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Abstract
Aside from multilevel models (MLMs), several analytic approaches are available for handling 
cluster-induced dependencies. Nevertheless, the literature on MLM alternatives has called less 
explicit attention to the potential bias in level-1 (L1) slope coefficients resulting from the “blended 
slope” problem—a problem that arises when dependencies in predictors (Xs) exist and when L1 
predictor-outcome (X-Y) relations differ from those at level-2 (L2). As such, applied researchers 
may be drawing incorrect inferences about their L1 predictor effects when they specify models 
without considering clustering in Xs. The present paper reviews this “blended slope” problem and 
uses Monte Carlo simulation to illustrate how the problem manifests more for unilevel models 
compared with MLMs. In short, analyses of clustered data should always: 1) report outcome and 
predictor ICCs, 2) cluster-mean center L1 predictors or incorporate L2 aggregate predictors, and 3) 
employ a model that takes clustered residuals into account.

Keywords
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Multilevel models (also known as “hierarchical,” “random effects,” and “mixed effects” 
models) for clustered data1 have become a staple analytic approach in the psychological 
and educational sciences (Antonakis et al., 2021; Bauer & Sterba, 2011; Luo et al., 2021) 
as well as other social science disciplines (Bell & Jones, 2015; Bell et al., 2019). Not only 
can multilevel models (MLMs) account for non-independence in residual errors, they 
are also able to flexibly disentangle within- and between-cluster relationships, allowing 
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researchers to test context-driven research questions, such as “Does therapist training 
predict individual-level patient mental health outcomes?” or “Does school climate predict 
individual-level student achievement?” Moreover, MLMs can model more than two levels 
of data, model data that are cross-classified or partially nested, and be useful in estimat­
ing both slope and intercept variance (i.e., relaxing the assumption of homogeneity of 
slopes).

Despite their popularity, quantitative methodologists have pointed out that the use 
of MLM can be unnecessarily complex for clustered data when MLM model assumptions 
are untenable (especially in smaller samples) or when the substantive research questions 
are focused primarily on level 1 (L1) in a 2-level hierarchy, such as “Does a patient’s 
own treatment fidelity predict their mental health?” or “Does a student’s own perception 
of school belongingness predict their academic achievement?” While a few MLM alter­
natives exist2, unilevel regression (also known as single-level and fixed effects models) 
with cluster-robust standard errors (CR-SEs) is perhaps the most convenient and flexible 
alternative for handling residual error non-independence without MLM-specific assump­
tions (Bell et al., 2019; Hayes & Cai, 2007; Huang, 2016; McNeish et al., 2017). Nonethe­
less, applied researchers may ignore clustering completely in circumstances when they 
find the variance due to clustering in the outcome (Y) is not statistically significant 
(Raudenbush & Bryk, 2002, pp. 63–64; Snijders & Bosker, 2012, p. 22), or if the “design 
effect” computed for Y is < 1.5 (Lai & Kwok, 2015). Yet, the assumption of independence 
for any model pertains to the residual errors, not Y itself, and dependencies in X will 
contribute to inducing correlated residuals, also known as the endogeneity problem (e.g., 
Grilli & Rampichini, 2011). Further, even when correlated residuals stemming from Y or 
X are appropriately handled using MLM or a unilevel alternative, researchers may be 
quite unaware that their L1 predictor slope estimates are still prone to bias as a result 
of what we call the “blended slope” problem (e.g., Hamaker & Muthén, 2020)—an issue 
more well known in the multilevel literature that occurs when there is clustering in X (a 
non-zero intraclass correlation) and different X–Y relations at L1 and L2 (which cannot 
be readily known a priori).

1) Clustered data can include scores from measurements within individuals (i.e., repeated measures data, such as 
panel data) as well as scores from individuals within structural units (i.e., cross-sectional data), or some blend of the 
two. For clarity but without loss of generality, we focus on the 2-level cross-sectional hierarchical data.

2) There are three main approaches for analyzing 2-level hierarchical data: 1) a random intercept multilevel model 
in which the residual error variance is decomposed into within- and between-cluster variance (clustering is treated 
as a random effect); 2) a unilevel fixed effects model in which clustering is treated as a fixed effect using a set 
of dummy- or effect-coded predictors that control for all variation due to clustering in the outcome and other 
L1 predictors, disallowing inclusion of cluster-level L2 predictors (but see Bell & Jones, 2015 for how to allow L2 
predictor inclusion); and 3) a unilevel fixed effects model where clustering is not treated as a random or fixed effect, 
but instead is used in the residual standard error adjustment, after OLS estimation of parameter estimates (e.g., 
cluster-robust SEs, design-effect adjusted SEs, or algorithmically adjusted SEs in a generalized estimating equation).
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The present paper examines the “blended slope” problem in terms of how it applies 
differentially to unilevel regression models (Mundlak, 1978) that do or do not take 
clustering into account, as compared with multilevel models (Raudenbush & Bryk, 2002), 
with specific attention on the independent contribution of cluster dependencies in X 
that might be ignored by researchers if there are little or no observed dependency in Y. 
First, we review the problem mathematically for the 2-level case; next, we review how 
to fix the problem. Thereafter, we use results from a Monte Carlo simulation to illustrate 
how the problem manifests in different analytic approaches to modeling clustered data3. 
Consistent with others (Antonakis et al., 2021; Bell et al., 2019; Enders & Tofighi, 2007; 
Hamaker & Muthén, 2020), our simulation results also demonstrate how cluster-mean 
centering L1 predictors can solve the problem in both MLMs and their unilevel alterna­
tives4.

The “Blended Slope” Problem
Fairly recent simulation evidence by McNeish (2014) appeared to suggest that X–Y 
regression slope coefficient estimates are equivalent for MLM and unilevel fixed effects 
regression models; however, the simulations were designed so that within-cluster (L1) 
and between-cluster (L2) X–Y relations were identical. In instances where this is not the 
case, other research has shown that regression coefficient estimates of L1 predictors can 
be greatly distorted, to varying degrees, whenever X–Y relationships differ5 at L1 and 
L2 (Mundlak, 1978; Scott & Holt, 1982). In this circumstance, if an L1 predictor’s slope 
is estimated using a regression, the estimate will be a hodgepodge of the true within- 
and between-cluster slopes, which we call a “blended slope” (βTotal), expressed as follows 
(Raudenbush & Bryk, 2002, p. 137):

βTotal = 1 − ψ βW + ψβB = βW + ψ βB − βW (1)

In Equation 1, βTotal is a weighted sum of the within-cluster L1 X-Y relationship (βW ) and 
the between-cluster L2 X-Y relationship (βB). It is further assumed that βW  and βB are 
estimated as follows:

3) We also provide an applied analysis example in the Supplementary Materials.

4) Irrespective of whether a unilevel regression with a SE adjustment or a multilevel regression is employed, 
inclusion of L1 aggregates as L2 predictors, and/or cluster-mean centering L1 predictors, will equivalently ensure L1 
predictor slopes are unbiased (Antonakis et al., 2021; Bell & Jones, 2015; Enders & Tofighi, 2007). However, estimating 
slopes of the L2 aggregates themselves can suffer from unreliability/sampling error, especially when cluster sizes are 
small (e.g., Grilli & Rampichini, 2011). Given that it is unnecessary to include aggregates when the focus is on L1 
relations, we focus on using cluster-mean centering. This all said, researchers must be aware of dependencies in their 
data to know to use these methods, including looking at the ICC in Xs as well as Y.

5) Differences in X–Y relations at L1 and L2 can only occur when non-independence is present in X.
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βW =  
∑j = 1

J ∑i = 1
nj X ij − X . j Y ij − Y ..

∑j = 1
J ∑i = 1

nj X ij − X . j
2 (2)

and

βB =  
∑j = 1

J ∑i = 1
nj X . j − X .. Y ij − Y ..

∑j = 1
J ∑i = 1

nj X . j − X ..
2 (3)

where i = 1, 2, 3, …, nj individuals within clusters, and clusters as j = 1, 2, 3, ..., J  clusters.
Inspecting Eq. 1 makes clear that greater between-cluster relations relative to within-

cluster relations results in a blended slope that is larger than the true within-cluster 
slope, whereas the reverse is true when between-cluster relations are smaller than 
within-cluster relations. As such, the blended slope will be a biased estimator of the 
within-cluster slope whenever within- and between-cluster relationships differ (Figure 
1A). By contrast, the blended slope is not problematic when the within- and the between-
cluster relationships are similar (Figure 1B).

Figure 1A

Hypothetical X-Y Relationships for Data with J = 5 Clusters by Between-Within Relations: Within- and Between-
Cluster Slopes Differ
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Figure 1B

Hypothetical X-Y Relationships for Data with J = 5 Clusters by Between-Within Relations: Within- and Between-
Cluster Slopes are Same

Note. In Panels 1A and 1B, the blue data clouds and individual blue lines represent within-cluster (L1) X–Y 
slopes (Bw), and the black solid line represents the between-cluster (L2) X–Y slopes (Bb). The red dashed line in 
Panel A represents the “blended slope” (Btotal) that would be estimated when either the L1 predictor is not 
cluster-mean centered and/or when the L2 cluster means (aggregates) of the L1 predictor are not included in 
the model.

Importantly, the weight, ψ, in Equation 1 plays a role in the magnitude of slope bias. 
For unilevel regression models that ignore clustering altogether, this weight is defined by 
Raudenbush and Bryk (2002, p. 137; see also Snijders & Bosker, 2012, p. 31) as:

ψ = ηX2 (4)

where:

ηX2 = 
∑j = 1

J ∑i = 1
nj X . j − X ..

2

∑j = 1
J ∑i = 1

nj X ij − X ..
2 . (5)

Here, ηX2  is the ratio of sum of squared deviations between clusters SSB  to the total sum 
of squared deviations SSTotal  in the predictor. That is, the proportion of total variability 
in X explained by clustering.

For 2-level (random intercept) MLMs, Scott and Holt (1982) showed the population 
weight for estimating slope bias is:
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ψ =   1 − ρResidual ρX
1 − ρResidual + m ρResidual 1 − ρX

(6)

Here, ρresidual represents the population intraclass correlation (ICC) among residual errors 
due to clustering when unilevel regression is conducted, ρX represents the ICC among 
predictor scores due to clustering, and m denotes cluster size, assuming that the within-
cluster sample sizes (nj’s) are equal across clusters.

In practice, both ρs in Equation 6 are η2 values (as in Equation 5), rather than ICCs. 
Further, the population weight in Equation 6 can be computed for samples as:

ψ =   1 − ηResidual2 ηX2

1 − ηResidual2 + m ηResidual2 1 − ηX2
(7)

The foregoing now leads to the connection between the blended slope weight given in 
Equation 4 and Equation 7. Specifically, the term involving the correlated residual error 
ηResidual2  can be reinterpreted as the proportion of observed correlated residual error 

that would be accounted for by the modeling method chosen. In the case of unilevel regres­
sion, correlated residual error would not be taken into account during model parameter 
estimation, whereas in MLM regression, residual clustering due to dependencies in Y are 
taken into account via the random intercept term. Thus, the formula for the blended 
slope weight in Equation 7 reduces to the unilevel regression weight shown in Equation 
4 because the ηresidual2  term is zero in this context:

ψUnilevel =   1 − 0 ηX2

1 − 0 + m 0 1 − ηX2
(8)

therefore:

ψUnilevel = ηX2 (9)

To summarize, the two common factors that drive the slope bias in both MLMs and 
MLM alternatives include: 1) greater differences in the within- and between-cluster X-Y 
relations (i.e., L1 vs. L2 slopes), and 2) greater dependencies in the predictor (X) due to 
clustering (ηX2 ). In addition, a careful comparison of the bias weight formulas for MLMs 
(Equation 7) and unilevel models (Equation 8) shows that L1 slope bias in MLMs will be 
less pronounced than in unilevel models when: (a) there are dependencies present in Y, 
and (b) when the data involve larger cluster sizes (m). Specifically, in MLM regression, 
residual clustering due to ICCY is explicitly modeled via the random intercept term such 
that the 1 − ηResidual2  term yields a value less than 1 (depending on ICCY); in contrast, 
this term is always 1 in a unilevel regression. In short, as ICCY increases, for MLMs, the 
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numerator in Equation 7 will become smaller and the denominator will become larger, 
resulting in a smaller ψ weight of the difference in L1 and L2 slopes (Equation 1), all 
else being equal. Second, the impact of the decrease in the 1 − ηResidual2  term on ψ as 
ICCY increases (for MLMs) is amplified by the average cluster size (m). As m increases, 
all other things equal, the denominator becomes larger, resulting in an even smaller ψ
weight and a lower level of L1 slope bias. In short, when ICCY or m are relatively high, 
ψ for MLM models with uncentered L1 predictors will tend toward zero, and the blended 
slope reduces to just the within-cluster slope.

Fixing the Problem
As shown in Equation 1, the “blended slope” (βTotal) is simply a weighted linear combina­
tion of within- and between-cluster components of an L1 predictor. However, if an L1 
predictor (X) is cluster-mean (or “group-mean”) centered—as distinct from grand-mean 
centered—all clustering effects are removed and the predictor becomes the within-cluster 
component of X, XW. When the original predictor is aggregated into cluster means, it 
becomes the between-cluster component of X, XB, which now contains all cluster-spe­
cific information about X. Further, the separated components of X (XW and XB) are 
uncorrelated with each other. In fact, including either just XW, a combination of X and 
XB, or both XW and XB, eliminates the slope bias problem, both for unilevel and MLM 
regression approaches. Although Enders and Tofighi (2007) and others have discussed 
this in the multilevel literature (Bell et al., 2019; Hamaker & Muthén, 2020; Raudenbush 
& Bryk, 2002, pp. 31–35; Snijders & Bosker, 2012, p. 58), in practice, researchers are still 
not using/reporting how they are dealing with the problem, whether it be cluster-mean 
centering and/or use of aggregates, even in MLMs (Antonakis et al., 2021; Luo et al., 
2021). More importantly, we find very rare discussion regarding the blended slope prob­
lem (or how to solve it) within the methodological literature on CR-SEs as an alternative 
approach to MLMs for modeling clustered data (exceptions include Bell et al., 2019, and 
McNeish, 2019).

Correlated Residual Error Due to X (Also Known as Endogeneity)
Putting aside the blended slope problem, it is important to note that dependencies in 
L1 (within-cluster) predictors, not just outcomes, can cause correlated residual errors 
(Cronbach, 1976; Mundlak, 1978), which is also known as the endogeneity problem (e.g., 
Bell & Jones, 2015; Grilli & Rampichini, 2011). Even when there are no dependencies in 
Y, residual error dependencies can be induced by dependencies in X via the shared 
relationship between X and Y. This may occur, for example, in outcomes that have 
more biologically based etiologies such as information processing, memory, or attention 
(Fiedorowicz et al., 2001), which are unlikely to vary across L2 units such as therapists 
or schools. Yet, individualized (L1) treatment characteristics or interventions used as 
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predictors would likely vary across L2 units (e.g., differences among provider techniques 
or school policies).

Specifically, the magnitude of cluster dependency in X (ηX2 ) will be directly transfer­
red to dependencies in the predicted values of the outcome, since Y = Xβ. Thus, the 
magnitude of the residual error dependencies, ηResidual2 , will be a function of ηX2  and 
the proportion of variance in Y explained by X, ηY . X2 . Of course, it is more complex 
in typical analyses where there are many predictors with differing dependency levels 
and relationships with Y and each other. However, as noted above, when L1 predictor 
cluster-mean centering is used, and/or L2 aggregates are added, dependencies in Xs will 
be removed such that dependencies in Y associated with dependencies in Xs will also be 
removed.

Monte Carlo Simulation
To illustrate how the blended slope problem (and associated standard error distortion) 
manifests in both multilevel/random effects models (MLMs) and unilevel/fixed effects 
models (with and without cluster-robust standard errors), we conducted a Monte Carlo 
simulation (an applied analysis example is featured in the Supplementary Materials). Our 
results will show that ignoring cluster dependencies in X when there are different Level 
1 (L1) and Level 2 (L2) X–Y relations yields biased slopes and distorted standard errors, 
especially for unilevel models. Further, because unilevel regression with CR-SEs only 
adjusts standard errors for residual error clustering, the bias in the slope coefficient will 
still be identical to that of a regression model that does not employ CR-SEs (although 
models using CR-SEs have more accurate standard errors). Last, we also demonstrate 
how simple cluster-mean centering L1 predictors resolves the slope bias problem.

Data Generation
Data were generated using Mplus 8 (Muthén & Muthén, 2017) within the MplusAutoma­
tion package in R (Hallquist & Wiley, 2018) as 2-level, 2-predictor models in which Y 
and both Xs are continuous. We varied seven crossed factors, with 500 replications per 
cell. Factor levels were chosen to capture null conditions in addition to realistic research 
scenarios to maximize generalizable results. Manipulated conditions were:

1. J number of clusters (30, 100).
2. m cluster sizes (5, 100).
3. Intraclass correlation (ICC) in X (.01, .20,.40).
4. ICC in Y (.01, .20, .40).
5. Within-cluster total Ry . x

2  (.00, .20, .50), with each predictor contributing half the 
proportion each, and with positive and negative slopes for non-null conditions.
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6. between-cluster total Ry . x
2  (.00, .20, .50), with each predictor contributing half the 

proportion each, and with positive and negative slopes for non-null conditions.
7. predictor-predictor correlations at each level rxx (.00, .20, .40).

Intraclass Correlations

ICCs were induced by setting specific values at L2 for the variance of X and the residual 
variance of Y, each calculated a priori for every design cell. Specifically, we assumed 
predictors had separable within- and between-cluster effects on the outcome using latent 
disaggregation (Figure 2), as follows:

Y ij = γ00 + γ10 X1ij − μ1.j + γ01 μ1.j + γ20 X2ij − μ2.j + γ02 μ2.j + u0j + eij (10)

Figure 2

2-Level, 2-Predictor Model With Predictors (Xs) and Outcome (Y) Measured at L1

where the i th score in the j th cluster is a function of the sum of the conditional mean 
(γ00), the within-cluster (cluster-mean centered, L1) and between-cluster (aggregate, L2) 
fixed effects of the first predictor (γ10 and γ01, respectively), the within- and between-
cluster fixed effects of the second predictor (γ20 and γ02, respectively), the deviation 
between the cluster mean and the grand mean intercept (U0j), and the deviation between 
the i th score and its jth cluster mean (eij).

Each of the L1 variables were fixed to have unit variances (σW2 ), and L2 variances (σB2) 
were set to achieve a desired ICC using the Jak (2019) approach:

σB2 =
ICC   σW2

1 − ICC (11)

The residual outcome variances were calculated from a desired Ry . x
2  value:
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σY  residual, W2 = σY ,W2 − RW
2 * σY ,W2 (12)

σY  residual, B2 = σY , B2 − RB
2 * σY , B2 (13)

Given the data generation process, we could not set X or Y ICCs to be exactly zero; 
instead, our null ICCs were set to .01.

Regression Coefficients

Regression coefficients were derived for each combination of Ry . x
2  and rxx conditions 

using eigenvalue decomposition (e.g., Pedhazur, 1997). Both predictors were assumed to 
have the same population slope values; parameter values are provided in the Supplemen­
tary Materials.

Analyses
For each condition, 500 datasets were simulated and saved using Mplus’ Monte Carlo 
utility (via MplusAutomation in R) assuming a 2-level, 2-predictor linear latent variable 
model shown in Equation 10 (Figure 2). Each dataset was analyzed using six approaches6:

1. Unilevel linear regression model without standard error adjustment, predictors un-
centered (L1uc).

2. Unilevel linear regression model with cluster-robust standard errors (CR-SEs), 
predictors un-centered (L1CRuc).

3. Multilevel linear regression (random intercept model), predictors un-centered (L2uc).
4. Unilevel linear regression model without standard error adjustment, predictors 

cluster-mean centered (aggregate predictors not included) (L1c).
5. Unilevel linear regression model with cluster-robust standard errors (CR-SEs), 

predictors cluster-mean centered (aggregate predictors not included) (L1CRc).
6. Multilevel linear regression (random intercept model), and predictors cluster-mean 

centered (aggregate latent predictors were included in this analysis because it was 
the population generation model with which to compare with the other analyses; 
nevertheless, aggregates are uncorrelated with cluster-mean centered predictors and 
thus L1 slopes and their standard errors are unaffected by their inclusion) (L2c).

In Mplus, TYPE = GENERAL was employed for analysis approaches (1) and (4); for 
approaches (2) and (5) we used TYPE = COMPLEX, and for approaches (3) and (6) we 

6) We did not include unilevel models with L2 aggregate predictors as an alternative to L1 predictor cluster-mean 
centering because L2 aggregate slope estimates can suffer from unreliability (e.g., Grilli & Rampichini, 2011), and 
in unilevel models that do not adjust SEs for cluster dependencies, L2 aggregate slope standard errors become 
downwardly biased.
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used TYPE = TWOLEVEL. Maximum likelihood estimation was used for all analyses. 
Example code files are provided in the Supplementary Materials.

Results
For each analysis approach and condition, slope coefficient and standard error estimates 
were averaged across the 500 replications. Evaluation of the correlation between the 
results for the two predictors across all analysis approaches and conditions showed that 
the two estimated slopes and their standard errors were correlated at .99 or higher; thus, 
without loss of generality we report slope parameter estimate and standard error bias7 

for the first predictor throughout.

Slope Coefficient Relative Bias
Relative bias for the L1/within-cluster predictor slope estimates was tabulated for non-
null conditions in which 10% or 25% variance in Y was explained by each L1/within-clus­
ter predictor in isolation (20% and 50% total variance explained jointly by both within-
cluster predictors). Specifically, relative bias was computed as the difference between 
the estimated slope and the true within-cluster slope, divided by the true within-cluster 
slope; a relative bias of zero indicates no bias, whereas positive values indicate overes­
timation and negative values indicate underestimation. (Hoogland & Boomsma, 1998 
suggest that relative bias exceeding ± 5% for point estimates is cause for concern.)

Table 1 displays mean relative bias across conditions for each of the six analyses, 
paneled by X and Y ICCs. As can be observed, for un-centered predictor analyses (top 
three rows), the unilevel approaches exhibited identical bias, with increased bias solely 
a reflection of increased dependencies in X. For MLM with un-centered predictors, the 
bias due to dependencies in X was much lower than in the unilevel approaches. Not 
surprisingly, when we visualize the bias by the true differences in the within- and be­
tween-cluster slopes (Figure 3), we see that: 1) there is no bias when the ICC in X is close 
to zero, 2) there is no bias when cluster-mean centering is used, and, 3) for un-centered 
predictor analyses, the magnitude of bias (underestimation of the within-cluster slope) 
increases markedly as the ICC X increases and also as the differences between L1 and L2 
slopes increases (identically for positive or negative differences). As can also be observed 
in both Figure 3 and Figure 4A/Figure 4B (which collapses across slope difference condi­
tions), the bias in the un-centered MLM slope disappears for larger clusters whereas the 

7) We focus here on bias in slope point estimates and their standard errors; Type I error and power, which depend 
jointly on point estimates and their standard errors, are given in the Supplementary Materials. We do note that the 
Type I error rate was unacceptably inflated for unilevel models that did not use cluster-mean centering—even those 
employing cluster-robust standard errors.
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bias in the un-centered unilevel analyses is large and constant across cluster sizes (Figure 
4A/Figure 4B).

Across all of these results, the relative bias we observed was negative (underestima­
tion) because our simulation design assumed the within-cluster predictor had a greater 
relationship with the outcome than the between-cluster aggregate predictor. Had we 
designed the simulation to have greater between-cluster (L2) predictor-outcome relations 
than within-cluster (L1) relations, bias would be in a positive direction (overestimation).

Last but not least, slope bias was completely removed for MLM and unilevel regres­
sion analysis approaches by cluster-mean centering the predictors.

Figure 3

Slope Coefficient Relative Bias for Analyses by Within- and Between-Cluster (L1-L2) Slope Differences when rxx = 0

Note. N = 40 non-null conditions/cell with X-X correlations = 0 (for ease of interpretation), per analysis, 500 
replications/condition. Horizontal axis reflects standardized L1-L2 true slope differences grouped as: < -0.25, 
-0.25 to +0.25, and > +0.25 standard deviations in differences. L1uc (CR/nCR) = unilevel regression, un-centered 
predictors, with and without cluster-robust standard errors; L2uc = multilevel random intercept model, un-
centered predictors; L1c (CR/nCR) = unilevel regression, cluster-mean centered predictors, with and without 
cluster-robust standard errors; L2c = multilevel random intercept model, cluster-mean centered predictors. 
Solid red line delineates 0 = no bias; values within 0 ± .05 (red dashed lines) are considered acceptable.
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Figure 4A

Slope Coefficient Relative Bias for Analyses by Cluster Size: ICCs by Cluster Size

Note. See note to Figure 4B.

Figure 4B

Slope Coefficient Relative Bias for Analyses by Number of Clusters: ICCs by Number of Clusters

Note. N = 360 non-null conditions/cell, per analysis, 500 replications/condition. L1uc (CR/nCR) = unilevel 
regression, un-centered predictors, with and without cluster-robust standard errors; L2uc = multilevel random 
intercept model, un-centered predictors; L1c (CR/nCR) = unilevel regression, cluster-mean centered predictors, 
with and without cluster-robust standard errors; L2c = multilevel random intercept model, cluster-mean 
centered predictors. Solid red line delineates 0 = no bias; values within 0 ± .05 (red dashed lines) are considered 
acceptable.
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Slope Standard Error Empirical Bias
Because standard errors are unique to each condition and analysis approach, we compu­
ted empirical bias as the ratio of the mean of the model-implied standard errors to 
the expected standard error, with the expected standard error based on the empirical 
standard deviation of the slope parameters (e.g., Bell & Jones, 2015). Values of 1 indicate 
no bias, positive values indicate upward bias, and negative values indicate downward 
bias (Hoogland & Boomsma, 1998 suggest that relative bias exceeding ±10% (below 0.9 or 
above 1.1) for standard errors is cause for concern).

Table 2 summarizes empirical bias for the mean slope standard error estimates. 
Across analyses, MLM and unilevel CR-SE approaches showed reasonable slope standard 
errors. Only the unilevel approach without adjustment exhibited poor standard errors: 
when no centering was used, the standard errors were biased downward as a function 
of both X and Y ICCs (Figure 5A/Figure 5B); when cluster-mean centering was used, the 
bias from X ICC vanished (but not bias from Y ICC).

Discussion
The present study demonstrates how the “blended slope” problem manifests differential­
ly in unilevel and multilevel models (MLMs) for varied levels of within- and between-
cluster (L1 and L2) slope values, and varied levels of dependencies in predictors (Xs) 
and outcomes (Ys). Our results show clearly that bias can occur in either analysis when 
clustering in X is ignored. What both our mathematical review and simulation results 
also reveal is that ignoring dependencies in predictors in MLMs is less pronounced 
than in unilevel models as cluster sizes increase, and as dependencies in Y increase. We 
consider these findings in the context of three likely data analytic circumstances that 
researchers might currently be implementing: 1) when a lack of dependency in Y is the 
decision rule for ignoring clustering altogether; 2) when a unilevel model with adjusted 
standard errors is used, but the researcher unwittingly uses grand-mean centering or 
no centering for their L1 predictors; and 3) when a multilevel model (MLM) is used but 
again, the researcher is unaware that there may be differences in L1 and L2 X-Y relations 
and fails to cluster-mean center their L1 predictors (or add L2 aggregates).
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Figure 5A

Standard Error Empirical Bias for Analyses by Cluster Size: ICCs by Cluster Size

Note. See note to Figure 5B.

Figure 5B

Standard Error Empirical Bias for Analyses by Number of Clusters: ICCs by Number of Clusters

Note. N = 360 non-null conditions/cell, per analysis, 500 replications/analysis. L1uc (CR/nCR) = unilevel 
regression, un-centered predictors, with and without cluster-robust standard errors; L2uc = multilevel random 
intercept model, un-centered predictors; L1c (CR/nCR) = unilevel regression, cluster-mean centered predictors, 
with and without cluster-robust standard errors; L2c = multilevel random intercept model, cluster-mean 
centered predictors. Solid red line delineates 1 = no bias; values within 1 ± .10 (red dashed lines) are considered 
acceptable.
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In the first circumstance, dependencies in X will cause distorted slope coefficient esti­
mates and distorted slope standard error estimates. With respect to coefficient distortion, 
the predictor slope will be underestimated when the true within-cluster (L1) X-Y relation 
is larger than the true between-cluster (L2) X-Y relation, which is more likely to be the 
case when the theoretical focus is on individual differences. In other words, researchers 
will erroneously infer that the X-Y relationship effect size is smaller than it is in truth. 
In our Monte Carlo simulation design, the within-cluster relation was designed to be 
stronger than the between-cluster relation and hence under-estimation was observed as 
the difference in within- and between-cluster slopes increased (Table 1). Irrespective of 
slope bias, when clustering is completely ignored using unilevel regression, the slope 
standard errors will be downwardly biased (assuming a positive ICC). In our simulations, 
the standard error was underestimated by 35% when X ICC = .40 and Y ICC = .01, 
all else constant (Table 2). When both X and Y ICC = .40, the standard errors were 
underestimated by 51%. As is well known, downward standard error bias leads to a false 
sense of confidence in hypothesis tests and confidence interval coverage.

In the second analytic circumstance, when a researcher chooses to use unilevel 
regression with CR-SEs as a means for handling correlated residual errors but is unaware 
of the need to cluster-mean center their L1 predictors (or add L2 aggregates; e.g., Bell 
et al., 2019), the L1 slope coefficient bias will still be identical to that for the unilevel 
regression without standard error adjustment (Table 1). This is because the adjustment 
occurs after coefficients are estimated. As observed in our simulations, the standard 
errors for the CR-SE approach were similar to those for MLM (Table 2).

In the third analytic circumstance, when a researcher uses MLM to analyze their data 
but fails to cluster-mean center L1 predictors (or add L2 aggregates; e.g., Antonakis et al., 
2021), the L1 slope bias will exhibit the same directional pattern as the other two analysis 
methods, but the bias will likely be smaller for two reasons. First, the MLM regression 
coefficient estimation directly takes into account cluster differences in the residuals 
(see again Equation 7). Second, as the average cluster size becomes large, especially as 
dependencies in Y increase, the weight for L1-L2 slope differences tends toward zero 
and the blended slope becomes the within-cluster slope (see again Figure 4A). In our 
simulations, the bias in MLM slopes when failing to cluster-mean center predictors was 
much lower than that of bias in unilevel slopes that did not use cluster-mean centered 
predictors (-14% compared to -39% on average when ICC X = .40 and ICC Y = .01; Table 
1).

Why is There a Discrepancy With Earlier Work?
Applied researchers may be surprised to learn that L1 predictor slopes estimated with 
unilevel regression and MLM are not the same. This is because recent methodological 
work showed that both analysis approaches could produce the same coefficient estimates 
(McNeish, 2014). However, this is only the case when data are generated to have the 
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same within- and between-cluster X-Y relationships (Figure 1B). As we review and 
demonstrate in this paper, L1 slope bias arises only when there is a difference in the 
L1 and L2 X-Y relations (Figure 1A), which in practice may be far more realistic than 
assuming they are the same.

Isn’t Everyone Already Using Cluster-Mean Centering?
Some readers may be under the impression that everyone is appropriately cluster-mean 
centering lower-level predictors (or including their aggregates) when analyzing clustered 
data. We do not believe this is the case. Although the centering issue has been discussed 
in prominent MLM textbooks (e.g., Raudenbush & Bryk, 2002; Snijders & Bosker, 2012) 
as well as MLM methodological literature (e.g., Enders & Tofighi, 2007), two recent 
meta-analyses of multilevel modeling research by Luo et al. (2021) and Antonakis et al. 
(2021) showed that very few researchers reported either cluster-mean centering their 
L1 predictors and/or including L2 aggregate predictors to ensure slope results were 
unbiased. More importantly, we found little guidance in the MLM alternatives literature 
(unilevel models for analyzing clustered data structures) about the issues involved, par­
ticularly for unilevel regression with CR-SEs (exception is Bell et al., 2019). Thus, we 
remain skeptical that researchers have received the message yet.

Two Caveats in Simulation Conditions
Besides the specificity of our design conditions, our simulation results were limited in 
two regards. First, we used latent disaggregation of lower-level regressors into within- 
and between-cluster (L1 and L2) predictors in our correctly specified multilevel models. 
Latent disaggregation mitigates against score unreliability that can result from sampling 
error when estimating X-Y relations at L1 and L2 (Asparouhov & Muthén, 2019). Howev­
er, we did not build in extra measurement error, and so L1 estimates would not differ 
from L1 estimates in univariate multilevel software, such as R lme4 (Bates et al., 2015). 
However, L2 aggregates themselves are automatically subject to sampling error (Grilli & 
Rampichini, 2011), and so one would expect the difference between latent and univariate 
multilevel models to be located in the L2 aggregate slope estimates (which are not the 
focus of our paper). Indeed, when we subjected the simulated data to 2-level models 
estimated with R lme4 (with observed cluster means used for L1 predictor cluster-mean 
centering and creating L2 aggregates), we found the L1 slope estimates to be nearly 
perfectly correlated between Mplus and lme4 results, r > .99 (within and across all sample 
sizes) but the L2 aggregate slopes were less correlated, at r ≥ .86 across sample sizes (r ≥ 
.81 for the smallest sample size).

The second point to note is that we used continuous (normally distributed) predictors 
and outcomes in our simulation, as well as in our applied analysis provided in the 
Supplementary Materials. Nevertheless, there is no reason to believe the same biases 
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would not persist with categorical data. In fact, categorical predictors can also be either 
cluster-mean centered (Enders & Tofighi, 2007, Appendix B), and/or aggregated as L2 
cluster mean (percentages) that are then added to the model to ensure that slope inferen­
ces are correct.

Conclusion
Although MLM has become a staple analytic technique in the psychological and educa­
tional sciences (Antonakis et al., 2021; Bauer & Sterba, 2011; Luo et al., 2021), alternative 
unilevel regression approaches for analyzing clustered data when only L1 questions 
are of interest are also possible—and sometimes preferable—to MLM, such as unilevel 
regression with cluster-robust standard errors (CR-SEs) (Hayes & Cai, 2007; Huang, 2016; 
McNeish et al., 2017). Yet, in any clustered data, the predictor-outcome relation at L1 may 
easily differ from that of the relation at L2. If lower-level predictors are not cluster-mean 
centered, or if their aggregates are not added as predictors to the model, the L1 slope 
estimate will be an unintelligible mixture of the L1 and L2 components. The current 
study reviews and illustrates this “blended slope” problem, and its differential impact on 
unilevel models compared to MLMs, when left unchecked. Importantly, the problem only 
occurs when clustering in X is ignored, resulting in L1 slope under- or over-estimation 
that is especially pronounced in unilevel regression models, and to a lesser extent, in 
MLMs with smaller cluster sizes.

In our view, there is no utility in trying to draw inferences from a “blended slope,” as 
it serves neither the individual level nor the cluster level; further, it is prone to inflated 
Type I error rates8 in both unilevel and multilevel analyses. Simply put, researchers 
should always check and report both X and Y ICCs when they are dealing with clustered 
data, regardless of whether the nature of their data is cross-sectional or repeated meas­
ures/time series. Second, given that most datasets employ numerous predictors that vary 
in their magnitude of cluster dependencies as well as their correlations with the outcome 
and each other, it should be a routine procedure for researchers to either cluster-mean 
center their lower-level predictors and/or add cluster mean aggregates as additional 
predictors (see Supplementary Materials for R code to obtain cluster-mean centered and 
aggregate predictors), irrespective of whether unilevel or multilevel modeling is used to 
handle residual error dependencies.

8) See the Supplementary Materials for Type I error rates.
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