2-size/n1-size. For 
example, 100/5/5 encompasses samples with 100 clusters, each containing 5 subclusters, 
which in turn contain 5 L1-units. 200/2/• subsumes conditions with 200 clusters with 2 
subclusters each and any number of L1-units.

Evaluation Strategy
For each condition separately, we computed the mean estimates across samples, the 
rPEB and aPEB, power, and coverage rates for the level-specific estimates (MMC: 
γ100, γ010, γ001; MLC: βL1, βL2, βL3). In line with common recommendations (Flora & Curran, 

Figure 1

Conceptual Models

Note. XL2 refers to the subcluster means, XL3 refers to the cluster means. R, U, and V correspond to the latent 
predictor and outcome components as in Equations 4 to 6. Data levels are arranged vertically and separated by 
dashed lines, similarly to figures used in Lüdtke et al. (2008, 2011) and the Mplus manual (Muthén & Muthén, 
1998–2017).
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2004; Muthén & Muthén, 2002), we consider |rPEB| < 0.10, power ≥ 0.8, and 0.91 ≤ 
coverage ≤ 0.98 to indicate sufficient estimation quality. We further computed analyses 
of variance (ANOVA) to evaluate how the simulation conditions influence estimation 
quality, using bias, coverage, or power as outcomes and effect sizes as well as sampling 
conditions as factors. Due to the large sample size, we only report partial effect sizes 
η2. To keep analyses concise, we primarily focus on samples with a maximum of 10,000 
observations (see the Supplementary Materials for full results).

Results
Three conditions in the MMC approach and 13 conditions in the MLC approach showed 
convergence issues for at least one sample. Convergence rates did not drop below 99.7% 
(as observed in 15/5/5 with effect sizes SLS in the MLC approach).

Overview of Estimation Quality
Table 2 lists median estimates and standard errors, averaged across values for conditions 
with up to 10,000 observations. Due to overall high estimation quality of the L1-effect, 
only results for the higher-level effects are comprehensively reported. On L1, all condi­
tions are unbiased, and power and coverage rates are insufficient only in the smallest 
sample sizes, e.g., 15/5/10 (see the Supplementary Materials for full results).

Table 2

Median Estimates and Standard Errors Across Sampling Conditions

MMC approach MLC approach

Level β-size Median SE Median SE
Level-1 0.1 0.100 0.015 0.100 0.015

Level-2 -0.058 -0.023 0.050 -0.058 0.067

0.058 0.067 0.050 0.058 0.066

0.173 0.158 0.049 0.173 0.064

0.289 0.246 0.046 0.289 0.060

Level-3 -0.173 -0.155 0.168 -0.176 0.190

0.058 0.068 0.173 0.056 0.198

0.173 0.172 0.167 0.173 0.191

0.289 0.276 0.153 0.290 0.175

Note. β-size = size of the population coefficient. SE = standard error, MMC = multilevel manifest covariate, MLC 
= multilevel latent covariate.
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With respect to research question (1a), ANOVA results in Table 3 show that the number 
of clusters is the most relevant sampling factor for estimation quality in the MLC 
approach. Similarly, in the MMC approach, the number of clusters is the most important 
factor to achieve estimation quality, except for L2 relative bias and coverage. Notably, 
differences in L2 relative bias are almost exclusively determined by the number of 
sampled L1-units per subcluster.

Estimation Bias

To answer research question (1b) for the relative and absolute bias, Figures 2 and 3 plot 
the mean regression estimates with grey areas indicating |rPEB| ≤ 0.10 (Figure 2) and 
aPEB (Figure 3). While regression estimates are rather unaffected by different sample 
sizes in the MLC approach, estimates in the MMC approach tend to be biased for condi­

Table 3

Effect Sizes (Partial η2) Based on Analyses of Variance for Bias, Coverage, and Power

MMC approach MLC approach

Level Factor df rPEB aPEB Power Coverage rPEB aPEB Power Coverage

Level-2 β-size 3 .788 .760 .832 .453 .037 .696 .827 .002

n3 5 <.001 .501 .435 .263 .002 .588 .564 .895

n2 5 <.001 .397 .321 .180 .002 .474 .437 .172

n1 5 .277 .184 .032 .461 .003 .126 .122 .156

n3 × n2 25 <.001 .173 .003 .063 .004 .177 .007 .253

n3 × n1 25 <.001 .014 .011 .175 .005 .035 .001 .175

n2 × n1 25 <.001 .008 .005 .092 .014 .027 <.001 .454

NOBS 125 <.001 .002 .010 .022 .014 .010 .003 .560

Level-3 β-size 3 .711 .806 .830 .051 .116 .777 .812 .012

n3 5 <.001 .674 .743 .951 .011 .663 .694 .965

n2 5 .023 .001 .015 .295 .068 .051 .076 .198

n1 5 .002 <.001 .001 .052 .006 .003 .002 .025

n3 × n2 25 .009 .001 .001 .316 .064 .031 .005 .187

n3 × n1 25 .003 <.001 .001 .110 .014 .002 <.001 .121

n2 × n1 25 .023 .001 .002 .266 .073 .003 .002 .331

NOBS 125 .024 .002 .003 .386 .103 .005 .002 .453

Note. β-size = size of the population coefficient, rPEB = relative bias, aPEB = absolute bias. n1, n2, n3 indicate 
the number of clusters, subclusters per cluster, and Level-1 units per subcluster. NOBS = total number of 
observations. MMC = multilevel manifest covariate, MLC = multilevel latent covariate. Due to heterogeneity of 
variances, values are likely to have positive bias.
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tions with fewer L1-units. Moreover, the MMC approach more heavily overestimates the 
small negative L2-effect than the small positive L2-effect. In contrast, while the relative 
bias is higher in the MMC approach, the absolute bias tends to be higher in the MLC 
approach.

Power and Coverage Rates

To answer research question (1b) for coverage and power rates, Figures 4 and 5 plot 
power (Figure 4) and coverage rates (Figure 5). Figure 4 indicates that power tends to be 
higher in the MMC approach. Notably, due to overestimation, statistical power is higher 
for the small positive effects than for small negative effects on L2 in the MMC approach. 
Strikingly, coverage rates for (negative) small and large effects on L2 decrease drastically 
as n2 and n3 increase. This is due to smaller CIs around consistently biased estimates (cf. 
Table 2).

Figure 2

Mean Estimates According to Sampling Condition

Note. Plots show mean estimates for each Level-3 (upper plot) and Level-2 (lower plot) regression coefficient, in 
sample sizes with up to 10,000 observations. Shaded areas indicate relative unbiasedness. Plots are grouped 
according to n3, each x-axis is sorted according to n1 within n2, but only the first condition per n2 is labelled on 
the x-axis to visually differentiate between n2-sizes, i.e., for n3 = 15 (leftmost plot), 10/5 indicates n2 = 10 with 
n1 = 5, which is followed by 10/10, 10/15 etc. MLC = multilevel latent covariate, MMC = multilevel manifest 
covariate.
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Required Sample Sizes
To answer the research questions (2a) and (2b), Tables 4 and 5 show quartiles of absolute 
bias and required sample sizes for relative unbiasedness, sufficient coverage, and suffi­
cient power for the MMC approach (Table 4) and MLC approach (Table 5).

Level-2 MMC Estimates

Small positive effects are unbiased (rPEB) for n1 ≥ 25 with n2 ≥ 10. Medium and large 
effects are unbiased for most samples with n1 ≥ 20. Conditions with large n1, such 
as 30/5-10/25-30, ensure sufficient coverage irrespective of effect size. Power for small 
effects is achieved in large samples, such as 100/25/•. For large effects, power is sufficient 
(80% or higher) in most conditions. For medium effects, power is sufficient for most 
conditions with n3 ≥ 100 or n2 ≥ 20. The average absolute bias for small effects exceeds 
50% even for larger samples.

Figure 3

Absolute Bias of Estimates

Note. Plots show absolute bias for each Level-3 (upper plot) and Level-2 (lower plot) regression coefficient, in 
sample sizes with up to 10,000 observations. Plots are grouped according to n3, each x-axis is sorted according 
to n1 within n2, but only the first condition per n2 is marked on the x-axis. MLC = multilevel latent covariate, 
MMC = multilevel manifest covariate.
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Level-3 MMC Estimates

Relative unbiasedness for small effect requires n2 ≥ 30. Medium-sized effects are unbiased 
in most conditions with n2 ≥ 25 or both n1 and n2 ≥ 10. Large effects are unbiased for 
most conditions with n2 ≥ 10. Coverage rates are mostly sufficient by sampling at least 
50 clusters. Statistical power is only sufficient for large effects in conditions with at least 
100 clusters. Average absolute bias is considerably high even for large effects.

Level-2 MLC Estimates

Medium and large effects are generally unbiased (rPEB). Small effects have sufficiently 
low relative bias in most conditions with n3 ≥ 30. Coverage rates are sufficient in most 
conditions. Power of small effects is only sufficient in extremely large samples, such as 
200/20/•. For medium-sized effects, power is sufficient in most conditions with at least 
5,000 observations. Large effects mostly have sufficient power even in small samples. 
Average absolute bias exceeds 50% for small effects even in larger samples.

Figure 4

Power Rates of Estimates

Note. Plots show power rates for each Level-3 (upper plot) and Level-2 (lower plot) regression coefficient, in 
sample sizes with up to 10,000 observations. Shaded areas indicate ranges for sufficient power. Plots are 
grouped according to n3, each x-axis is sorted according to n1 within n2, but only the first condition per n2 is 
marked on the x-axis. MLC = multilevel latent covariate, MMC = multilevel manifest covariate.

Sample Sizes for Three-Level Contextual Variables 144

Methodology
2023, Vol. 19(2), 133–151
https://doi.org/10.5964/meth.9775

https://www.psychopen.eu/


Level-3 MLC Estimates

Large and medium-sized effects have sufficiently low relative bias in most conditions. 
For small effects, most conditions with n3 = 50 in combination with n2 ≥ 10, or n3 = 30 in 
combination with n2 ≥ 15 are unbiased. Samples with at least 50 clusters have sufficient 
coverage. Power is only sufficient for large effects in samples with n3 ≥ 150, or n3 = 100 
with n2 ≥ 10. Average absolute bias is high for all effect sizes and exceeds 50% even for 
large effects.

Figure 5

Coverage Rates of Estimates

Note. Plots show coverage rates for each Level-3 (upper plot) and Level-2 (lower plot) regression coefficient, in 
sample sizes with up to 10,000 observations. Shaded areas indicate ranges for sufficient coverage. Due to very 
similar values, all lines in the upper plot and lines resulting from the MLC approach in the lower plot are 
encompassed by a dark ribbon. Plots are grouped according to n3, each x-axis is sorted according to n1 within 
n2, but only the first condition per n2 is marked on the x-axis. MLC = multilevel latent covariate, MMC = 
multilevel manifest covariate.
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Discussion
In this study, we investigated the estimation quality of the MMC and MLC approaches 
in three-level models in order to (1) evaluate how bias, coverage and power rates relate 
to the sample size at each data level and (2) derive advantageous sampling strategies 
to achieve sound estimation quality (see Tables 4 and 5). Overall, sampling 100/10/• or 

Table 4

Absolute Bias and Minimum Sample Sizes to Achieve Sufficient Estimation Quality in the Multilevel Manifest 
Covariate Approach

Level β-size aPEB Q1; Q3 |rPEB| ≤ 0.1 .91 ≤ Coverage ≤ .98 Power ≥ .80

Level-2 -0.058 0.836; 1.190 not achieved n1 = 30 with n3 ≤ 50 150/30/30; 200/30/20; 200/25/25

0.058 0.602; 0.993 n2 ≥ 10/n1 ≥ 25; n2 ≥ 25/n1 ≥ 20 n1 ≥ 10 150/15/•; 100/25/•

0.173 0.213; 0.329 n1 ≥ 10 n1 ≥ 20 n3 ≥ 100 or n2 ≥ 20

0.289 0.164; 0.249 n1 ≥ 20 n1 = 30 with n3 ≤ 50 all but 15/5/• and 30/5/5

Level-3 0.058 1.985; 3.838 n2 = 30 n3 ≥ 50 not achieved

-0.173 0.646; 1.245 n2 ≥ 25 or n1 ≥ 10 with n2 ≥ 10 n3 ≥ 50 not achieved

0.173 0.637; 1.237 n2 ≥ 10 n3 ≥ 50 not achieved

0.289 0.352; 0.685 n2 ≥ 10 or n1 ≥ 20 n3 ≥ 50 n3 ≥ 100

Note. β-size = size of the population coefficient, rPEB = relative bias, aPEB = absolute bias with lower quartile 
Q1 and upper quartile Q3, n3 = number of clusters, n2 = subclusters per clusters, n1 = Level-1-units per 
subcluster.

Table 5

Absolute Bias and Minimum Sample Sizes to Achieve Sufficient Estimation Quality in the Multilevel Latent 
Covariate Approach

Level β-size aPEB Q1; Q3 |rPEB| ≤ 0.1 .91 ≤ Coverage ≤ .98 Power ≥ .80

Level-2 -0.058 0.777; 1.282 most most 200/20/•; 150/25/•
0.058 0.782; 1.327 most most 200/20/•; 150/25/•
0.173 0.249; 0.431 all most n3 ≥ 100; 50/10/•; 30/15/•

0.289 0.137; 0.239 all most most

Level-3 0.058 2.260; 4.256 n3 ≥ 50; or n3 = 30 with n2 ≥ 15 n3 ≥ 50 not achieved

-0.173 0.734; 1.362 most n3 ≥ 50 not achieved

0.173 0.728; 1.366 most n3 ≥ 50 not achieved

0.289 0.398; 0.751 all n3 ≥ 50 n3 ≥ 150; or n3 = 100 with n2 ≥ 10

Note. β-size = size of the population coefficient, rPEB = relative bias, aPEB = absolute bias with lower quartile 
Q1 and upper quartile Q3, n3 = number of clusters, n2 = subclusters per clusters, n1 = Level-1-units per 
subcluster.
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150 clusters ensures overall sound estimation quality for large effects and additionally 
medium-sized effects on L2 in the MLC approach. For the MMC approach, sampling 
100/•/20 ensures sound estimation quality for large L3-effects and medium-sized L2-ef­
fects. Extending our knowledge regarding required sample sizes in multilevel modeling, 
our results may help researchers make informed decisions regarding required sample 
sizes. Most notably, for the MMC approach, tendencies to over- or underestimate effects 
(relative bias) depend on the (sub-)cluster sizes. Since for this approach, estimation bias 
does not generally improve as the overall sample size increases, but standard errors 
become smaller, coverage rates deteriorate as the samples get larger. It is therefore highly 
important to sample a sufficiently high number of lower-level units to avoid biased 
estimates at the higher levels. In contrast, the MLC approach has higher absolute bias, in­
dicating higher variance in estimates, and slightly lower statistical power, but estimation 
quality for MLC estimates can be reliably improved by sampling more clusters. Naturally, 
our recommendations are based on specified thresholds indicating sufficient estimation 
quality (esp. Muthén & Muthén, 2002), and might therefore differ if stricter or less strict 
thresholds are used. For example, Burton et al. (2006) recommend basing coverage rate 
thresholds on the number of simulation replications. For our analyses, this translates to 
an admissible coverage range of 93.5% to 96.4%, such that additional conditions (mainly 
n3 = 15, 30, 50) result in insufficiently low coverage.

Limitations and Future Prospects
Most importantly, our analyses are limited by the simulation conditions. For example, in 
some research contexts, only two L2 subclusters per L3 cluster might be available. Such 
samples limit admissible model complexity, but contextual effects might still be reliably 
estimated. Additional analyses (see the Supplementary Materials) to explore estimation 
quality for such samples show that—in comparison to conditions with n2 = 5—rPEB is 
at least twice as high, except for nearly unchanged rPEB values for L2 estimates in the 
MMC approach. Similarly, n2 = 2 results in at least 30% less power than n2 = 5, except for 
power on L3 in the MMC approach, which has only about 5% less power.

Moreover, previous studies argue that the variance distribution of the predictor vari­
able across levels influences estimation quality (Lüdtke et al., 2008, 2011; Zitzmann et 
al., 2015). For reflective constructs measured by the MMC in particular, reliability of the 
predictor in two-level models is a function of the predictor variance at the respective 
level (predictor ICC) and the group size (cf. Lüdtke et al., 2008). Our results confirm 
the importance of the subcluster size for unbiasedness of the MMC approach on L2 
and demonstrate the role of the cluster size (n2 × n1 and n2) for estimation quality on 
L3. However, to focus on the interplay between sample size, effect size, and analysis 
approach, we kept the variance fractions constant with 20% of variance on each higher 
level. To illustrate how the distribution influences results, we ran additional simulations 
with 60% of variance at either higher level (see the Supplementary Materials for full 
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results). Results show that coverage rates and power are not meaningfully affected, while 
absolute bias decreases at the level with the higher variance. For the relative bias, differ­
ences between approaches are considerable: While for the MLC approach, differences are 
marginal, we find that for the MMC approach, the relative bias is consistently smaller 
at the level with the high variance proportion. These additional analyses suggest that 
the variance distribution of the predictor needs to be considered in future research to 
develop more specific sampling recommendations for three-level contextual models.

Lastly, we limited our analyses to samples generated from an assumed infinite pop­
ulation (reflective process). For two-level models, Lüdtke et al. (2008) showed that for 
finite samples (formative process), the MMC approach results in smaller bias than the 
MLC approach with a sampling rate of 50% or higher. We hence consider it promising ex­
tending our research to three-level contextual analysis for finite populations, especially 
since for three-level data, the sampling rate at both L1 and L2 must be considered.

In conclusion, our results suggest that the MLC approach tends to be advantageous 
for research where the number of sampled clusters can be more easily increased than 
the (sub-)cluster sizes. The MMC approach, however, has the advantage of higher power 
and lower absolute bias (i.e., lower variability in estimates), especially for samples with 
less than 50 clusters. Thus, the MMC approach might be preferable for research where 
(sub-)cluster sizes can be readily increased for a limited number of clusters.
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